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1 . Outline

● The efficient functioning of electric power systems relies on the

solution of the associated nonlinear control and state estimation

problems

● The main approaches followed towards the solution of nonlinear

control problem are as follows: (i) control with global linearization

methods (ii) control with approximate (asymptotic) linearization

methods (iii) control with Lyapunov theory methods (adaptive control

methods) when the dynamic model of the electric power systems

is unknown

● The main approaches followed towards the solution of the nonlinear

state estimation problems are as follows: (i) state estimation with

methods global linearization (ii) state estimation with methods of

approximate (asymptotic) linearization

● Factors of major importance for the control loop of electric power

systems are as follows (i) global stability conditions for the related

nonlinear control scheme (ii) global stability conditions for the related

nonlinear state estimation scheme (iii) global asymptotic stability for the

joint control and state estimation scheme
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2 . Nonlinear control and state estimation with global linearization

● To this end the differential flatness control theory is used

● The method can be applied to all nonlinear systems which

are subject to an input-output linearization and actually such

systems posses the property of differential flatness

● The state-space description for the dynamic model of the electric power systems is

transformed into a more compact form that is input-output linearized. This is achieved

after defining the system’s flat outputs

● A system is differentially flat if the following two conditions hold: (i) all state variables and

control inputs of the system can be expressed as differential functions of its flat outputs (ii)

the flat outputs of the system and their time-derivatives are differentially independent,

which means that they are not connected through a relation having the form of an ordinary

differential equation

● With the applications of change of variables (diffeomorphisms) that rely

on the differential flatness property (i), the state-space description of the

electric power system is written into the linear canonical form. For the latter

state-space description it is possible to solve both the control and the state

estimation problem for the electric power system.
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3 . Nonlinear control and state estimation with approximate linearization

● To this end the theory of optimal H-infinity control and the theory of

optimal H-infinity state estimation are used

● The nonlinear state-space description of the electric power system

undergoes approximate linearization around a temporary operating point

which is updated at each iteration of the control and state estimation algorithm

● The linearization relies on first order Taylor series expansion around the temporary

operating point and makes use of the computation of the associated Jacobian matrices

● The linearization error which is due to the truncation error of higher-order terms in the

Taylor series expansion is considered to be a perturbation that is finally compensated by

the robustness of the control algorithm

● For the linearized description of the state-space model an optimal H-infinity controller

is designed. For the selection of the controller’s feedback gains an algebraic Riccati

equation has to be solved at each time step of the control algorithm

● Through Lyapunov stability analysis, the global stability properties of

the control method are proven

● For the implementation of the optimal control method through the

processing of measurements from a small number of sensors in the

electric power system, the H-infinity Kalman Filter is used as a robust

state estimator
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4 . Nonlinear control and state  estimation with Lyapunov methods

● By initially proving the differential flatness properties for the electric power

system and by defining its flat outputs a transformation of Its state-space

description into an equivalent input-output linearized form is achieved.

● The unknown dynamics of the electric power systems is incorporated

into the transformed control inputs of the system, which now appear

in its equivalent input-output linearized state-space description

● The control problem for the electric power systems of unknown dynamics in now turned

into a problem of indirect adaptive control. The computation of the control inputs of the

system is performed simultaneously with the identification of the nonlinear functions which

constitute its unknown dynamics.

● The estimation of the unknown dynamics of the electric power system is performed

through the adaptation of neurofuzzy approximators. The definition of the learning

parameters takes place through gradient algorithms of proven convergence, as

demonstrated by Lyapunov stability analysis

● The Lyapunov stability method is the tool for selecting both the gains of the stabilizing

feedback controller and the learning rate of the estimator of the unknown system’s

dynamics

● Equivalently through Lyapunov stability analysis the feedback gains of the state

estimators of the electric power system are chosen. Such observers are included in the

control loop so as to enable feedback control through the processing of a small number of

sensor measurements



New approaches to nonlinear and optimal control of electric power systems

6

• Furthermore, by redesigning the aforementioned filter as a disturbance

observer it becomes also possible to estimate and compensate for disturbance terms

that affect the wind power generation unit

1. Outline

• Nonlinear control for wind power generation units that

comprise wind turbines, a drivetrain and asynchronous

DFIG generators is developed using differential flatness

theory and the Derivative-free nonlinear Kalman Filter.

