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Foreword

This book, provides a complete study on neural structures exhibiting nonlinear and
stochastic dynamics. The book elaborates on neural dynamics by introducing ad-
vanced models of neural networks. It overviews the main findings in the modelling
of neural dynamics in terms of electrical circuits and examines their stability prop-
erties with the use of dynamical systems theory. Such electric circuit models are
characterized by attractors and fixed points while in certain cases they exhibit bi-
furcations and chaotic dynamics. Moreover, solutions of the neural dynamics in the
form of travelling waves equations are derived. The dynamics of interconnected
neurons is analyzed with the use of forced oscillator and coupled oscillator mod-
els. It is shown that by introducing stochastic uncertainty and variations in the pre-
vious deterministic coupled oscillator model, stochastic coupled oscillator models
can be derived. Next, going into a more refined analysis level it is shown how neu-
ral dynamics can be interpreted with the use of quantum and stochastic mechanics.
It is proven that the model of interacting coupled neurons becomes equivalent to
the model of interacting Brownian particles that is associated to the equations and
dynamics of quantum mechanics. It is shown that such neural networks with dy-
namics compatible to quantum mechanics principles exhibit stochastic attractors.
Furthermore, the spectral characteristics of such neural networks are analyzed. Ad-
ditionally, a stochastic mechanics approach to stabilization of particle systems with
quantum dynamics is presented. It also shown that the eigenstates of the quantum
harmonic oscillator can be used as activation functions in neural networks. More-
over, a gradient-based approach to stabilization of particle systems with quantum
dynamics is provided. There are remarkable new results in the book concerned with:
(i1) nonlinear synchronizing control of coupled neural oscillators (ii) neural struc-
tures based on stochastic mechanics or quantum mechanics principles, (ii) nonlinear
estimation of the wave-type dynamics of neurons, (iii) neural and wavelet networks
with basis functions localized both in space and frequency, (iv) stochastic attractors
in neural structures, and (v) engineering applications of advanced neural network
models.

Industrial Systems Institute, October 2013 Dr. Gerasimos G. Rigatos
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Preface

This book aims at analyzing advanced models of neural networks, starting with
methods from dynamical systems theory and advancing progressively to stochasticity-
based models and models compatible with principles of quantum mechanics. Ad-
vanced models of neural networks enable on the one side to understand patterns of
neuronal activity seen in experiments in the area of neuroscience and on the other
side to develop neurocomputing methods in the area of information sciences that re-
main consistent with physics principles governing biological neural structures. The
first chapters of the book (Chapters 1 to 6) make use of dynamical systems theory
to explain the functioning of neural models. Dynamical systems and computational
methods are widely used in research to study activity in a variety of neuronal sys-
tems. The dynamics of the neural structures are described with the use of linear or
nonlinear ordinary differential equations or with the use of partial differential equa-
tions. This approach to neural modelling focuses on the following issues: (i) Mod-
elling neural networks in terms of electrical circuits (The Hodgin-Huxley equations.
The FitzHugh-Nagumo equations. ion channels) (ii) Elements of dynamical systems
theory: The phase plane. Stability and fixed points. Attractors, Oscillations. Bifur-
cations, Chaotic dynamics (iii) Chaotic dynamics in neural excitation. Travelling
waves solutions to models of neural dynamics (iv) Neural oscillators (forced oscil-
lators and coupled oscillator models).

The latter chapters of the book (Chapters 7 to 13) analyze the significance of noise
and stochasticity in modelling of neuronal dynamics. The dynamics of neural struc-
tures are no longer described by linear or nonlinear ordinary differential equations
or by partial differential equations but are formulated in terms of stochastic differen-
tial equations. Neural computation based on principles of quantum mechanics can
provide improved models of memory processes and brain functioning and is of pri-
mary importance for the realization of quantum computing machines. To this end,
the book studies neural structures with weights that follow the model of the quantum
harmonic oscillator. The proposed neural networks have stochastic weights which
are calculated from the solution of Schrodinger’s equation under the assumption of
a parabolic (harmonic) potential. These weights correspond to diffusing particles,
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which interact to each other as the theory of Brownian motion (Wiener process)
predicts. The learning of the stochastic weights (convergence of the diffusing parti-
cles to an equilibrium) is analyzed. In the case of associative memories the proposed
neural model results in an exponential increase of patterns storage capacity (num-
ber of attractors). It is also shown that conventional neural networks and learning
algorithms based on error gradient can be conceived as a subset of the proposed
quantum neural structures. Thus, the complementarity between classical and quan-
tum physics can be also validated in the field of neural computation. Furthermore,
in continuation to modelling of neural networks as interacting Brownian particles it
is shown how stabilization can be succeeded either for particle systems which are
modelled as coupled stochastic oscillators and for particle systems with quantum
dynamics. Finally, engineering applications of the previously described advanced
models of neural dynamics are provided.

