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Foreword

In the recent years there has been significant research interest in modelling and
control of financial systems through state-space representation of their dynamics.
This is because such approaches eliminate the use of heuristics in financial decision
making while assuring stability and in several cases optimality in the functioning of
economic systems. As one delves into the complexity of the financial dynamics he
perceives that deterministic modelling is unlikely to work, and that variability, para-
metric uncertainty and stochasticity are factors that should be seriously taken into
account for the efficient management of economic systems Through a synergism of
systems theory and machine learning methods this monograph develops modelling
and control approaches which finally assure that the monitored financial systems
will evolve according to specifications and optimality objectives, while the risk of
wrong decision making in the management of these systems will be also minimized.

The use of state-space models in financial engineering allows to eliminate heuristics
and empirical methods currently in use in decision making procedures for finance.
On the other side it permits to establish methods of fault-free performance and op-
timality in the management of assets and capitals and methods assuring stability in
the functioning of financial systems (e.g. of several financial institutions and of the
banking sector). The systems theory-based and machine learning methods devel-
oped by the monograph stand for a genuine and significant contribution to the field
of financial engineering. First the monograph solves in a conclusive manner prob-
lems associated with the control and stabilization of nonlinear and chaotic dynam-
ics in financial systems, when these are described in the form of nonlinear ordinary
differential equations. Next, it solves in a conclusive manner problems associated
with the control and stabilization of financial systems governed by spatiotempo-
ral dynamics, that is systems described by partial differential equations (e.g. the
Black-Scholes PDE and its variants). Moreover, the monograph solves the problem
of filtering for the aforementioned types of financial models, that is of estimation of
the entire dynamics of the financial systems when using limited information (partial
observations) obtained from them. Finally, the monograph solves in a conclusive
and optimal manner the problem of statistical validation of computational models
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and tools used to support financial engineers in decision taking. Through the meth-
ods it develops, the monograph enables to identify inconsistent and inappropriately
parameterized financial models and to take necessary actions for their update.

The topics studied in the monograph are of primary importance for financial en-
gineering and for the profitable management of financial systems. It is a common
sense that decision making in finance should stop being based on intuition, heuris-
tics and empirical rules and should move progressively to systematic methods of
assured performance. To this end, the monograph demonstrates first that it is possi-
ble to identify the complete dynamics of financial systems using limited information
out of them and next it shows that the estimated dynamics can be used for the con-
trol and stabilization of such systems. The monograph’s estimation, forecasting and
control methods are addressed not only to financial systems described by nonlinear
ordinary differential equations, but are also extended to financial systems exhibiting
spatiotemporal dynamics, as in the case of the Black-Scholes PDE. Offering solu-
tion to estimation and control problems in PDE models met often in finance, is one
of the main contributions of the monograph and this can be useful both for the aca-
demic community and for financial engineers working in practice. Another major
contribution of the monograph, is in statistical validation of decision making tools
used in financial engineering. Taking into account the need for reliable functioning
of software developed for decision support in finance, one can easily understand the
significance of the monographs results about validation of computational models of
financial systems and of the associated forecasting tools. The monograph offers to
financial engineers optimal statistical methods for determining whether the models
used in estimation of the state of financial systems are accurate or whether they con-
tain inconsistent parameters which result in forecasting of low precision.

The contents of the monograph cover the following key areas for financial engineer-
ing: (i) control and stabilization of financial systems dynamics, (ii) state estimation
and forecasting, (iii) statistical validation of decision making tools. The monograph
is primarily addressed to the academic community. The content of the monograph
can be used for teaching undergraduate or postgraduate courses in financial engi-
neering. Therefore, it can be used by both academic tutors and students as a ref-
erence book for such a course. A significant part of the monographs readership is
also expected to come from the engineering and computer science community, as
well as from the finance and economics community. The nonlinear PDE control and
estimation methods analysed in the proposed monograph can be a powerful tool and
useful companion for people working on applied financial engineering.

