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Preface

The monograph presents advances in applied nonlinear optimal control comprising both theoretical analysis of
the developed control methods and case studies about their use in robotics, mechatronics, electric power genera-
tion, power electronics, micro-electronics, biological systems, biomedical systems, financial systems and industrial
production processes. The monograph is developed around new theoretical results allowing for solution of the non-
linear optimal control problem through approximate linearization of the controlled system’s dynamics and through
application of H-infinity control methods. Because of the nonlinearity of the state-space model of the considered
dynamical systems under control other approaches to solve the associated optimal control problem, are of ques-
tionable performance. Therefore, the monograph’s results go beyond other control approaches such as the typical
model predictive control (MPC) and the nonlinear model predictive control, (NMPC). For instance, it is widely
acknowledged that MPC is a linear control method which in the case of the nonlinear dynamics of the considered
complex dynamical systems cannot assure the stability of the control loop. Besides, it is known that the NMPC’s
iterative search for an optimum is dependent on initial parametrization and is not always of assured convergence.
On the other side the use of global linearization-based methods for the control of the considered complex dynamical
systems requires the definition of the linearizing outputs in a case-based manner and the application of complicated
change of state-space variables. Moreover, such methods may come against singularity problems due to including
also additional transformations being-based on matrices inversions. Alternatively, the application of backstepping
control to the considered complex systems requires to express previously their state-space description into the tri-
angular form, and this is not always a straightforward procedure. Finally, sliding-mode control cannot be directly
applied to complicated multivariable dynamical systems because these are not found in a canonical linear form
and consequently there is no systematic manner in defining the sliding surface. For the reasons explained above,
the monograph’s findings on nonlinear optimal control, can be a substantial contribution to the areas of nonlinear
control and complex dynamical systems and can find use in several research disciplines and practical applications.
The monograph is concerned with applied nonlinear optimal control and one of its primary objectives is to demon-
strate potential applications for its theoretical developments. Prospective application areas are outlined as follows:

1) industrial robotics: robotic manipulators and networked robotic systems Applications to fully actuated robotic
manipulators, redundant manipulators, underactuated manipulators, cranes and load handling systems, time-
delayed robotic systems. closed kinematic chain manipulators, flexible-link manipulators, micromanipulators.

2) transportation systems: autonomous vehicles and mobile robots Applications to two-wheel and unicycle type
vehicles, four-wheel drive vehicles, four-wheel steering vehicles, articulated vehicles, truck and trailer systems, un-
manned aerial vehicles, unmanned surface vessels, autonomous underwater vessels, underactuated vessels.

3) motion generation and transmission systems: actuators and motors Applications to mechatronic systems and
actuators, switched reluctance motors, permanent magnet synchronous motors, permanent magnet linear motors,
synchronous reluctance motors, induction motors, induction linear motors doubly-fed reluctance machines and
multi-phase machines.

4) electric power systems: power generators and power electronics Applications to photovoltaic units, fuel cells units,
synchronous generators, permanent magnet synchronous generators, doubly-fed induction generators, doubly-fed
reluctance generators, gas-turbine electric power units, hybrid-excited synchronous generators, steam-turbine elec-
tric power units, wind-turbine electric power units, hydropower generators, multi-phase generators, distributed
electric power transmission and distribution systems. Applications to power electronics, such as DC-DC convert-
ers, DC-AC inverters, AC-DC converters, DC-AC inverters and active power filters, power transformers, batteries
and capacitors, VSC-HVDC transmission systems, components of the smart grid.

5) biosystems: bioprocesses in the pharmaceutical industry, controlled drugs infusion. Applications to the phar-
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maceutical industry, processes of controlled protein and hormone synthesis, systems of haemodialysis, controlled
anaesthesia, controlled drug infusion for diabetes, regulation of heart’s functioning, control of biological oscillators,
and in several other types of biosystems.

6) financial systems: risk prevention and assets management, Applications to optimal control of macroeconomic
systems, optimal control of models of markets dynamics and business cycles, management for the elimination of
loans and investments risk, decision making for the mitigation of companies’ default risk, optimized planning of
transactions and investments in the commodities market, optimal management of capitals and assets.

The prospective audience of the monograph comes both from the academic field and from engineers working on
practical optimal control and optimization problems. There is need for generic and systematic methods of nonlinear
optimal control, in robotics, mechatronics, electric power generation, power electronics, micro-electronics, biological
systems, biomedical systems, financial systems and industrial production processes The monograph’s methods are
of proven stability and convergence and exhibit also robustness to model uncertainty and external perturbations.
The stages of the developed nonlinear optimal control methods are clear and easy to follow and implement.. Taking
into account the above, it is expected that the monograph will have a good acceptance by a wide audience in both
the academic and the engineering communities. It is anticipated that the interest of the academic, research and
engineering community in the topics presented by this monograph will grow in the forthcoming years. This is
because optimization in functioning of nonlinear dynamical systems is becoming a prerequisite for a wide spectrum
of applications including engineering systems, biomedical systems and financial systems. Besides as the mono-
graph’s methods for nonlinear optimal control are characterized by global stability and robustness features they
are not going to get outdated or scientifically depreciated. Furthermore, starting from the applications examples
presented in the monograph one can find more areas for using the provided results on nonlinear optimal control.
Consequently, the monograph’s findings are expected to be well disseminated among researchers and engineers and
that the book will keep on being of interest in the following years, for both research institutes or universities and
for engineers.