• The model of the wind power generation unit, is differentially flat and thus the

associated dynamic model can be transformed into a linear canonical form (Brunovsky

form) or equivalently into an input-output linearized form

• For the equivalent globally linearized model of the wind power generator a state feedback

controller can be designed, e.g. using pole placement methods. Such a controller processes

measurements of the turn speed of the turbine’s rotor, of the generator’s rotor as well as of

stator and rotor currents of the asynchronous generator

• To estimate the non-measurable state variables of the wind power unit, the

Derivative-free nonlinear Kalman Filter is used. This consists of the Kalman Filter

recursion applied to the local linearized model of the wind power unit and of an inverse

transformation that is based on differential flatness theory, which enables to compute

estimates of the state variables of the initial nonlinear model of the wind power system

Example 1: Nonlinear control and state estimation using global linearization
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Example 1: Nonlinear control and state estimation using global linearization

The wind power generation unit comprising a multi-mass drive-train and a DFIG is shown in

the following diagram

The wind power unit comprises a two-mass drive-train system receiving mechanical torque

from a wind turbine, and a DFIG. :

Dynamic model of the wind-turbine, drive-train and asynchronous generator
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Example 1: Nonlinear control and state estimation using global linearization

The rotational motion of the wind-turbine and of the drivetrain system is described by the

following differential equation

1

is the turn speed of the wind turbine

is a coefficient related with the pitch angle of the

turbine’s blades

is the mechanical torque provided by the wind

The coefficient is a nonlinear function of blades

pitch angle, rotor speed and wind speed.

is the torque of the low-speed shaft of the drivetrain

(shaft on the side of the wind turbine)

is a damping coefficient (friction) that opposes to

the rotational motion of the shaft

Dynamic model of the wind-turbine, drive-train and asynchronous generator
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Example 1: Nonlinear control and state estimation using global linearization

Dynamic model of the wind-turbine, drive-train and asynchronous generator

The torque of the low-speed shaft is given by

2

is the turn angle of the wind turbine

is the turn angle of the generator’s (DFIG) rotor

is an elasticity coefficient

is a damping coefficient

Considering that damping is small the torque of the low speed shaft becomes

The ratio between the torque of the wind turbine’s shaft (low-speed shaft) and the 

torque of the DFIG shaft (high-speed shaft) is :

3

is the number of teeth at the gear placed at the generator’s side

is the number of teeth at the gears placed at the wind turbine’s side
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Example 1: Nonlinear control and state estimation using global linearization

Dynamic model of the wind-turbine, drive-train and asynchronous generator

The rotational motion of the Doubly-Fed Induction Generator is described by the following 

differential equation:

4

is the moment of inertia of the generator’s rotor

is the electromagnetic torque of the generator and is given by

is the torque exerted at the high-speed shaft of the generator

is a damping coefficient (friction) that opposes to the rotor’s motion

is the turn speed of the generator’s rotor

5

is a variable related with the mutual inductance coefficient and with the number of poles

are the vector components of the DFIG’s rotor currents in the  asynchronously rotating 

dq reference frame

are the stator’s components of the DFIG’s magnetic fluxin the  asynchronously 

rotating dq reference frame
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The joint dynamics of the drivetrain and of the DFIG is expressed by the following wo

differential equations

6

7

Next, by defining the state variables:

one arrives at the following state-space description of the  system’s dynamics

8

Example 1: Nonlinear control and state estimation using global linearization

Dynamic model of the wind-turbine, drive-train and asynchronous generator
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Example 1: Nonlinear control and state estimation using global linearization

Dynamic model of the wind-turbine, drive-train and asynchronous generator

About the dynamics of the electrical part of the wind power generation unit and

using the asynchronously rotating dq reference frame one has

9

10

11

12

are the stator flux and the rotor currents

are the stator and rotor voltages

are the stator and rotor inductances

is the rotor’s angular velocity

is the mutual inductance

are the stator and rotor resistances
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Moreover, the following parameters are defined

The dynamic model of the electric part of the doubly-fed induction generator can be

also written in state-space equations form by defining the following state variables:

13

The state-space model of the electrical part is:

Example 1: Nonlinear control and state estimation using global linearization

Dynamic model of the wind-turbine, drive-train and asynchronous generator
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The joint dynamics of the mechanical and electrical part of the wind power generation unit

is given by

14

This is an affine-in-the-input dynamical system which is written in the form:

15

where:

Example 1: Nonlinear control and state estimation using global linearization

Dynamic model of the wind-turbine, drive-train and asynchronous generator
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Vector f(x) and matrix G(x) are defined as follows:

16

17

Example 1: Nonlinear control and state estimation using global linearization

Dynamic model of the wind-turbine, drive-train and asynchronous generator
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• A dynamical system can be written in the ODE form q,...,,i),w,...,w,w,w(S )i(

i 21   =
•••

• The system is said to be differentially flat with respect to the flat output  

),...,,( 21 myyyy =where                                        m,...,i),w,...,w,w,w(y )a(

i 1  ==
•••



if the following two conditions are satisfied 

(i) There does not exist any differential relation of the form 

0),...,,,( )( =
•••

yyyyR

which means that the flat output and its derivatives are

linearly independent

(ii) All system variables are functions of the flat output

and its derivatives

),...,,,(
)()(

iyyyyw i 
•••

=

)(iwwhere        stands for the i-th derivative of either a state vector element or of a control input                                      

• Differential flatness theory has been developed as a global linearization control

method by M. Fliess (Ecole Polytechnique, France) and co-researchers (Lévine, Rouchon,

Mounier, Rudolph, Petit, Martin, Zhu, Sira-Ramirez et. al)

3. Differential flatness of the wind power generation unit 

Example 1: Nonlinear control and state estimation using global linearization
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3. Differential flatness of the wind power generation unit 

Example 1: Nonlinear control and state estimation using global linearization

Next, it will be proven that the wind-power system which comprises the wind-turbine,

the drivetrain and the DFIG is a differentially flat one.

The flat outputs vector is taken to be

From the first row of the state-space model one has:

that is x2 is a differential function of the flat outputs of the system

From the third row of the state-space model one obtains

which signifies that x4 is also a differential function of the flat outputs of the system

From the sixth row of the state-space model one has that due to the assumption of field

orientation, that is

18

19
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Example 1: Nonlinear control and state estimation using global linearization

3. Differential flatness of the wind power generation unit 

From the fifth row of the state-space model and using that

one can solve with respect x7

which means that state variable x7 is a differential function of the flat output of the system

From the fourth row of the state-space model one can solve with respect to x8.

This gives

19

20

Consequently x8 is also a function of the differentially flat outputs of the system.
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Example 1: Nonlinear control and state estimation using global linearization

3. Differential flatness of the wind power generation unit 

Next, from the second row of the state-space model of the system one

can solve with respect to the control input u1. This gives:

21

which means that the control input u1 is a differential function of the flat

outputs of the system.

Equivalently, from the seventh row of the state-space model of the system one can solve

with respect to the control input u2. This gives:

22

which shows that the control input u2 is a differential function of the flat outputs of

the system

Finally, from the eight row of the state-space model of the system one can solve with

respect to the control input u3. This gives:

23

Considering that due to field orientation x6 = 0 and vsq = one ha that the control u3

is also written as a differential function of the flat outputs of the power unit.
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Example 1: Nonlinear control and state estimation using global linearization

The flat outputs of the system are differentiated successively, until the control

inputs reappear. Thus, from the first row of the state-space model one has:

24

Equivalently, one can write

25

where
26

27

From the third row of the state-space model and through successive differentiations one gets:

28

4. Transformation of wind-power system into input-output linearized form
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Example 1: Nonlinear control and state estimation using global linearization

4. Transformation of wind-power system into input-output linearized form

or equivalently

29

where

30

and also

31

Next, from the fifth row of the state-space model one obtains:

32
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Example 1: Nonlinear control and state estimation using global linearization

4. Transformation of wind-power system into input-output linearized form

The previous relation can be also written in the concise form:

33

where

34

35

Using the previous analysis, the input-output linearized description of the

system becomes:
36
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or equivalently by defining the vectors

Next one can define the following virtual control inputs

37

one has

38

The input-output linearized form of the system is written as:

39

the stabilizing feedback control of the wind power generation unit is

40

Example 1: Nonlinear control and state estimation using global linearization

4. Transformation of wind-power system into input-output linearized form
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Example 1: Nonlinear control and state estimation using global linearization

5. State estimation with the Derivative-free nonlinear Kalman Filter

24

To perform state estimation for the wind-turbine and DFIG power unit, there is need to

obtain measurements of some elements of the wind power unit’s state vector.

