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New approaches to nonlinear control of dynamical systems: Global linearization methods
1. Qutline

® It is proven that the nonlinear model of the underactuated vessel is a differentially

flat one. It is shown that this model cannot be subjected to static feedback linearization,
however it admits dynamic feedback linearization which means that the system’s
state vector is extended by including as additional state variables the control inputs and
their derivatives.

® Next, using the differential flatness properties it is also proven that this model can

be subjected to input-output linearization and can be transformed to an equivalent
canonical (Brunovsky) form. Based on this the design of a state feedback controller
Is carried out enabling accurate manoeuvring and trajectory tracking.

® The Derivative-free nonlinear Kalman Filter is used as

disturbance observer for dynamically identifying model
uncertainty and external perturbation terms. .

® This nonlinear filter consists of the Kalman Filter's recursion on the linearized

equivalent model of the vessel and of an inverse nonlinear transformation based on
the differential flatness features of the system which enables to compute state
estimates for the state variables of the initial nonlinear model.

® The redesign of the filter as a disturbance observer makes possible the estimation
and compensation of additive perturbation terms affecting the vessel’s model.




New approaches to nonlinear control of dynamical systems: Global linearization methods

2. Model of the underactuated vessel

* The underactuated vessel's model stems from the generic ship’s model, after setting
specific values for the elements of the inertia and Coriolis matrix and after reducing the

number of the available control inputs.

* The state-space equation of the nonlinear underactuated vessel is

T = ucos(v) — vsin() x and y are the cartesian coordinates of the vessel
y= usznggi—:‘- veos(y) Y is the orientation angle
U= vUT+ Ty u is the surge velocity
U= —uT— P v is the sway velocity
F =T,

ris the yaw rate

The control inputs are the surge force r,and the yaw torque r,

The underactuated vessel’s model is also written in the matrix form

/:L\ (ucos((t') — vsin(vY )\ /8 8

usin(v) + veos()

U
vl ¥ 00 Tt
| ur T30 (Tr)

) —ur — v 00 T — ,,
L e ) oy ;
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2. Model of the underactuated vessel

or equivalently, one has the description 7 = f(:i') + g(x)v

The system’s state vector is denotedas = = [’ll' ' Y, 'l,t'i’, u,v, T]T

while  f(#)eR%*! and g(Z) = [§Q%§b]€l?6x‘2

while the control input is the vector V= [Tu, TT]T

—’Xl

Fig. 1. Diagram of the underactuated hovercraft’s kinematic model 4



New approaches to nonlinear control of dynamical systems: Global linearization methods

2. Model of the underactuated vessel

The system’s state vector can be extended by including as additional state variables the control

input 1, and its first derivative 1.

The extended state-space description of the system becomes

(x\ ucos(1)) — vsz'n(w)\

Y usin(v) + veos()
W r

o . T + 21

N —ur — [v

T 0

s k87 4

or equivalently, one has the description 2 = f(2) 4+ g(2)v

The extended system’s state vector is denoted as

>

~

(OO
00
00
00 T
00 .

01
00
\10

= [fD,y, d)auﬁ v, T, 21, 22]

Moreover, one has f(z)ERS’<i and g(z) = [ga,rgb]ERaxz:

while the control input is the vectoris © = [T, T

"
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3. Outline of differential flathess theory

» Differential flatness theory has been developed as a global linearization control
method by M. Fliess (Ecole Polytechnique, France) and co-researchers (Lévine, Rouchon,

Mounier, Rudolph, Petit, Martin, Zhu, Sira-Ramirez et. al)

« A dynamical system can be written in the ODE form  S;(w,w,w,...,w'"), i=12,..,q
where,, (i) stands for the i-th derivative of either a state vector element or of a control input

» The system is said to be differentially flat with respect to the flat output
Y, = (W, W,wW,.., W), i=1..m where Y=(Y1,Y2: Ym)
if the following two conditions are satisfied

(i) There does not exist any differential relation of the form

R(Y, Y, Yor Y)Y =0

(ii) All system variables are functions of the flat output
and its derivatives

w® =y (y,y,y,...., y)
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3. Outline of differential flathess theory

The proposed Lyapunov theory-based control method is based on the :
transformation of the nonlinear system’s model into the linear canonical . =
form, and this transformation is succeeded by exploiting the system’s

differential flatness properties

* All single input nonlinear systems are differentially flat and
can be transformed into the linear canonical form

One has to define also which are the MIMO nonlinear systems
which are differentially flat.