The monograph presents advances in applied nonlinear optimal control comprising both theoretical analysis of
the developed control methods and case studies about their use in robotics, mechatronics, electric power genera-
tion, power electronics, micro-electronics, biological systems, biomedical systems, financial systems and industrial
production processes. The advantages of the nonlinear optimal control approaches which are developed in the
monograph are outlined as follows: (i) by applying approximate linearization of the controlled systems’ state-space
description one can avoid the elaborated state variables transformations (diffeomorphisms) which are required by
global linearization-based control methods, (ii) the control input is applied directly on the controlled systems and
not on an equivalent linearized description of theirs. Thus one can avoid the inverse transformations met in global
linearization-based control methods and the appearance of singularity problems, (iii) the monograph’s control meth-
ods retain the advantages of linear optimal control, that is best trade-off between accurate tracking of reference
setpoints and moderate variations of the control inputs. The monograph’s findings on nonlinear optimal control,
can be a substantial contribution to the areas of nonlinear control and complex dynamical systems and can find
use in several research disciplines and practical applications.

In particular with respect to approaches attempting to solve optimal control problems for complex dynamical
systems it can be pointed out that the present monograph is developed around new theoretical results allowing
for solution of the nonlinear optimal control problem through approximate linearization of the controlled system’s
dynamics and through application of H-infinity control methods. Because of the nonlinearity of the state-space
model of the considered dynamical systems under control, other approaches to solve the associated optimal control
problems, are of questionable performance. Therefore, the monograph’s results go beyond other control approaches
such as Model Predictive Control (MPC) and Nonlinear Model Predictive Control, (NMPC). For instance, it is
widely acknowledged that MPC is a linear control method which in the case of the nonlinear dynamics of the
considered complex dynamical systems cannot assure the stability of the control loop. Besides, it is known that
the NMPC’s iterative search for an optimum is dependent on initial parametrization and is not always of assured
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convergence.

Primarily the book is addressed to the research and academic community. The monograph can be a reference for
researchers working on nonlinear control problems. Moreover, the content of the book can be used for teaching
undergraduate or postgraduate courses in nonlinear control. Therefore it can be considered by both academic
tutors and students as a reference book for such courses. A significant part of the book’s readership is also ex-
pected to come from the engineering community. Engineers working in the design and development of robotic
and mechatronic systems, electric power systems, biomedical systems or cyberphysical systems may come against
nonlinear control problems which can be solved using the guidelines of the monograph. The monograph is an-
ticipated to attract the interest of a significant part of the academic and engineering community. The timeliness
of the monograph’s topics is not expected to decline in the following years because the developed control meth-
ods are of proven stability and robustness while potential applications cover a wide spectrum that ranges from
engineering systems to biomedical and financial systems. Since the monograph’s methods and approaches offer
complete and reliable solutions to nontrivial problems of robotics, mechatronics, electric power generation, power
electronics, micro-electronics, biological systems, biomedical systems, financial systems and industrial production
processes, their scientific value is difficult to be depreciated as years go by. On the other hand,since the monograph’s
methods have excellent performance and contribute to the reliable functioning of several types of nonlinear dy-
namical systems, it is expected this book to become a useful reference for the academic and engineering community.

Dr. Gerasimos Rigatos
Athens. Greece
July 2019
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Glossary

AGV: Automatic Ground Vehicle

ARE: Algebraic Riccati Equation

AUV: Autonomous Underwater Vessel

CT; Computed Torgue Method

DARE: Differential Algebraic Riccati Equation
DOF: Degrees of Freedom

DFIG: Doubly Fed Induction Generator
DFRM: Doubly-fed Reluctance Machine

EGR: Exhaust Gas Recirculation

FC: Fuel Cells

GT: Gas Turbine

Hoo control: H-infinity Control

Hoo Kalman Filter: H-infinity Kalman Filter
HESG: Hybrid Excited Synchronous Generator
HT: Hydro Turbine

HJB: Hamilton-Jacobi-Bellman equation
HVDC: High Voltage Direct Current line

IM: Induction Motor

LIM: Linear Induction Motor

LQR: Linear Quadratic Requlator

LQG: Linear Quadratic Gaussian

MAGLEV: Magnetic Levitation Train

MPC: Model Predictive Control

NMPC: Nonlinear Model Predictive Control
PID: Propotrional Integral Derivative

PMSG: Permanent Magnet Synchronous Generator
PMLSM: Permanent Magnet Linear Synchronous Motors
PMSM: Permanent Magnet Synchronous Motor
PWM: Pulse Width Modulation

RMSE: Root Mean Square Error

SG: Synchronous Generator

ST: Steam Turbine

SwRM: Switched Reluctance Machine

SRM: Synchronous Reluctance Machine
STATCOM: Static Synchronous Compensator
UAS: Unmanned Aerial Systems

UGYV: Unmanned Ground Vehicle

USV: Unmanned Surface Vessel

UAV: Unmanned Aerial Vehicle

VSI: Voltage Source Inverter

VSC: Voltage Source Converter

WT: Wind Turbine

4WD: Four-wheel drive vehicle

4WS: Four-wheel steering vehicle
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