First, the turbine’s turn angle can be measured directly with the use of an encoder.

Due to the fact that the magnetic flux of the stator cannot be measured directly,

equations that provide indirect measurements of the flux (computed through

measurements of the stator and rotor currents) will be used,

41

Using the input-output linearized model

the state estimator for the wind-power generation system is given by

39

with and
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Example 1: Nonlinear control and state estimation using global linearization

5. State estimation with the Derivative-free nonlinear Kalman Filter

About the linearized state-space description of the system (canonical Brunovsky form)

it holds that .

One can measure

(i) The turn angle of the turbine

(ii) The turn angle of the generator

while about the magnetic flux it holds that

and due to field orientation one has 

Moreover, the following relation allows to compute the magnetic

flux from stator currents measurements
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Example 1: Nonlinear control and state estimation using global linearization

5. State estimation with the Derivative-free nonlinear Kalman Filter

The observer’s gain Kf is obtained through the Kalman Filter recursion. The application

of the Kalman Filter to the linearized model of the system is known as Derivative-free

nonlinear Kalman Filter.

The estimation process is complemented by inverse transformations

relying on the differential flatness properties of the system. These

allow for identifying the state variables of the initial nonlinear system

Matrices Ao, Bo and Co are substituted by their discrete-time equivalents, through

the application of common discretization procedures. These equivalents are denoted as:

Ad, Bd and Cd. Thus, finally the Kalman Filter’s recursion becomes:

42

43

measurement update:

time update:
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Example 1: Nonlinear control and state estimation using global linearization

5. State estimation with the Derivative-free nonlinear Kalman Filter

Next, it is considered that the input-output linearized wind-power generation system is subject

to additive input disturbances, having the following form:

Each disturbance input is considered to be described by its 2nd order

derivative and the associated initial conditions

The system’s state vector is extended by defining as additional state variables the

disturbance inputs and their time-derivatives.

Thus one obtains the following state-space description:

where the extended state vector is defined as 

with

and
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Example 1: Nonlinear control and state estimation using global linearization

5. State estimation with the Derivative-free nonlinear Kalman Filter

About matrices A,B and C appearing in the previous extended state-space description

The extended state-observer for the system is

with

and
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6. Simulation tests

Example 1: Nonlinear control and state estimation using global linearization

The performance of the proposed flatness-based control approach for the wind-power

generation system that comprises a wind turbine, a drive-train and an asynchronous DFIG

generator has been further confirmed through simulation experiments.

Fig. 2a. Convergence of state

variables x2,x4,x5 to reference

setpoints

Fig. 2b. Estimation of additive

disturbance inputs d1,d2,d3 with

the use of the Kalman Filter

Setpoint 1
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6. Simulation tests

Example 1: Nonlinear control and state estimation using global linearization

Fig. 3a. Convergence of state

variables x2,x4,x5 to reference

setpoints

Fig. 3b. Estimation of additive

disturbance inputs d1,d2,d3 with

the use of the Kalman Filter

Setpoint 2
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6. Simulation tests

Example 1: Nonlinear control and state estimation using global linearization

Fig. 4a. Convergence of state

variables x2,x4,x5 to reference

setpoints

Fig. 4b. Estimation of additive

disturbance inputs d1,d2,d3 with

the use of the Kalman Filter

Setpoint 3
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6. Simulation tests

Example 1: Nonlinear control and state estimation using global linearization

Fig. 5a. Convergence of state

variables x2,x4,x5 to reference

setpoints

Fig. 5b. Estimation of additive

disturbance inputs d1,d2,d3 with

the use of the Kalman Filter

Setpoint 4
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6. Simulation tests

Example 1: Nonlinear control and state estimation using global linearization

Fig. 6a. Convergence of state

variables x2,x4,x5 to reference

setpoints

Fig. 6b. Estimation of additive

disturbance inputs d1,d2,d3 with

the use of the Kalman Filter

Setpoint 5
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6. Simulation tests

Example 1: Nonlinear control and state estimation using global linearization

Fig. 7a. Convergence of state

variables x2,x4,x5 to reference

setpoints

Fig. 7b. Estimation of additive

disturbance inputs d1,d2,d3 with

the use of the Kalman Filter

Setpoint 6
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7. Conclusions

Example 1: Nonlinear control and state estimation using global linearization

 It has been proven that the state-space model of the wind power

system is a differentially flat one

This signifies that all state variables and the control inputs of the system can be expressed

as differential functions of certain state vector elements, the latter known as flat outputs of

the system.

