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Overview

Control of nonlinear dynamical systems has been often based on the concept of diffeomorphisms. This requires state-
variables and state-space description transformations that bring the system into an equivalent linear form. In the new
state-space description, a solution for both the control and state estimation problem is enabled. However, far from being
an ideal solution, the use of such transformations is not always a straightforward procedure since the controlled system
should previously satisfy feedback linearizability conditions. Besides, in this approach the control inputs are computed
for the linearized equivalent model and it is necessary to apply inverse transformations so as to find the control signals
that should be finally used in the initial nonlinear state-space description of the system. Thus one may come against
singularity issues which signify that the existence of state-space regions where the inverse transformations cannot be
performed because of generating non-bounded (infinite) control inputs.

Taking into account the above, in the present monograph novel solutions to the control problem of complex nonlin-
ear dynamical systems are developed and tested. These are (i) a nonlinear optimal (H-infinity) control approach, (ii)
a flatness-based control approach implemented in successive loops. The new control methods are not constrained by
the aforementioned shortcomings of global linearization-based control schemes (complicated changes of state variables,
forward and backwards state-space transformations, singularities). It is shown that such methods can be used in a wide
class of nonlinear dynamical systems without needing to transform the systems’ state-space model into equivalent lin-
earized forms. It is also shown that the new control methods can be implemented in a computationally simple manner
and are also followed by global stability proofs.

The monograph’s nonlinear optimal (H-infinity) control scheme is a novel contribution to the area of nonlinear control.
The method is based on an approximate linearization of the dynamics of the controlled system taking place at each
sampling instance around a temporary operating point which is defined by the present value of the system’s state vector
and by the last sampled value of the control inputs vector. The linearization process relies on first-order Taylor series
expansion and on the computation of the associated Jacobian matrices. For the approximately linearized model of the
system a stabilizing H-infinity feedback controller is designed. The controller’s feedback gains are computed by solving
repetitively (at each time-step of the control algorithm) an algebraic Riccati equation. The global stability properties
of the nonlinear optimal control scheme are proven through Lyapunov analysis. The method of nonlinear optimal (H-
infinity) control is of proven global stability and remains computationally tractable. It retains the advantages of linear
optimal control, that is fast and accurate tracking of reference setpoints under moderate variations of the control inputs.
The nonlinear optimal control method is applicable to a wider class of dynamical systems than approaches based on the
solution of State Dependent Riccati Equations (SDRE). The SDRE approaches can be applied only to dynamical systems
which can be transformed to the Linear Parameter Varying (LPV) form. Besides the novel nonlinear optimal (H-infinity)
control method performs better than optimal control approaches which are based on approximations of the solution of
the Hamilton-Jacobi-Bellman equation by Galerkin series expansion (the stability properties of the Galerkin series-based
optimal control schemes are still unproven).



The monograph introduces also a second solution to the problem of nonlinear control of complex dynamical systems
without the need to apply changes of state variables (diffeomorphisms) and complicated state-space transformations.
The new solution is a flatness-based control approach implemented in successive loops. In this method the dynamic
model of the nonlinear system is separated into subsystems which are connected in a cascading manner. This control
method is directly applicable (but not limited) to dynamical systems of the triangular form and to nonlinear systems
which can be transformed into such a form. The state-space model of the initial nonlinear system is decomposed into
cascading subsystems which satisfy differential flatness properties. For each subsystem of the state-space model a virtual
control input is computed, capable of inverting the subsystem’s dynamics and of eliminating the subsystem’s tracking
error. The control input which is actually applied to the initial nonlinear system is computed from the last row of the
state-space description. This control input incorporates in a recursive manner all virtual control inputs which were
computed from the individual subsystems included in the initial state-space equation. The control input that should
be applied to the nonlinear system so as to assure that all state vector elements will convergence to the desirable set-
points is obtained at each iteration of the control algorithm by tracing backwards the subsystems of the state-space model.

Concisely, in the present monograph novel solutions to the control problem of complex nonlinear dynamical systems
are developed and tested. These are (i) a nonlinear optimal (H-infinity) control approach, (ii) a flatness-based control
approach implemented in successive loops. The new control methods are free of shortcomings met in control schemes
which are based diffeomorphisms and global linearization (complicated changes of state variables, forward and back-
wards state-space transformations, singularities). It is shown that such methods can be used in a wide class of nonlinear
dynamical systems without needing to transform the systems’ state-space model into equivalent linearized forms. It is
also shown that the new control methods can be implemented in a computationally simple manner and are also followed
by global stability proofs. Potential application domains of the nonlinear optimal and flatness-based control concepts
for complex dynamical systems are: (i) robotic systems (ii) robotic cranes and pendulums (iii) space robots. aerospace
systems and satellites (v) mechatronic systems (iv) power electronics (v) biosystems (vi) financial systems.