Athens, January 2017 Dr. Gerasimos Rigatos



Preface

The present monograph contains new results and findings on control and estima-
tion problems for financial systems and for statistical validation of computational
tools used for financial decision making. The use of state-space models in finan-
cial engineering will allow to eliminate heuristics and empirical methods currently
in use in decision making procedures for finance. On the other side it will permit
to establish methods of fault-free performance and optimality in the management
of assets and capitals and methods assuring stability in the functioning of financial
systems (e.g. of several financial institutions and of the banking sector). As it can be
confirmed from an overview of the relevant bibliography the systems theory-based
and machine learning methods developed by the monograph stand for a genuine
and significant contribution to the field of financial engineering. First the mono-
graph solves in a conclusive manner problems associated with the control and sta-
bilization of nonlinear and chaotic dynamics in financial systems, when these are
described in the form of nonlinear ordinary differential equations. Next, it solves
in a conclusive manner problems associated with the control and stabilization of fi-
nancial systems governed by spatiotemporal dynamics, that is systems described by
partial differential equations (e.g. the Black-Scholes PDE and its variants). More-
over, the monograph solves the problem of filtering for the aforementioned types
of financial models, that is of estimation of the entire dynamics of the financial sys-
tems when using limited information (partial observations) obtained from it. Finally,
the monograph solves in a conclusive and optimal manner the problem of statistical
validation of computational models and tools used to support financial engineers in
decision taking. Through the methods it develops the monograph enables to identify
inconsistent and inappropriately parameterized financial models and to take neces-
sary actions for their update.

The monograph comes to address the need about decision making in finance that
will be no longer based on heuristics and intuition but will make use of compu-
tational methods and tools characterized by fault-free performance and optimality.
Through the synergism of systems theory and machine learning methods the mono-
graph offers solutions, in a conclusive manner, to the following key problems met
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in financial engineering: (i) control and stabilization of financial systems exhibiting
nonlinear and chaotic dynamics, (ii) control and stabilization of financial systems
exhibiting spatiotemporal dynamics described by partial differential equations, (iii)
solution to the associated filtering problems, that is estimation of the complete dy-
namics of the aforementioned complex types of financial models with the use of
limited information extracted out of them, (iv) elaborated computational tools for
the assessment of risk in financial systems and for the optimized management of
capitals and assets and (v) statistical validation of decision support tools used in fi-
nance, such as forecasting models and models of financial systems dynamics. The
monograph is primarily addressed to the academic and research community of fi-
nancial engineering as well as to tutors of relevant university courses. It can also be
a useful reference for students of financial engineering, at both undergraduate and
postgraduate level, helping them to get acquainted with established approaches for
control, estimation and forecasting in finance as well as with methods for validating
the precision of computational tools used in decision support. Finally, it is addressed
to financial engineers working on practical problems of risk-free decision making
and aiming at profitable management of funds, commodities and financial resources.

The management of financial systems has to address the following issues (i) sta-
bility, (ii) modelling and forecasting, (iii) validation and update of decision making
tools. About (i) it is noted that although the dynamics of financial systems has been
described efficiently by the Black-Scholes PDE and its variants, little has been done
about its stabilization. The problem of control and stabilization of diffusion PDEs of
this type is a non-trivial one and has to be implemented using as control inputs only
the PDEs boundary conditions. The monograph offers solution of assured conver-
gence and performance for this difficult control problem. Additionally, there are sev-
eral types of financial systems described by nonlinear ODEs which exhibit chaotic
dynamics. The monograph provides stabilizing control methods for such systems
too. About (ii) it is easy to understand that forecasting in financial systems is sig-
nificant for risk assessment and successful decision making. By being in position to
predict future states of the financial system, early warning indications are handled
and profitable actions are taken for asset and capital management, The monographs
method contribute to this direction. About (iii) it is apparent that the effectiveness of
all decision making processes in finance are dependent on the sufficiency of the in-
formation collected from the financial system and on the accuracy and credibility of
decision support tools. The statistical validation of decision making software and of
the models used by it, is important for the maximization of profits in financial sys-
tems management and for the minimization of risks. Clearly, the monograph solves
the statistical validation problems in a conclusive manner.

The monograph comprises the following chapters:
In Chapter 1 Systems theory and stability concepts are overviewed. The chapter an-

alyzes the basics of systems theory which can be used in the modeling of nonlinear
dynamics. To understand the oscillatory behavior of nonlinear systems that can ex-
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hibit such dynamics, benchmark examples of oscillators are given. Moreover, using
as examples from state-space models the following properties are analyzed: phase
diagram, isoclines, attractors, local stability, bifurcations of fixed points and chaos
properties.