 The differential flatness property signifies that the power unit’s dynamic model can be

transformed into the linear canonical (Brunovsky) form.

After expressing the system’s dynamics into an input-output linearized form, the solution

of the associated control and state-estimation problems has become possible.

To stabilize the asynchronous power generation unit a state feedback controller

has been designed with the pole-placement technique.

By redesigning the aforementioned Kalman Filter as a disturbance

observer it has become possible to identify in real-time additive

disturbance inputs that affect the dynamics of thepower unit.

To perform state estimation the Derivative-free nonlinear Kalman

Filter has been used
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Example 2: Nonlinear control and state estimation using approximate linearization

● A new nonlinear H-infinity control approach is applied to wind power generation units. First,

the model of the wind power system undergoes approximate linearization, through Taylor series

expansion, round local operating points which are defined at each time instant by the present

value of the system’s state vector and the last value of the control input exerted on it.

● The linearization procedure requires the computation of Jacobian matrices. The modelling

error, which is due to the truncation of higher order terms in the Taylor series expansion is

perceived as a perturbation that should be compensated by the robustness of the control loop.

Next, for the linearized wind power generation system, an H-infinity feedback control loop is

designed.

● This approach, is based on the concept of a differential game that

takes place between the control input (which tries to minimize the

deviation of the state vector from the reference setpoints) and the

disturbance input (that tries to maximize it).

● In such a case, the computation of the optimal control input requires the solution of an

algebraic Riccati equation at each iteration of the control algorithm. The known robustness

properties of H-infinity control enable compensation of model uncertainty and perturbations

● The stability of the control loop is proven through Lyapunov analysis. Actually, it is shown that

H-infinity tracking performance is succeeded, while conditionally the asymptotic stability of the

control loop is also demonstrated.

1. Outline
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Example 2: Nonlinear control and state estimation using approximate linearization

The wind power generation unit comprises a wind turbine, a drivetrain and an

asynchronous power generator (Doubly-fed induction generator - DFIG)

Fig. 1: Wind power generation unit comprising a multi-mass drive-train and a DFIG

2. Dynamic model of the drivetrain and DFIG wind power generation unit
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Example 2: Nonlinear control and state estimation using approximate linearization

2. Dynamic model of the drivetrain and DFIG wind power generation unit

1

In vector fields form one has 2

where

with
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3. Approximate linearization of the wind power generation unit

The configuration of the control scheme for the DFIG-based wind power generation

system is given in the following diagram:

Fig 2: Control of the DFIG-based wind power generation system through a back-to-

back voltage source converter

Example 2: Nonlinear control and state estimation using approximate linearization
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3. Approximate linearization of the wind power generation unit

Example 2: Nonlinear control and state estimation using approximate linearization

The dynamic model of the wind power generation unit

undergoes approximate linearization around a temporary

operating point (x*,u*),

x* is the present value of the system’s state vector

u* is the last value of the control inputs vector

The operating point is updated at each iteration of the control method. The linearization

procedure makes use of first-order Taylor series expansion and relies on the computation

of the associated Jacobian matrices.

This gives: 3

is the modelling error due to truncation of higher-order terms in Taylor series expansion

Matrices A and B are given

4

5

Using the field orientation features of the asynchronous machine



New approaches to nonlinear and optimal control of electric power systems

41

3. Approximate linearization of the wind power generation unit

Example 2: Nonlinear control and state estimation using approximate linearization

For the first row of the Jacobian matrix

For the second row of the Jacobian matrix

For the third row of the Jacobian matrix

For the fourth row of the Jacobian matrix
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For the fifth row of the Jacobian matrix

For the sixth row of the Jacobian matrix

For the seventh row of the Jacobian matrix

For the eighth row of the Jacobian matrix

3. Approximate linearization of the wind power generation unit

Example 2: Nonlinear control and state estimation using approximate linearization
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Example 2: Nonlinear control and state estimation using approximate linearization