» Differential flatness holds for MIMO nonlinear systems that admit static feedback
linearization.and which can be transformed into the linear canonical form through a change
of variables (diffeomorphism) and feedback of the state vector.

» Differential flatness holds for MIMO nonlinear models that admit dynamic feedback
linearization, This is the case of specific underactuated robotic models. In the latter
case the state vector of the system is extended by considering as additional flat outputs some
of the control inputs and their derivatives

* Finally, a more rare case is the so-called Liouvillian systems. These are systems for which
differential flatness properties hold for part of their state vector (constituting a flat subsystem)
while the non-flat state variables can be obtained by integration of the elements of the
flat subsystem. 7
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4. Differential flathess of the model of the underactuated vessel

The flat output is the vector of the vessel’s cartesian coordinates, that is

It holds that

i

v = [y1,y2] = [z, Y]

icos(v) — u-sin (1)) — vsin(y) — v-cos(1)i)
usin(v) + u-cos()-1v + veos(v) — v-cos()

Moreover, it holds that

T+ Bz = cos(V)(u — vu_'.} + Bu) + si-n('zj})(—uzl_ir — v — fBv)
iy + By = cos(V) (0 + u + Bv) + sin(Y)(—v + 10 + ,B-u..) |

Using Eq.@ and Eq.@ , and after computing that

one obtains that

uh + 9+ Bv=ur—ur—Bv+Bv=0
tw—v+pPu=vr+T1y —vr+ pPu=r1,+ Pu

ii+8y _ cos(¥)0+sin(¥)(Tu+Bu)

4Bz cos(¥)(Tu+Pu)—sin(y)0

48y _
1B — tan

(V)= = an=1(

4B

T+Bx

)
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4. Differential flathess of the model of the underactuated vessel

Through Eq. @ it is proven that the state variable y (heading angle
of the vessel) is a function of the flat output and of its derivatives.

From Eq. one also has that

&+ BE)*+ (i +By)* = (ru+Bu)®

Moreover, it holds that

(& + Bzx) = (ucos(V) — vsin(v))cos(V) (T + Pu) @
y(y + By) = (usin(v) + veos(v))sin(v)(1y + Pu)

while using Eq.@ and after intermediate computations one finally obtains

#(E + B) + 90+ 83) = u(ru+ Bu)  (6)

which finally gives

_ @(+B3)+i(i+8Y) =
4T VB (i+B0) @ £

It also holds that
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4. Differential flathess of the model of the underactuated vessel

gi — a2 = (usin(v) + veos(v))(tcos(v) — usin(i)y —
vsin(1) — veos(V)) — (ucos(v) — vsin(1))(usin(v) +

ucos()v) + veos(1h) — vsin(i)h)

which after intermediate computations and substitution of the
derivative variables gives

Y% — 2§ = v(Bu + )
From Eq. and Eq.@ one gets
v = — =i (3
V (E+B2)2+ij+57)>
From the state-space equations it holds that

i)

and using Eq. one also has that r is a differential function of the flat output

10
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4. Differential flathess of the model of the underactuated vessel

This can be also confirmed analytically. Indeed from Eq @ it holds

cos® (W)+sin®()v _ (v +8v)(i+82)—(i+87) (=% +5i) @

cos*(¢) - (i+B1)°

which also gives % — (@ 4+BE)(E4Bi)—(i+89) (=) +5i)
cos?() — (£+5z)>

while also using that COSIQ e tan?() + 1 @

- O S (i+8x)>
one obtains that  COS™ 10 = B2+ (31 BT)

Thus, from Eq. @ and Eq. one has

9y (Y3 4 8Y) (84B8)—(§4-8Y) (22 4 BE) @
I = Y=Tr = COS (L) (@+Bz)

Equivalently, from the extended state-space equations of the system one has that

11
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4. Differential flathess of the model of the underactuated vessel

a(E4+Bz)+u(y+8Yy) }

V (E4B82)2+(i+87)2

Toi = W—Vr=>Ty = %{

B yi—ii y®) (34 8%)— x“"’(y+3y> 3 (&9—ij)
\/(i;+,3¢)2+(y+|3y)- (Z+Bx)°+i+87)>
. . . . . Z(E+Pz)+1u(y+58Y) @
which after intermediate operations gives T, = = , = _
P ] v J(E+BE) +(i+BY)

Finally, using that the control input 7,, = 7° this implies also that 7,

is a differential function of the flat output

The above can be also shown analytically
Tr = I'=Tp =|

y ) (34-Bz)—z) (§489)+ By E—23) §j) —2(zD j—y Pz
[(r+§r) +(y+B9)2]
[y® (84B8%)—a®(i+8y) —B>(Ey—ijz)]
[(z+58z)2+(y+8y)?]?