In Chapter 2 Main approaches to nonlinear control with potential application to
financial systems are analyzed. In control and stabilization of the dynamics of fi-
nancial systems, one can distinguish three main research axes: (i) Methods based
on global linearization, (ii) Methods based on asymptotic linearization, and (iii)
Lyapunov methods, As far as approach (i) is concerned, these are methods for the
transformation of the nonlinear dynamics of the system to equivalent linear state-
space descriptions for which one can design controllers using state feedback and
can also solve the associated state estimation (filtering) problem. One can classify
here methods based on the theory of differentially flat systems and methods based
on Lie algebra. As far as approach (ii) is concerned. solutions are pursued to the
problem of nonlinear control with the use of local linear models (obtained at lo-
cal equilibria. For such local linear models, feedback controllers of proven stability
can be developed. One can select the parameters of such local controllers in a man-
ner that assures the robustness of the control loop to both external perturbations
and to model parametric uncertainty. As far as approach (iii) is concerned, that is
methods of nonlinear control of the Lyapunov type one comes against problems of
minimization of Lyapunov functions so as to assure the asymptotic stability of the
control loop. For the development of Lyapunov type controllers one can either ex-
ploit a model about the financial systems dynamics or can proceed in a model-free
manner, as in the case of indirect adaptive control.

In Chapter 3 main approaches to nonlinear estimation with potential application to
financial systems are analyzed. To treat the filtering problem for nonlinear dynamics
in financial systems the Extended Kalman Filter is an established approach. How-
ever, since this is based on approximate linearization of the system’s state-space de-
scription and in the truncation of higher order terms in the associated Taylor series
expansion, the Unscented Kalman Filter is frequently used in its place. The latter
filter performs state estimation by averaging on state vectors which are selected at
iteration of the filtering algorithm according to the columns of the estimation error
vector covariance matrix. Additionally, to handle the case of non-Gaussian noises
in the filtering procedure the particle filter has been proposed. A number of po-
tential state vector values (particles) is updated in time through elitism criteria and
out of this set the estimate of the state vector is computed. The topic of nonlin-
ear estimation is completed by a new nonlinear filtering approach under the name
Derivative-free nonlinear Kalman Filter. This filter, based on linearizing transfor-
mation of the monitored financial system is proven to conditionally maintain the
optimality features of the standard Kalman Filter and to be computationally faster
than other nonlinear estimation methods. Moreover, to treat the distributed filtering
and state estimation in financial systems one can apply established methods for de-
centralized state estimation, such as the Extended Information Filter (EIF) and the
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Unscented Information Filter (UIF). EIF stands for the distributed implementation
of the Extended Kalman Filter while UIF stands for the distributed implementa-
tion of the Unscented Kalman Filter. Additionally, to obtain a distributed filtering
scheme in this monograph the Derivative-free Extended Information Filter (DEIF)
is implemented. This stands for the distributed implementation of a differential flat-
ness theory-based filtering method under the name Derivative-free distributed non-
linear Kalman Filter. The improved performance of DEIF comparing to the EIF and
UIF is confirmed both in terms of improved estimation accuracy and in terms of
improved speed of computation. Finally, one can note distributed filtering with the
use of the distributed Particle filter. This consists of multiple Particle filters running
at distributed computation units while a concensus criterion is used to fuse the local
state estimates.