Gerasimos Rigatos ~ Masoud Abbaszadeh Pierluigi Siano
Athens. Greece Clifton Park, NY, USA  Fisciano, Salerno, Italy
December 2024 December 2024 December 2024
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Preface

A main approach in the control of nonlinear dynamical systems has been so far the concept of diffeomorphisms, that is of
state-variables and state-space description transformations that allow for bringing the system into an equivalent linear
form where a solution for both the control and state estimation problem becomes feasible. However, the application
of such transformations is not always a straightforward procedure since the controlled system should previously satisfy
feedback linearizability conditions. Besides, once the control inputs have been computed for the linearized equivalent
model it is necessary to apply inverse transformations so as to find the control signals that should be finally used in
the initial nonlinear state-space description of the system. This process often comes against singularity issues which
signify that there may exist certain state-space regions where the inverse transformations cannot be performed because
of generating non-bounded (infinite) control inputs.

Taking into account the above, in the present monograph novel solutions to the control problem of complex nonlin-
ear dynamical systems are developed and tested. These are (i) a nonlinear optimal (H-infinity) control approach, (ii)
a flatness-based control approach implemented in successive loops. The new control methods are not constrained by
the aforementioned shortcomings of global linearization-based control schemes (complicated changes of state variables,
forward and backwards state-space transformations, singularities). It is shown that such methods can be used in a wide
class of nonlinear dynamical systems without needing to transform the systems’ state-space model into equivalent lin-
earized forms. It is also shown that the new control methods can be implemented in a computationally simple manner
and are also followed by global stability proofs.

The monograph’s nonlinear optimal (H-infinity) control scheme is a novel contribution to the area of nonlinear control.
The method is based on an approximate linearization of the dynamics of the controlled system taking place at each
sampling instance around a temporary operating point which is defined by the present value of the system’s state vector
and by the last sampled value of the control inputs vector. The linearization process relies on first-order Taylor series
expansion and on the computation of the associated Jacobian matrices. For the approximately linearized model of the
system a stabilizing H-infinity feedback controller is designed. The controller’s feedback gains are computed by solving
repetitively (at each time-step of the control algorithm) an algebraic Riccati equation. The global stability properties
of the nonlinear optimal control scheme are proven through Lyapunov analysis. The method of nonlinear optimal (H-
infinity) control is of proven global stability and remains computationally tractable. It retains the advantages of linear
optimal control, that is fast and accurate tracking of reference setpoints under moderate variations of the control inputs.
The nonlinear optimal control method is applicable to a wider class of dynamical systems than approaches based on the
solution of State Dependent Riccati Equations (SDRE). The SDRE approaches can be applied only to dynamical systems
which can be transformed to the Linear Parameter Varying (LPV) form. Besides the novel nonlinear optimal (H-infinity)
control method performs better than optimal control approaches which are based on approximations of the solution of
the Hamilton-Jacobi-Bellman equation by Galerkin series expansion (the stability properties of the Galerkin series-based
optimal control schemes are still unproven).
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A comparison of the nonlinear optimal (H-infinity) control method against other linear and nonlinear control schemes
for complex dynamical systems has shown the following: (1) unlike Lie algebra-based control, the new nonlinear op-
timal control method does not rely on complicated transformations (diffeomorphisms) of the system’s state variables.
The control inputs that the nonlinear optimal control method computes can be applied directly to the initial nonlinear
dynamics of the system and are not used on its transformed equivalent description. The inverse transformations which
are met in global linearization-based control are avoided and consequently one does not come against singularity issues
(2) unlike Model Predictive Control and Nonlinear Model Predictive Control the nonlinear optimal control method is of
proven global stability. It is known that Model Predictive Control is a linear control method which if applied to systems
with complex nonlinear dynamics the stability of the control loop will be lost. Besides, in Nonlinear Model Predictive
Control the convergence of the iterative search for an optimum depends on initialization and parameter values selection
and consequently the global stability properties of the NMPC method cannot be ensured either (2) unlike sliding-mode
and backstepping control the nonlinear optimal control method does not require the state-space description of the sys-
tem to be found in a specific form. About sliding-mode control it is known that when the controlled system is not found
in the input-output linearized form, the definition of the sliding surface can be an intuitive procedure. About backstep-
ping control it is known that it cannot be directly applied to a dynamical system if the related state-space model is not
found in the strict-feedback (backstepping integral) form (4) unlike PID control, the nonlinear optimal control method
is of proven global stability, the selection of the controller’s parameters does not rely on a heuristics-based tuning pro-
cedure and the stability of the control loop is ensured in case of changes of operating points (5) unlike multiple local
models-based control, the nonlinear optimal control method uses only one linearization point and needs the solution of
only one Riccati equation so as to compute the stabilizing feedback gains of the controller. Equivalently, the nonlinear
optimal control method does not require the solution of complicated Linear Matrix Inequalities. Consequently, in terms
of computation load the nonlinear optimal control method is much more efficient.