After linearization around its current operating point, the model of the wind-turbine

and DFIG asynchronous-generator power system is written in the form

6

3. Approximate linearization of the wind power generation unit

By subtracting Eq. from Eq. one has8 6

9

10

The dynamics of the system of Eq. can be also written in the form

and by denoting as an aggregate disturbance term one obtains

7

8

6

By denoting the tracking error as and the aggregate disturbance term as

the tracking error dynamics becomes
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Example 2: Nonlinear control and state estimation using approximate linearization

4. Design of the H-infinity feedback controller

The initial wind power system is assumed to be in the form

The linearized equivalent of the system is described by

where matrices 𝐴 and 𝐵 are obtained from the computation of the Jacobians

and vector 𝑑 denotes disturbance terms due to linearization errors.

The problem of disturbance rejection for the linearized model that is described by

where the linearization point (temporary equilibrium) is defined by the present value of the

system’s state vector and the last value of the control inputs vector exerted on it
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Example 2: Nonlinear control and state estimation using approximate linearization

The tracking error dynamics for the PEM fuel cells system is written

in the form

where in the case of the considered wind power system with I being the

identity matrix. The following Lyapunov function is considered

T

11

12

5. Lyapunov stability analysis

where Is the state vector’s tracking error

L= 𝐼 ∈ 𝑅6
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Example 2: Nonlinear control and state estimation using approximate linearization

5. Lyapunov stability analysis

The previous equation is rewritten as

Moreover, the following feedback control law is applied to the PEM fuel cells model

By substituting Eq. and Eq. one obtains

13

14

13 14

Assumption: For given positive definite matrix Q and coefficients r and ρ there exists a

positive definite matrix P, which is the solution of the following matrix equation
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Example 2: Nonlinear control and state estimation using approximate linearization

5. Lyapunov stability analysis

Continuing with computations one obtains

which next gives

or equivalently

Lemma: The following inequality holds

15



New approaches to nonlinear and optimal control of electric power systems

48

5. Lyapunov stability analysis

Proof : The binomial is considered. Expanding the left part of the above inequality

one gets

Eq. is substituted in Eq. and the inequality is enforced, thus giving

16

16 15

Eq. shows that the H-infinity tracking performance criterion is satisfied.

The integration of from 0 to T gives

17

17

•

V

The following substitutions are carried out:

and the previous relation becomes

Example 2: Nonlinear control and state estimation using approximate linearization
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Example 2: Nonlinear control and state estimation using approximate linearization

5. Lyapunov stability analysis

Moreover, if there exists a positive constant                    such that

then one gets

Thus, the integral is bounded.

According to the above and with the use of Barbalat’s Lemma one obtains:

Moreover, V(T) is bounded and from the definition of the Lyapunov function V it becomes

clear that e(t) will be also bounded since

Τhis completes the stability proof. 18
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Example 2: Nonlinear control and state estimation using approximate linearization

6. Robust state estimation with the use of the H-infinity Kalman Filter

● The control loop has to be implemented with the use of information provided by a small

number of measurements of the state variables of the wind power system

● To reconstruct the missing information about the state vector of the wind power system it is

proposed to use a filter and based on it to apply state estimation-based control .

● The recursion of the H-infinity Kalman Filter, for the wind power system, can be

formulated in terms of a measurement update and a time update part

where it is assumed that parameter θ is sufficiently small to assure that the covariance matrix

Measurement

update

Time

update

Is positive definite
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Example 2: Nonlinear control and state estimation using approximate linearization

7. Simulation tests

• The performance of the proposed nonlinear H-nfinity control scheme for the wind power

generation system is tested through simulation:

With the use of the proposed H-infinity control method, fast and accurate tracking of the 

reference setpoints of the wind power system’s state variables was achieved

Fig.3 Diagram of the nonlinear optimal control
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Example 2: Nonlinear control and state estimation using approximate linearization

7. Simulation tests

Fig.4a Convergence of state variables 

x2 and x4 to their reference setpoints

Fig.4b Convergence of state variables 

x5, x7  and x8 to their reference setpoints

Setpoint 1
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Example 2: Nonlinear control and state estimation using approximate linearization