In Chapter 4. linearizing control and filtering for nonlinear dynamics in financial
systems is explained. A flatness-based adaptive fuzzy control is applied to the prob-
lem of stabilization of the dynamics of a chaotic finance system, describing interac-
tion between the interest rate, the investment demand and the price exponent. First
it is proven that the system is differentially flat. This implies that all its state vari-
ables and its control inputs can be expressed as differential functions of a specific
state variable, which is a so-called flat output. It also implies that the flat output
and its derivatives are differentially independent which means that they are not con-
nected to each other through an ordinary differential equation. By proving that the
finance system is differentially flat and by applying differential flatness diffeomor-
phisms, its transformation to the linear canonical (Brunovsky) is performed. For the
latter description of the system, the design of a stabilizing state feedback controller
becomes possible. A first problem in the design of such a controller is that the dy-
namic model of the finance system is unknown and thus it has to be identified with
the use neurofuzzy approximators. The estimated dynamics provided by the approx-
imators is used in the computation of the control input, thus establishing an indirect
adaptive control scheme. The learning rate of the approximators is chosen from the
requirement the system’s Lyapunov function to have always a negative first-order
derivative. Another problem that has to be dealt with is that the control loop is im-
plemented only with the use of output feedback. To estimate the non-measurable
state vector elements of the finance system, a state observer is implemented in the
control loop. The computation of the feedback control signal requires the solution
of two algebraic Riccati equations at each iteration of the control algorithm. Lya-
punov stability analysis demonstrates first that an H-infinity tracking performance
criterion is satisfied. This signifies elevated robustness against modelling errors and
external perturbations. Moreover, the global asymptotic stability is proven for the
control loop.

In Chapter 5 nonlinear optimal control and filtering for financial systems is ex-
plained. A new nonlinear optimal control approach is proposed for stabilization of
the dynamics of a chaotic finance model. The dynamic model of the financial sys-
tem, which expresses interaction between the interest rate, the investment demand,
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the price exponent and the profit margin, undergoes approximate linearization round
local operating points. These local equilibria are defined at each iteration of the con-
trol algorithm and consist of the present value of the system’s state vector and the
last value of the control inputs vector that was exerted on it. The approximate lin-
earization makes use of Taylor series expansion and of the computation of the asso-
ciated Jacobian matrices. The truncation of higher order terms in the Taylor series
expansion is considered to be a modelling error that is compensated by the robust-
ness of the control loop. As the control algorithm runs, the temporary equilibrium
is shifted towards the reference trajectory and finally converges to it. The control
method needs to compute an H-infinity feedback control law at each iteration, and
requires the repetitive solution of an algebraic Riccati equation. Through Lyapunov
stability analysis it is shown that an H-infinity tracking performance criterion holds
for the control loop. This implies elevated robustness against model approximations
and external perturbations. Moreover, under moderate conditions the global asymp-
totic stability of the finance system’s feedback control is proven.

In Chapter 6, a Kalman Filtering approach for detection of option mispricing in the
Black-Scholes PDE is introduced. Financial derivatives and option pricing models
are usually described with the use of stochastic differential equations and diffusion-
type partial differential equations (e.g. Black-Scholes models). Considering the lat-
ter case in this chapter a new filtering method for distributed parameter systems,
is developed for estimating option prices variations without knowledge of initial
conditions. The proposed filtering method is the so-called Derivative-free nonlinear
Kalman Filter and is based on a decomposition of the nonlinear partial-differential
equation model into a set of ordinary differential equations with respect to time.
Next, each one of the local models associated with the ordinary differential equa-
tions is transformed into a model of the linear canonical (Brunovsky) form through
a change of coordinates (diffeomorphism) which is based on differential flatness
theory. This transformation provides an extended model of the nonlinear dynamics
of the option pricing model for which state estimation is possible by applying the
standard Kalman Filter recursion. Based on the provided state estimate, validation
of the Black-Scholes PDE model can be performed and the existence of inconsistent
parameters in the Black-Scholes PDE model can be concluded.

In Chapter 7, a Kalman Filtering approach to the detection of option mispricing in
electric power markets is analyzed. As mentioned in the previous chapter, option
pricing models are usually described with the use of stochastic differential equa-
tions and diffusion-type partial differential equations (e.g. Black-Scholes models).
In case of electric power markets these models are complemented with integral
terms which describe the effects of jumps and changes in the diffusion process
and which are associated with variations in the production rates, condition of the
transmission and distribution system, pay-off capability, etc. Considering the latter
case, that is a partial integrodifferential equation for the option’s price, a new filter-
ing method, is developed for estimating option prices variations without knowledge
of initial conditions. The proposed filtering method is the so-called Derivative-free
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nonlinear Kalman Filter and is based on a transformation of the initial option price
dynamics into a state-space model of the linear canonical form. The transformation
is shown to be based on differential flatness theory and finally provides a model
of the option price dynamics for which state estimation is possible by applying the
standard Kalman Filter recursion. Based on the provided state estimate, validation
of the Black-Scholes partial integrodifferential equation can be performed and the
existence of inconsistent parameters in the electricity market pricing model can be
concluded.