The monograph introduces also a second solution to the problem of nonlinear control of complex dynamical systems
without the need to apply changes of state variables (diffeomorphisms) and complicated state-space transformations.
The new solution is a flatness-based control approach implemented in successive loops. In this method the dynamic
model of the nonlinear system is separated into subsystems which are connected in a cascading manner. This control
method is directly applicable (but not limited) to dynamical systems of the triangular form and to nonlinear systems
which can be transformed into such a form. The state-space model of the initial nonlinear system is decomposed into
cascading subsystems which satisfy differential flatness properties. For each subsystem of the state-space model a virtual
control input is computed, capable of inverting the subsystem’s dynamics and of eliminating the subsystem’s tracking
error. The control input which is actually applied to the initial nonlinear system is computed from the last row of the
state-space description. This control input incorporates in a recursive manner all virtual control inputs which were
computed from the individual subsystems included in the initial state-space equation. The control input that should
be applied to the nonlinear system so as to assure that all state vector elements will convergence to the desirable set-
points is obtained at each iteration of the control algorithm by tracing backwards the subsystems of the state-space model.

Concisely, in the present monograph, novel solutions to the control problem of complex nonlinear dynamical systems
are developed and tested. These are (i) a nonlinear optimal (H-infinity) control approach, (ii) a flatness-based control
approach implemented in successive loops. The new control methods are free of shortcomings met in control schemes
which are based diffeomorphisms and global linearization (complicated changes of state variables, forward and back-
wards state-space transformations, singularities). It is shown that such methods can be used in a wide class of nonlinear
dynamical systems without needing to transform the systems’ state-space model into equivalent linearized forms. It is
also shown that the new control methods can be implemented in a computationally simple manner and are also followed
by global stability proofs. Potential application domains of the nonlinear optimal and flatness-based control concepts
for complex dynamical systems are: (i) robotic systems (ii) robotic cranes and pendulums (iii) space robots. aerospace
systems and satellites (v) mechatronic systems (iv) power electronics (v) biosystems (vi) financial systems.
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The monograph is structured in the following chapters:

Chapter 1 analyzes nonlinear optimal and flatness-based control methods for robotic systems. First, the chapter treats
the nonlinear optimal control problem of the 6-DOF parallel Stewart robotic manipulators. Next, the control problem
of 4-DOF SCARA robots is treated. Additionally the problem of nonlinear control of dual-arm robotic manipulators
is solved, with the use of a nonlinear optimal control method. Finally, flatness-based control in successive loops is ap-
plied to the dynamic model of electropneumatic robots and particularly to exoskeletons with electropneumatic actuation.

Chapter 2 analyzes further nonlinear optimal and flatness-based control methods for robotic systems. First the problem
of multi-loop flatness-based control for dual-arm robotic manipulators is solved. Next, a multi-loop flatness-based control
method is developed for the dynamic model of the an electrohydraulic robotic manipulator. Additionally, a multi-loop
flatness-based control approach is proposed for the dynamic model of a multi-DOF flexible-joint robotic manipulator.
Moreover, a multi-loop flatness-based control scheme is applied to the model of a three-link redundant robotic manip-
ulator. Finally, the chapter analyzes a method for flatness-based disturbance observer and control with application to
robotic mining excavators

Chapter 3 analyzes nonlinear optimal and flatness-based control methods for robotic cranes and underactuated pendu-
lums. First the problem of nonlinear optimal control of the 4-DOF robotic tower crane is solved. Next, the problem
of nonlinear optimal control of the dual PMLSM-driven gantry crane is treated. Moreover, a nonlinear optimal control
scheme is developed for the 2-cable-driven parallel robot which functions as a crane. Finally, nonlinear optimal control
is applied to the dynamic model of the 4 cable driven parallel robot which functions as a crane.