The book’s chapters are organized as follows: (1) Modelling biological neurons in
terms of electrical circuits, (2) Systems theory for the analysis of biological neuron
dynamics, (3) Bifurcations and limit cycles in biological neurons (4) Oscillatory
dynamics in Biological Neurons, (5) Synchronization of circadian neurons and pro-
tein synthesis control, (6) Wave dynamics in the transmission of neural signals, (7)
Stochastic models of biological neuron dynamics, (8) Synchronization of stochastic
neural oscillators using Lyapunov methods, (9) Synchronization in coupled stochas-
tic neurons using differential flatness theory, (10) Attractors in associative memo-
ries with stochastic weights, (11) Spectral analysis of neural models with stochastic
weights, (12) Neural networks based on the eigenstates of the quantum harmonic
oscillator and engineering applications, (13) Gradient-based feedback control for
dynamical systems following the model of the quantum harmonic oscillator.

A summary of the chapters’ content is given in the following:

In Chapter 1, it is shown that the functioning of the cells membrane can be repre-
sented as an electric circuit. To this end: (1) the ion channels are represented as re-
sistors, (2) the gradients of the ions concentration are represented as voltage sources,
(3) the capability of the membrane for charge storage is represented as a capacitor.
It is considered that the neurons have the shape of a long cylinder, or of a cable with
specific radius.The Hodgkin-Huxley model is obtained from a modification of the
cables PDE, which describes the change of the voltage along dendrites axis. Cables
equation comprises as inputs the currents which are developed in the ions channels.
Other models of reduced dimensionality that describe voltage variations along the
neuron’s membrane are the FitzHugh-Nagumo model and the Morris-Lecar model.
Cable’s equation is also shown to be suitable for describing voltage variations along
dendrites. Finally, the various types of ionic channels across the neurons’ membrane
are analyzed.

In Chapter 2, the main elements of systems theory are overviewed, thus providing
the basis for modeling of biological neurons dynamics. To understand oscillatory
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phenomena and consequently the behavior of biological neurons benchmark exam-
ples of oscillators are given. Moreover, using a low order mathematical model of
biological neurons the following properties are analyzed: phase diagram, isoclines,
attractors, local stability, fixed points bifurcations and chaos properties.

In Chapter 3, a systematic method is proposed for fixed point bifurcations analysis
in biological neurons using interval polynomials theory. The stages for performing
fixed point bifurcation analysis in biological neurons comprise (i) the computation
of fixed points as functions of the bifurcation parameter and (ii) the evaluation of the
type of stability for each fixed point through the computation of the eigenvalues of
the Jacobian matrix that is associated with the system’s nonlinear dynamics model.
Stage (ii) requires the computation of the roots of the characteristic polynomial of
the Jacobian matrix. This problem is nontrivial since the coefficients of the charac-
teristic polynomial are functions of the bifurcation parameter and the latter varies
within intervals. To obtain a clear view about the values of the roots of the character-
istic polynomial and about the stability features they provide to the system, the use
of interval polynomials theory and particularly of Kharitonov’s stability theorem is
proposed. In this approach the study of the stability of a characteristic polynomial
with coefficients that vary in intervals is equivalent to the study of the stability of
four polynomials with crisp coefficients computed from the boundaries of the afore-
mentioned intervals. The efficiency of the proposed approach for the analysis of
fixed points bifurcations in nonlinear models of biological neurons is tested through
numerical and simulation experiments.

In Chapter 4, it is shown that the voltage of the neurons membrane exhibits os-
cillatory variations after receiving suitable external excitation either when the neu-
ron is independent from neighboring neural cells or when the neuron is coupled
to neighboring neural cells through synapses or gap junctions. In the latter case it
is significant to analyze conditions under which synchronization between coupled
neural oscillators takes place, which means that the neurons generate the same volt-
age variation pattern possibly subject to a phase difference. The loss of synchronism
between neurons can cause several neuro-degenerative disorders. Moreover, it can
affect several basis functions of the body such as gait, respiration and hearts rhythm.
For this reason synchronization of coupled neural oscillators has become a topic of
significant research during the last years. It is also noted that the associated results
have been used in several engineering applications, such as biomedical engineer-
ing and robotics. For example, synchronization between neural cells can result in a
rhythm generator that controls joints motion in quadruped, multi-legged and biped
robots.