In Chapter 8, corporations’ default probability forecasting using the Derivative-free
nonlinear Kalman Filter is explained. The chapter proposes a systematic method for
forecasting default probabilities for financial firms with particular interest in elec-
tric power corporations. According to credit risk theory a company’s closeness to
default is determined by the distance of its assets’ value from its debts. The assets’
value depends primarily on the company’s market (option) value through a com-
plex nonlinear relation. By forecasting with accuracy the enterprize’s option value
it becomes also possible to estimate the future value of the enterprize’s assets and
the associated probability of default. This chapter proposes a systematic method
for forecasting the proximity to default for companies (option / asset value fore-
casting methods) using a new nonlinear Kalman Filtering method under the name
Derivative-free nonlinear Kalman Filter. The firm’s option value is considered to be
described by the Black-Scholes nonlinear partial differential equation. Using differ-
ential flatness theory, the partial differential equation is transformed into an equiv-
alent state-space model in the so-called canonical form. Using the latter model and
by redesigning the Derivative-free nonlinear Kalman Filter as a m-step ahead pre-
dictor, estimates are obtained of the company’s future option values. By forecasting
the company’s market (option) values, it becomes finally possible to forecast the as-
sociated asset value and volatility and also to estimate the company’s future default
risk.

In Chapter 9, validation of financial options models using neural networks with in-
variance to Fourier transform is explained. It is known that numerical solution of
the Black-Scholes PDE enables to compute with precision the values of financial
options, within a finite time horizon. It is also known that solutions to the option
pricing problem can be obtained in closed form using Fourier methods, such as
the Fast Fourier Transform, the expansion in Fourier-cosine series or the expansion
in Fourier-Hermite series. In this chapter, modeling of financial options’ dynamics
is performed, using a neural network with 2D Gauss-Hermite basis functions that
remain invariant to Fourier transform. Knowing that the Gauss-Hermite basis func-
tions satisfy the orthogonality property and remain unchanged under the Fourier
transform, subjected only to a change of scale, one has that the considered neural
network provides the spectral analysis of the options’ dynamics model. Actually,
the squares of the weights of the output layer of the neural network denote the spec-
tral components for the monitored options’ dynamics. By observing changes in the
amplitude of the aforementioned spectral components one can have also an indica-
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tion about deviations from nominal values, for parameters that affect the options’
dynamics, such as interest rate, dividend payment and volatility. Moreover, since
specific parametric changes are associated with amplitude changes of specific spec-
tral components of the options’ model, isolation of the distorted parameters can be
also performed.

In Chapter 10, statistical validation of financial forecasting tools with generalized
likelihood ratio approaches is analyzed. The local statistical approach for fault de-
tection and isolation is applied to the problem of validation of a fuzzy model which
can be used in forecasting. The method detects the inconsistencies between a fuzzy
rule base and the modelled system. It can also identify which are the faulty pa-
rameters of the fuzzy model. The Fisher information matrix explains the detectabil-
ity of changes in the parameters of the fuzzy model. Simulation tests illustrate the
method’s credibility. As a case study, statistical validation of a neurofuzzy model of
chaotic time series is considered.

In Chapter 11, distributed Kalman Filtering for risk assessment in interconnected
financial markets is analyzed. In financial decision making, such as in the trading of
options, it is important to regularly validate the accuracy and reliability of decision
support tools. In this context, the chapter introduces a distributed scheme for valida-
tion of option price forecasting models enabling early diagnosis of options mispric-
ing. It is considered that N independent agents monitor and forecast the variation of
option prices through locally parameterized Kalman Filters. It is also assumed that
final decision about the options’ price is taken through a fuzzy consensus scheme,
that is the individual forecasts of the distributed agents, provided by local Kalman
Filters are fused with a fuzzy weighting process. Thus forecasting is finally per-
formed by a fuzzy Kalman Filter. It is likely though, that some of the distributed
models are improperly parametrized and fail to describe accurately the real dynam-
ics of the option’s market. To this end, a statistical method is developed capable
of (i) detecting if the estimation about the options’s price that is provided by the
multi-agent system is sufficiently precise or not, (ii) isolating the i-th agent which
makes use of an improperly parameterized model. The paper provides one of the
few approaches for testing the accuracy of distributed Kalman Filters for financial
decision making and the only one that permits to detect parametric changes that are
of magnitude of less than 1% of the nominal value of the monitored financial system.