{(@ + Bx)(z®) + BZ) + (4 + BY) (v + Bij)}

Thus it is confirmed that the model of the underactuated vessel is a differentially flat one 42
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5. Flathess-based control of the underactuated vessel

Next, it will be shown that a flatness-based controller can be developed for
the model of the underactuated vessel. It has been shown that it holds

i = tcos(V) — usin(VY) — vsin(Y) — veos(V)h=F = (vr +
Tu)cos(V) —usin(Y)r — (—ur — Bv)sin(v) —veos(V)r= =
Tucos(V) + Busin(y)

By differentiating once more with respect to time and after intermediate operations one finally
obtains

2®) = 7,c08(1h) — Tusin(i)r+
+B(—ur — Bv)sin(v) + Bvcos(V)r

Similarly one has

ij = usin(v) + ucos(V) + veos(v) — vsin() =i = (vr +
Tu)8in(V) + ucos(V)r 4 (—ur — Bv)cos(v) —vsin(V)r=1y =
Tusin(v) — Bvecos(1))

By differentiating once more with respect to time and by using the state variables of the
extended state-space model z; = 7, and 2o = 7, one finally obtains

y(3) = 228i72-(1,f>) + zlcos(u',’)'r + ,/311«'7'003(1!’)"'
+B2%veos() + Busin()r 13
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5. Flathess-based control of the underactuated vessel

Eq. Is differentiated once again with respect to time, so as the control input 7r to appear

e = [“2zsin(V)r — 2icos(Y)r? — Burfsin(v) —

,3217*31'?1(1;9) — ﬁu-rgms(t_i}} + Bursin(v) — Iﬁgvsin(gi}) — @
B2urcos(v) — Buricos(¥) + BPurcos(v) — Pursing] +
[cos(V)]|Ty + [— zlsm( ) — Busin(v) + Bvcos(v)]T,

Using a Lie algebra-based formulation Eq. @ Is written in the form

2® = Ly + Ly, Lyi7a + Lo, Liyi7y (22)
where Lfyl = —2zsin(Y)r — zicos(¥)r? — PBurlsin(y) —
Bzyrsin(y) — Jur cos(v) + Brursin(v) — Bvsin(y) —
B%vrcos(1) — Burcos(v) + Brvrcos(v) — Bur?siny

LgaLfyl = cos(1))
LgbLfyl —z18in(Y) — Busin(v) + Bvcos(v)

Eq. ‘ Is differentiated once again with respect to time, so as the control input 7y to appear
14
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5. Flathess-based control of the underactuated vessel

This gives

g = [727'003(1,6)—717’23271( )+ Bur sm(v)—l—Berszn(w)
Bur?cos(v)] — Buricos(v) — lercos(v) + Bur?sin(v) —
Burcos(1) + B2vcos(v) — Brursin(yv) + zorcos(¥)] +
[sin(¥)]|Tu + [21c08(V) — Busin(y) — Bucos(V)]T,

which after using a Lie algebra-based formulation is written as

y® = Liys + Ly, L}yatu + Lg, L3yar, @

where Lfyg = [29rcos(¥) — 217 2sin(v) + Bur?sin(y) —

Bgvrszn(w) Burlcos(v)] — Buricos(v) — ~17’005(L/f‘) +
Bur?sin(v) — Burcos(v) + B2vcos(v) — Bursin(y) +
zorcos(1)], and

Lg, L}y = sin(y)

LgbL:}yQ = 2z1c08(¢) — Busin(y) — Bucos(v)

15
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5. Flathess-based control of the underactuated vessel

Consequently, the aggregate input-output linearized description of the system becomes

:v‘j) = LZryl + Ly, Lzylfu + Lg, L3y1 77
y(v ] &= LfyZ + LgaLf'yQTu o LgbLnyTr :

while by defining the new control inputs

U1 = L4y1 + LgQLSyl’fu + LgbLBler
[ §T §
vy = Lfyp_ 1. LgaLnyTu + LgbLnyTT

one gets /

y(‘” — 'UQ

For the dynamics of the linearized equivalent model of the system the following new state

variables can be defined
o @
" y(3)