In Chapter 5, a new method is proposed for synchronization of coupled circadian
cells and for nonlinear control of the associated protein synthesis process using dif-
ferential flatness theory and the derivative-free nonlinear Kalman Filter. By proving
that the dynamic model of the synthesis of the FRQ protein (protein extracted from
the frq gene) is a differentially flat one its transformation to the linear canonical
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(Brunovsky) form becomes possible. For the transformed model one can find a state
feedback control input that makes the oscillatory characteristics in the concentration
of the FRQ protein vary according to desirable setpoints. To estimate the nonmea-
surable elements of the state vector, a new filtering method named Derivative-free
nonlinear Kalman Filter is used. The Derivative-free nonlinear Kalman Filter con-
sists of the standard Kalman Filter recursion on the linearized equivalent model of
the coupled circadian cells and on computation of state and disturbance estimates
using the diffeomorphism (relations about state variables transformation) provided
by differential flatness theory. Moreover, to cope with parametric uncertainties in
the model of the FRQ protein synthesis and with stochastic disturbances in mea-
surements, the Derivative-free nonlinear Kalman Filter is redesigned in the form of
a disturbance observer. The efficiency of the proposed Kalman Filter-based control
scheme is tested through simulation experiments.

In Chapter 6, an analysis is given on wave-type partial differential equations that
describe the transmission of neural signals and proposes filtering for estimating the
spatiotemporal variations of voltage in the neurons’ membrane. It is shown that
in specific neuron models the spatiotemporal variations of the membrane’s volt-
age follow partial differential equations (PDEs) of the wave type while in other
models such variations are associated with the propagation of solitary waves in the
membrane. To compute the dynamics of the membrane PDE model without knowl-
edge of boundary conditions and through the processing of noisy measurements,
the Derivative-free nonlinear Kalman Filter is proposed. The PDE of the membrane
is decomposed into a set of nonlinear ordinary differential equations with respect
to time. Next, each one of the local models associated with the ordinary differen-
tial equations is transformed into a model of the linear canonical (Brunovsky) form
through a change of coordinates (diffeomorphism) which is based on differential
flatness theory. This transformation provides an extended model of the nonlinear
dynamics of the membrane for which state estimation is possible by applying the
standard Kalman Filter recursion. The proposed filtering method is tested through
numerical simulation tests.

In Chapter 7, neural networks are examined in which the synaptic weights corre-
spond to diffusing particles and are associated with a Wiener process. Each diffus-
ing particle (stochastic weight) is subject to the following forces: (i) a spring force
(drift) which is the result of the harmonic potential and tries to drive the particle to
an equilibrium and (ii) a random force (noise) which is the result of the interaction
with neighboring particles. This interaction can be in the form of collisions or repul-
sive forces. It is shown that the diffusive motion of the stochastic particles (weights
update) can be described by Fokker-Planck’s, Ornstein-Uhlenbeck or Langevins
equation which under specific assumptions are equivalent to Schrodinger’s diffusion
equation. It is proven that Langevins equation is a generalization of the conventional
gradient algorithms.



Preface xiii

In Chapter 8, a neural network with weights described by the interaction of Brown-
ian particles is considered again. Each weight is taken to correspond to a Brownian
particle. In such a case, neural learning aims at leading a set of M/ weights (Brown-
ian particles) with different initial values on the 2-D phase plane, to a desirable final
position. A Lyapunov function describes the evolution of the phase diagram towards
the equilibrium Convergence to the goal state is assured for each particle through
the negative definiteness of the associated Lyapunov function. The update of each
neural weight (trajectory in the phase diagram) is affected by (i) a drift force due to
the harmonic potential, and (ii) the interaction with neighboring weights (particles).
Using Lyapunov methods it is shown that the mean of the particles converges to the
equilibrium while using LaSalle’s theorem it is proven that the individual particles
remain within a small area encircling the equilibrium.