In Chapter 12, stabilization of financial systems dynamics through feedback control
of the Black-Scholes PDE is analyzed. The objective of the chapter is to develop
a boundary control method for the Black-Scholes PDE which describes option dy-
namics. It is shown that the procedure for numerical solution of Black-Scholes PDE
results into a set of nonlinear ordinary differential equations (ODEs) and an asso-
ciated state equations model. For the local subsystems, into which a Black-Scholes
PDE is decomposed, it becomes possible to apply boundary-based feedback control.
The controller design proceeds by showing that the state-space model of the Black-
Scholes PDE stands for a differentially flat system. Next, for each subsystem which
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is related to a nonlinear ODE, a virtual control input is computed, that can invert the
subsystem’s dynamics and can eliminate the subsystem’s tracking error. From the
last row of the state-space description, the control input (boundary condition) that
is actually applied to the Black-Scholes PDE is found. This control input contains
recursively all virtual control inputs which were computed for the individual ODE
subsystems associated with the previous rows of the state-space equation. Thus, by
tracing the rows of the state-space model backwards, at each iteration of the con-
trol algorithm, one can finally obtain the control input that should be applied to the
Black-Scholes PDE so as to assure that all its state variables will converge to the
desirable setpoints.

In Chapter 13, stabilization of the multi-asset Black-Scholes PDE using differen-
tial flatness theory is analyzed. A method for feedback control of the multi-asset
Black-Scholes PDE is developed. By applying once more semi-discretization and
a finite differences scheme the multi-asset Black-Scholes PDE is transformed into
a state-space model consisting of ordinary nonlinear differential equations. For this
set of differential equations it is shown that differential flatness properties hold. This
enables to solve the associated control problem and to succeed stabilization of the
options’ dynamics. It is shown that the previous procedure results into a set of non-
linear ordinary differential equations (ODEs) and to an associated state equations
model. For the local subsystems, into which a multi-asset Black-Scholes PDE is
decomposed, it becomes possible to apply boundary-based feedback control. The
controller design proceeds by showing that the state-space model of the multi-asset
Black-Scholes PDE stands for a differentially flat system. Next, for each subsystem
which is related to a nonlinear ODE, a virtual control input is computed, that can
invert the subsystem’s dynamics and can eliminate the subsystem’s tracking error.
From the last row of the state-space description, the control input (boundary condi-
tion) that is actually applied to the multi-asset Black-Scholes PDE system is found.
This control input contains recursively all virtual control inputs which were com-
puted for the individual ODE subsystems associated with the previous rows of the
state-space equation. Thus, by tracing the rows of the state-space model backwards,
at each iteration of the control algorithm, one can finally obtain the control input
that should be applied to the multi-asset Black-Scholes PDE so as to assure that all
its state variables will converge to the desirable setpoints.

In Chapter 14, stabilization of commodities pricing PDE using differential flatness
theory is explained. Pricing of commodities (e.g. oil, carbon, mining products, elec-
tric power, agricultural crops, etc.) is vital for the majority of transactions taking
place in financial markets. A method for feedbsck control of commodities pric-
ing dynamics is developed. The PDE model of the commodities price dynamics is
shown to be equivalent to a multi-asset Black-Scholes PDE. Actually it is a diffu-
sion process evolving in a 2D assets space, where the first asset is the commodity’s
spot price and the second asset is the convenience yield. As in the previous chap-
ters, by applying semi-discretization and a finite differences scheme this multi-asset
PDE is transformed into a state-space model consisting of ordinary nonlinear dif-
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ferential equations. For the local subsystems, into which the commodities PDE is
decomposed, it becomes possible to apply boundary-based feedback control. The
controller design proceeds by showing that the state-space model of the commodi-
ties PDE stands for a differentially flat system. Next, for each subsystem which is
related to a nonlinear ODE, a virtual control input is computed, that can invert the
subsystem’s dynamics and can eliminate the subsystem’s tracking error. From the
last row of the state-space description, the control input (boundary condition) that
is actually applied to the multi-factor commodities’ PDE system is found. This con-
trol input contains recursively all virtual control inputs which were computed for
the individual ODE subsystems associated with the previous rows of the state-space
equation. Thus, by tracing the rows of the state-space model backwards, at each it-
eration of the control algorithm, one can finally obtain the control input that should
be applied to the commodities PDE system so as to assure that all its state variables
will converge to the desirable setpoints. By demonstrating the feasibility of such a
control method it is also proven that through selected purchase and sells during the
trading procedure the price of the negotiated commodities can be made to converge
and stabilize at specific reference values.