21,1
221 =Y =22=Y 223

® Za=% A3

.l
=~

RS o+
N —
=
.l

16
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5. Flathess-based control of the underactuated vessel

and the state-space description of the system becomes

or equivalently

oy AT o (2D
00

21.2 2

314 00010000 | 213

s1a| |00000000]| | 214 10
sy | —1oa000100] |z o0
Z'Q,Q 00000010 2292 00
2'2,3 00000001 223 00
) \00000000/ \z5y 01/

while the associated measureme

2™\ (10000000 | 214
2 ) =100001000

<23
\22.4) 17
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5. Flathess-based control of the underactuated vessel

A suitable feedback control law for the linearized system is

o = 2~ HE® - 2P)

— k3 (& — &a) — k3(& — #a) — @

4 3 X a
kl(z — z4), and vy = 3 — E2(y® — y$) — k2(§ — #a) —

k3(9 — 9a) — k3 (y — ya)

One can compute again the control input that is finally applied to the model of the
underactuated vessel. It holds that

o=f+M?p @

where the following matrices and vectors are defined: s
e (2] f: — L‘}zu
Ug L;%ZQJ @

~ L L321 i I L321 1) z2 ("7" )
A e 9.4 7 gb ) = %
(LQ,QL§29,1 Lg,,,L{;f'zg,l "=\

The stabilizing control input that is finally exerted on the vessel is

=M f)
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5. Flathess-based control of the underactuated vessel

For the linearized equivalent model of the system it is possible to perform state estimation
using the Derivative-free nonlinear Kalman Filter.

Before computing the Kalman Filter stages, the previously defined matrices A,B and C
are substituted by their discrete-time equivalents4,, B, and C,.

This is done through common discretization methods. The recursion of the filter’s algorithm
consists of two stages:

Measurement update::

K (k) = P-C[P~-CT P+ R]™!
3(k) = 5— (k) = K (k)[CaB(k) — Cas~ (k)
P(k) = P~ (k) — K (k)C,P~ (k)

Time update::

P~ (k+1)=ATP(k)As + Q(k) @
27 (k+1) = As2(k) + Bau(k)

Moreover, using the inverse transformations described by Eq. @ @ @ ‘

one obtains estimates for the state variables of the initial nonlinear system.

19
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6. Disturbances compensation with the use of Kalman Filtering

It is assumed that the input-output linearized equivalent model
of the system, is subjected to disturbance terms which express
the effects of both modelling uncertainty and of external perturbations.

Thus one has

y 1) = vy + do

It is considered that the disturbance signals are equivalently represented by their time
derivatives (up to order n) and by the associated initial conditions (however, since
disturbances are estimated with the use of the Kalman Filter, finally the dependence on
knowledge of initial conditions becomes obsolete). It holds that

(ign) = fdl d(n) fdQ

The state vector of the system is extended to include as additional
tate variables the disturbance inputs and their derivatives. Thus one
obtains

241 =d1 2990=di 243=ds 234 =ds

Thus, the extended state-space description of the system becomes:

20
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6. Disturbances compensation with the use of Kalman Filtering

(;31,1\ (OIOOOOOOOOOO\ (;:1’1\ (0000\

1.9 001000000000 | |z 0000
%13 000100000000/ |23 0000
%14 000000001000 |24 1000
291 000001000000 |24 0000
222 _ 000000100000 |z,2],]0000
393 000000010000 | 223 0000
39 4 000000000010 [ 224 0100
Zd.1 000000000100 |24, 0000
Zd.2 000000000000 | z40 0010
4.3 000000000001]) |z45 0000

\sa4/ \000000000000/ \254/ \0001)

and the measurement equation becomes

z1,1 1000000000
zo1 0001000000

where Ze = [21,1, 21,2, 21,3, 21,4, 22,1, 22,2, 22,3, 22,4, 2d,1,2d,2,2d,3,2d 4

]T

Thus, the extended state-space description of the system becomes: 24
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6. Disturbances compensation with the use of Kalman Filtering

Z. = Az, + Bavs
71ne.as = Ceze

~e

For the extended state-space description of the system one can design
a state estimator of the form

fe = Aoze + Bove + K (21" — Cy2)

~Mmeas
~ et
48 m— Coze

where for matrices A, and C, itholds A, = A and C, = C while for matrix B, it holds

000100000000
000000010000
000000000000
000000000000

Again the Kalman Filter recursion provides joint estimation of the non-measurable state
vector elements, of the disturbances’ inputs and of their derivatives.