7. Simulation tests

Fig.5a Convergence of state variables 

x2 and x4 to their reference setpoints

Fig.5b Convergence of state variables 

x5, x7  and x8 to their reference setpoints

Setpoint 2
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Example 2: Nonlinear control and state estimation using approximate linearization

7. Simulation tests

Fig.6a Convergence of state variables 

x2 and x4 to their reference setpoints

Fig.6b Convergence of state variables 

x5, x7  and x8 to their reference setpoints

Setpoint 3
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Fig.7a Convergence of state variables 

x2 and x4 to their reference setpoints

Fig.7b Convergence of state variables 

x5, x7  and x8 to their reference setpoints

Example 2: Nonlinear control and state estimation using approximate linearization

7. Simulation tests

Setpoint 4
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Fig.8a Variation of control inputs

u1, u2  and u3 when tracking setpoint 1

Example 2: Nonlinear control and state estimation using approximate linearization

8. Simulation tests

Fig.8b Variation of control inputs

u1, u2  and u3 when tracking setpoint 2

Setpoint 1 Setpoint 2
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Fig.9a Variation of control inputs

u1, u2  and u3 when tracking setpoint 3

Fig.9b Variation of control inputs

u1, u2  and u3 when tracking setpoint 4

Example 2: Nonlinear control and state estimation using approximate linearization

8. Simulation tests

Setpoint 3 Setpoint 4
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Example 2: Nonlinear control and state estimation using approximate linearization

8. Simulation tests
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Example 2: Nonlinear control and state estimation using approximate linearization

9.  Conclusions

● A new nonlinear H-infinity control method has been developed for the

dynamic model of wind power systems. The first stage for the method’s

implementation has been the linearization of the fuel cells’ dynamic

model round local operating points.

● At every time instant, these equilibria consisted of the present value

of the system’s state vector and of the last value of the control input that

was exerted on it.

● For this linearization, Taylor series expansion has been applied to

the fuel cells’ dynamic model and the associated Jacobian matrices

have been computed.

● For the linearized equivalent model of the system H-infinity nonlinear

optimal control has been applied.

● The modelling errors which were due to the approximate linearization of the system

were perceived as disturbances affecting the wind power system’s dynamics and were

compensated by the robustness of the H-infinity controller.

● Moreover, conditions which assure the asymptotic stability of the control loop have been

formulated. The efficiency of the nonlinear H-infinity control method has been further

confirmed through simulation experiments.
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● The article proposes an adaptive control approach that is capable of

compensating for model uncertainty and parametric changes of the

doubly-fed induction generators (DFIGs), as well as for the lack of

measurements about the DFRM’s state vector elements.

● First it is proven that the DFIG’s model is a differentially flat one.

By exploiting differential flatness properties it is shown that the

DFRM model can be transformed into the linear canonical form.

● For the latter description, the new control inputs comprise unknown nonlinear functions

which can be identified with the use of neurofuzzy approximators. The estimated

dynamics of the machine is used by a feedback controller thus establishing an indirect

adaptive control scheme.

● Moreover, to enforce the robustness of the control loop, a supplementary

control term is computed using H-infinity control theory.

● Another problem that has to be dealt with comes from partial measurements of the

state vector of the generator. Thus, a state observer is implemented in the control loop.

● The stability of the considered observer-based adaptive control approach is proven

using Lyapunov analysis.Moreover, the performance of the control scheme is evaluated

through simulation experiments.

1. Outline
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Example 3: Nonlinear control and state estimation using Lyapunov methods

2. Dynamic model of the doubly-fed induction generators

Fig 1: Configuration of a doubly-fed induction generator unit in the power grid

The equations of th rotational motion of the rotor of the Doubly-fed induction

generator are given by

:   moment of inertia of the rotor,       : externally applied mechanical torque that makes

:   electrical torque due to the machine’s currents                             : friction term 

The wind generated mechanical torque is
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Example 3: Nonlinear control and state estimation using Lyapunov methods

2. Dynamic model of the doubly-fed induction generators

In a compact form, the doubly-fed induction generator can be described by the following set

of equations in the d − q reference frame that rotates at an arbitrary speed denoted as ωdq

are the stator flux and the rotor currents

are the stator and rotor voltages

are the stator and rotor inductances

is the rotor’s angular velocity

is the mutual inductance

are the stator and rotor resistances

1

2

3

4
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Example 3: Nonlinear control and state estimation using Lyapunov methods