In Chapter 15, stabilization of mortgage price dynamics using differential flatness
theory is analyzed. Pricing of mortgages (loans for the purchase of residences, land
or farms) is vital for the majority of transactions taking place in financial markets.
In this chapter, a method for stabilization of mortgage price dynamics is developed.
It is considered that mortgage prices follow a PDE model which is equivalent to
a multi-asset Black-Scholes PDE. Actually it is a diffusion process evolving in a
2D assets space, where the first asset is the house price and the second asset is the
interest rate. By applying semi-discretization and a finite differences scheme this
multi-asset PDE is transformed into a state-space model consisting of ordinary non-
linear differential equations. For the local subsystems, into which the mortgage PDE
is decomposed, it becomes possible to apply boundary-based feedback control. The
controller design proceeds by showing that the state-space model of the mortgage
price PDE stands for a differentially flat system. Next, for each subsystem which is
related to a nonlinear ODE, a virtual control input is computed, that can invert the
subsystem’s dynamics and can eliminate the subsystem’s tracking error. From the
last row of the state-space description, the control input (boundary condition) that is
actually applied to the multi-factor mortgage price PDE system is found. This con-
trol input contains recursively all virtual control inputs which were computed for
the individual ODE subsystems associated with the previous rows of the state-space
equation. Thus, by tracing the rows of the state-space model backwards, at each iter-
ation of the control algorithm, one can finally obtain the control input that should be
applied to the mortgage price PDE system so as to assure that all its state variables
will converge to the desirable setpoints. By showing the feasibility of such a control
method it is also proven that through selected modification of the PDE boundary
conditions the price of the mortgage can be made to converge and stabilize at spe-
cific reference values.
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The main purpose of this book is to disseminate new findings useful for academic
teaching and research in the area of financial engineering and to develop systematic
methods for management and risk minimization in financial systems. Methods for
solving control and estimation problems in financial systems become progressively
part of the curriculum of several academic departments at undergraduate level. This
is because there is need to acquaint future engineers with technologies that enable
the functioning of financial systems according to the desirable specifications, even
under uncertainty and partial information about their dynamic model. The present
book contains teaching material which can be used for independent courses on fi-
nancial engineering. The book can also serve perfectly the needs of postgraduate
courses on financial where more emphasis can be given to advanced computational
and mathematical techniques for the profitable and risk-free management of finan-
cial systems. The title of the course can be the same as the title of the book i.e. State-
space approaches to modelling and control in financial engineering: systems theory
and machine learning methods. Starting from the analysis of dynamical systems the-
ory and of established approaches for control and estimation in nonlinear dynamical
systems, the monograph moves progressively to the solution of key problems met
in financial engineering, such as (i) nonlinear control and filtering for financial sys-
tems exhibiting complex and chaotic dynamics, (iii) control and estimation or the
PDE dynamics of financial systems, (ii) statistical validation of decision support
tools used in financial engineering. Through the balanced interaction between the
theoretical and the application part, students can assimilate the new knowledge and
will become efficient in control and estimation of financial systems and in methods
for the optimized management of capitals and assets.

However, the book is not addressed only to the academic community but also targets
to people working in practical problems and applications of financial engineering.
There is continuous demand for developing elaborated software tools that will en-
able optimal decision making about financial systems. To this end, there is need to
eliminate heuristics and intuition-based approaches in financial engineering and to
establish methods that assure stabilization and convergence of financial systems to
desirable performance indexes. The monograph’s contribution to this direction is
clear.

Athens, Greece Dr. Gerasimos Rigatos
January 2017 Electrical and Computer Engineer, Ph.D.