In Chapter 9, examples of chaotic neuronal dynamics are presented first and control
of chaotic neuron model with the use of differential flatness theory is explained.
Moreover, a synchronizing control method is presented for neurons described again
as particle systems and modeled as coupled stochastic oscillators. The proposed
synchronization approach is also flatness-based control. The kinematic model of
the particles is associated with the model of the quantum harmonic oscillator and
stands for a differentially-flat system. It is also shown that after applying flatness-
based control the mean of the particle system can be steered along a desirable path
with infinite accuracy, while each individual particle can track the trajectory within
acceptable accuracy levels.

In Chapter 10, neural associative memories are considered in which the elements of
the weight matrix are taken to be stochastic variables. The probability density func-
tion of each weight is given by the solution of Schrodinger’s diffusion equation. The
weights of the proposed associative memories are updated with the use of a learning
algorithm that satisfies quantum mechanics postulates. The learning rule is proven
to satisfy two basic postulates of quantum mechanics: (i) existence in superimpos-
ing states, (ii) evolution between the superimposing states with the use of unitary
operators. Therefore it can be considered as a quantum learning algorithm. Taking
the elements of the weight matrix of the associative memory to be stochastic vari-
ables means that the initial weight matrix can be decomposed into a superposition
of associative memories. This is equivalent to mapping the fundamental memories
(attractors) of the associative memory into the vector spaces which are spanned by
the eigenvectors of the superimposing matrices and which are related to each other
through unitary rotations. In this way, it can be shown that the storage capacity of
the associative memories with stochastic weights increases exponentially with re-
spect to the storage capacity of conventional associative memories.

In Chapter 11, spectral analysis of neural networks with stochastic weights (stem-
ming from the solution of Schrédinger’s diffusion equation) is performed. It is
shown that: (i) The Gaussian basis functions of the weights express the distribution
of the energy with respect to the weights’ value. The smaller the spread of the basis
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functions is, the larger becomes the spectral (energy) content that can be captured
therein. Narrow spread of the basis functions, results in wide range of frequencies of
a Fourier-transformed pulse, (ii) The stochastic weights satisfy an equation which
is analogous to the principle of uncertainty.

In Chapter 12, feedforward neural of networks with orthogonal activation functions
(Hermite polynomials) which come from the solution of Schrodinger’s diffusion
equation are considered. These neural networks have significant properties: (i) the
basis functions are invariant under the Fourier transform, subject only to a change
of scale, (ii) the basis functions are the eigenstates of the quantum harmonic oscil-
lator (QHO), and stem from the solution of Schrédinger’s harmonic equation. The
proposed neural networks have performance that is equivalent to wavelet networks
and belong to the general category of nonparametric estimators. They can be used
for function approximation, image processing and system fault diagnosis. The con-
sidered basis functions are also analyzed with respect to uncertainties principles and
the Balian-Low theorem.

In Chapter 13, the interest is in control and manipulation of processes at molecular
scale, as the ones taking place in several biological and neuronal systems. To this
end, a gradient method is proposed for feedback control and stabilization of par-
ticle systems using Schrddinger’s and Lindblad’s descriptions. The eigenstates of
the quantum system are defined by the spin model. First, a gradient-based control
law is computed using Schrodinger’s description. Next, an estimate of state of the
quantum system is obtained using Lindblad’s differential equation. In the latter case,
by applying Lyapunov’s stability theory and LaSalle’s invariance principle one can
compute a gradient control law which assures that the quantum system’s state will
track the desirable state within acceptable accuracy levels. The performance of the
control loop is studied through simulation experiments for the case of a two-qubit
quantum system.

The book contains teaching material that can be used in several undergraduate or
post-graduate courses in university schools of engineering, computer science, math-
ematics, physics and biology. The book can be primarily addressed to final year
undergraduate students and to first years postgraduate students pursuing studies in
electrical engineering, computer science as well as in physics, mathematics and bi-
ology. The book can be used as a main reference in upper level courses on machine
learning, artificial intelligence and computational intelligence as well as a comple-
mentary reference in upper level courses on dynamical systems theory. Moreover,
engineers and researchers in the areas of nonlinear dynamical systems, artificial and
computational intelligence and machine learning can get profit from this book which
analyzes advanced models of neural networks and which goes beyond the common
information representation schemes with the use of artificial neural networks.

Athens, Greece Dr. Gerasimos Rigatos
October 2013 Electrical and Computer Engineer, Ph.D.
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