Prior to computing the Kalman Filter stages, the previously defined matrices A,B and C are
substituted by their discrete-time equivalents A, , B.q and C.g.

22
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6. Disturbances compensation with the use of Kalman Filtering

The recursion of the filter’s algorithm consists of two stages. Thus, one has

Measurement update::

K (k) = P;
() = 5
P.(k) = b-

e

2o 7L [P—c TP, + R,

eqlle ed e e )
1= KJiCu20)  Custe()

;) — K (k)C., P~ (k)

€d" e

Time update::

Pr(k+1) = edTPe(A) Acy + Qe (k)

ze (k+1) = AcyZe(k) + Beyve(k)

.

For compensating the disturbances effects, the modified control input
that is applied to the system is

vy =) =kl @® —2() — k(G —#q) — Lé(:i:—i‘d)—ki(a:—
z4) — ~d1 and vy = yfl ' R2(y® — ) — B3 — ia) —
k3(9 — v9a) — k2 (¥ — ya) — 2a.0-

23
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New approaches to nonlinear control of dynamical systems: Global linearization methods

In simulation tests It has been observed that in all cases the nonlinear feedback
controller succeeded fast and accurate tracking of the reference setpoints.

The Derivative-free nonlinear Kalman Filter enabled estimation of the non-measurable
variables of the system’s state-vector which were needed for the implementation of

the feedback control scheme

Reference path 1: Trajectory tracking for states x,y
of the underactuated hovercraft

03 T T T 015
08 ......,: ....... '...: ....... 01 .......; ....... 2...‘ .......
- I 3 | WO
D 04peeameenenn eemdiinad % D05} qmeeeemeees IERIERIPII
" NS s s 3 : : 2
nzH i :
0 i i i -00§ i
0 10 20 30 40 0 2 3B 44
time tme
08 : ; ; 03
e e gl e
E o2 | @ . % &
B e RO IRt P LTI g 01 T TR P IERIS
- £ ] :
U ............................. D
-02 - -0
0 0 20 3 40 0 0 20 3¢ 4
time me

Reference path 1: Estimation of disturbance inputs
using the Derivative-free non-linear Kalman Filter

24
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7. Simulation tests

3 i I B ;

Reference path 2: Trajectory tracking for
states x,y of the underactuated hovercraft

LOA
o
-~

Reference path 3: Trajectory tracking for
states x,y of the underactuated hovercraft

0 1 22 3 4 0 1 22 B &
time time

0 10 20 3 49 2 0 20 3N 4
time time

Reference path 2: Estimation of disturbance inputs
using the Derivative-free non-linear Kalman Filter

™ W m 3w 40 0 1 2 3 40
tme

a2
dict d2

Reference path 3: Estimation of disturbance inputs
using the Derivative-free non-linear Kalman Filter

25
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7. Simulation tests

Reference path 4: Trajectory tracking for
states x,y of the underactuated hovercraft

Reference path 5: Trajectory tracking for
states x,y of the underactuated hovercraft

dich

2
time tme

Reference path 4: Estimation of disturbance inputs
using the Derivative-free non-linear Kalman Filter

Reference path 5: Estimation of disturbance inputs
using the Derivative-free non-linear Kalman Filter

26
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8. Conclusions

® Anonlinear control method has been developed for the

underactuated model of an unmanned surface vessel, based on
differential flatness theory and on a new nonlinear filtering method
under the name Derivative-free nonlinear Kalman Filter. First,

it was shown that the vessel’'s model is differentially flat. I

® Dynamic extension has been used. The system has been augmented by
considering as additional state variables the control inputs and their derivatives.

® By applying dynamic extension and differential flathess properties, the

vessel's model has been transformed into a linear form. Moreover, using the
linearized model of the vessel, a state feedback controller has been designed.

® Next, to estimate the non-measurable state variables of the vessel and to

identify additive disturbance terms that affected he system, the Derivative-free
nonlinear Kalman Filter was redesigned as a disturbance observer.

® This estimation algorithm consists of the standard Kalman Filter recursion applied

on the linearized equivalent of the system and of an inverse transformation that is
based on differential flathess theory which permits to compute estimates of the

state variables of the initial nonlinear system. 27