Chapter 4 analyzes further nonlinear optimal and flatness-based control methods for robotic cranes and underactuated
pendulums. First, a multi-loop flatness-based control method is proposed for the control and stabilization problem of
the dual PMLSM-driven gantry crane. Next, the problem of nonlinear optimal control of parallel inverted pendulums is
treated. Additionally, a nonlinear optimal control method is proposed for the control and stabilization problem of the
rotary double inverted pendulum (double Furuta pendulum). Moreover, a nonlinear optimal control scheme is devel-
oped for the dynamic model of the three-link biped robot

Chapter 5 analyzes nonlinear optimal and flatness-based control for aerospace systems. First, it solves the nonlinear
optimal control problem for the 4-DOF dynamic model of a reentry space vehicle. Next it applies nonlinear optimal
control and multi-loop flatness-based control to the 6-DOF attitude dynamics of a reentry space vehicles. Furthermore it
applies multi-loop flatness-based control to the 3-DOF dynamic model of the attitude of microsatellites. Finally, it applies
multi-loop flatness-based control to the dynamic model of the 3-DOF free-floating space robotic manipulator.

Chapter 6 analyzes further nonlinear optimal and flatness-based control methods for aerospace systems. First it solves
the nonlinear optimal control for the dynamic model of the 3-DOF free-floating space robotic manipulator. Besides, it
analyzes nonlinear optimal control for the dynamic model of the underactuated tethered satellite. Next, it generalizes
towards nonlinear optimal control for the dynamic model of a tethered multi-satellite system. Finally it presents results
on nonlinear optimal control for the dynamic model of the wing rock effect that appears in aircrafts and reentry space
vehicles.

Chapter 7 analyzes nonlinear optimal control and multi-loop flatness-based control for mechatronic systems and for
power electronics. First it solves the nonlinear optimal and flatness-based control problem for the dynamic model of
an induction motor driven desalination units. Moreover, it develops a multi-loop flatness-based control method for cen-
trifugal gas compressors driven by induction motors and permanent magnet synchronous motors. Besides, it introduces
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nonlinear optimal control for wave energy conversion units which consist of a permanent magnet linear synchronous
generator connected to a three-phase AC/DC converter. Additionally, it analyzes nonlinear optimal control and multi-
loop flatness-based control for the dynamic model of 5-DOF active magnetic bearings. Next, a differential flatness and
Kalman Filter-based disturbance observer is developed for the fault diagnosis problem of 5-DOF active magnetic bearings.
Finally, a differential flatness and Kalman Filter-bases disturbance observer is proposed for the fault diagnosis problem
of the VSC-HVDC transmission system in the electric power grid.

Chapter 8 analyzes nonlinear optimal control and multi-loop flatness-based control for dynamical models of biological
systems and financial systems. Nonlinear optimal control is applied for the treatment of bacterial infections with resis-
tance to antibiotics. Additionally, nonlinear optimal control is proposed for the optimized infusion of chemotherapy and
the treatment of leukemia. Moreover, nonlinear optimal control and flatness-based control is proposed for treatment
of tumor growth. Furthermore, nonlinear optimal control and multi-loop flatness-based control is introduced for the
stabilization of population dynamics described by the Lotka-Volterra model. Finally, nonlinear optimal control is used
for the optimized management of multi-echelon supply chain networks under time-delays.

The monograph is completed with two Appendices which elaborate on the theoretical background of the nonlinear op-
timal and flatness-based control methods for complex dynamical systems:

Appendix A analyses nonlinear optimal control and Lie algebra-based control. In the first section of this appendix control
and state estimation based of approximate linearization of the dynamic models of nonlinear systems is explained. Lin-
earization is performed sequentially through Taylor series expansion and the solution of a Riccati equation. The H-infinity
Kalman Filter is developed as a robust state estimator. In the second section of the chapter global linearization-based
control and state estimation is developed for nonlinear systems. To this end input-output and input-state linearization
conditions are analyzed. Results from Lie algebra-based control and Lie algebra-based state observers are explained.
The concept of dynamic extension is also outlined.

Appendix B analyzes differential flatness theory and flatness-based control methods. In the first section of the Appendix
global linearization-based control with the use of differential flatness theory is analyzed, comprising issues such as dif-
ferential flatness for finite dimensional systems, equivalence and differential flatness, feedback control and equivalence
flatness-based control and state feedback for systems with model uncertainties and classification of types of differentially
flat systems. In the second section of this appendix the concept of flatness-based control of nonlinear dynamical systems
in cascading loops is analysed. This comprises issues such as decomposition of the state-space model into cascading
differentially flat subsystems, tracking error dynamics for flatness-based control in successive loops and comparison to
backstepping control for nonlinear systems.

By providing solutions to the control problem of complex dynamical systems the monograph has contributed to the ad-
vancement of the subject area. Based on these findings and by further exploiting the new nonlinear control methods
that the monograph has analyzed it is expected that additional progress in this technological domain will be achieved in
the forthcoming years.
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