2. Dynamic model of the doubly-fed induction generators

Moreover, the following parameters are defined

The angle of the vectors that describe the magnetic flux and

is first defined for the stator

Moreover, it holds that

Therefore, in the rotating d−q frame of the generator, and under the condition of

field orientation, there will be only one non-zero component of the magnetic flux

while the component of the flux along the q axis equals 0

The dynamic model of the doubly-fed induction generator can be also written in state-space

equations form by defining the following state variables:
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Example 3: Nonlinear control and state estimation using Lyapunov methods

2. Dynamic model of the doubly-fed induction generators

Thus, the state-space model of the induction generator becomes

The state-space model of the asynchronous generator is also written

in the affine-in-the-input form

with

5

6

7

8

9

10

11
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Example 3: Nonlinear control and state estimation using Lyapunov methods

2. Dynamic model of the doubly-fed induction generator

and

while the active and reactive power of the generator are given by

12

13

14

15

16
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Example 3: Nonlinear control and state estimation using Lyapunov methods

3. Differential flatness properties of the DFIG system dynamics

The flat outputs of the system are defined as

It holds that

Deriving the last row of the previous equation with respect to time one

obtains

Moreover, about the second flat output it holds

19

17

18
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Example 3: Nonlinear control and state estimation using Lyapunov methods

3. Differential flatness properties of the DFIG system dynamics

Consequently, it holds

or equivalently

21

20
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Example 3: Nonlinear control and state estimation using Lyapunov methods

3. Differential flatness properties of the DFIG system dynamics

It holds that

Considering that the field orientation condition

one obtains

Moreover, for the first flat output it holds

Additionally, for the second flat output it holds

Therefore, x5 is also a function of the flat output and of its derivatives.

22

23

24

25



New approaches to nonlinear and optimal control of electric power systems

69

3. Differential flatness properties of the DFIG system dynamics

Example 3: Nonlinear control and state estimation using Lyapunov methods

Moreover, by solving the system of equations of . with respect to . 1 2,u u

one obtains that the control inputs are functions of the flat output and its derivatives.

Next, to design the flatness-based controller for the DFIG the following transformation of

the state variables is introduced:

Using a notation of variables as in the case of Lie algebra-based linearization it holds

26

19 21and.

Therefore, the model of the DFIG is a differentially flat one.

ሶ𝑧1 = 𝑧2
ሶ𝑧2 = 𝑧3

ሶ𝑧3 = 𝑓1 𝑥 + 𝑔1𝑎 𝑥 𝑢1 + 𝑔1𝑏 𝑥 𝑢2
ሶ𝑧4 = 𝑧5

ሶ𝑧5 = 𝑓2 𝑥 + 𝑔2𝑎 𝑥 𝑢1 + 𝑔2𝑏 𝑥 𝑢2
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Example 3: Nonlinear control and state estimation using Lyapunov methods

3. Differential flatness properties of the DFIG system dynamics

=
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Example 3: Nonlinear control and state estimation using Lyapunov methods

3. Differential flatness properties of the DFIG system dynamics

Therefore, one obtains the decoupled and linearized representation of the system

or equivalently

where

Moreover, by defining the new control inputs

one can also have the description in the MIMO canonical form

27

28

29

30

ሶ𝑧1
(3)

ሷ𝑧4
=

𝑓1(𝑥)
𝑓2(𝑥)

+
𝑔1𝑎(𝑥) 𝑔1𝑏(𝑥)
𝑔2𝑎(𝑥) 𝑔2𝑏(𝑥)

𝑢1
𝑢2

𝑓𝑎 =
𝑓1(𝑥)
𝑓2(𝑥)

ෙ𝑀=
𝑔1𝑎(𝑥) 𝑔1𝑏(𝑥)
𝑔2𝑎(𝑥) 𝑔2𝑏(𝑥)

𝑣1 = 𝑓1 𝑥 + 𝑔1𝑎 𝑥 𝑢1 + 𝑔1𝑏 𝑥 𝑢2

𝑣2 = 𝑓2 𝑥 + 𝑔2𝑎 𝑥 𝑢1 + 𝑔2𝑏 𝑥 𝑢2
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Example 3: Nonlinear control and state estimation using Lyapunov methods

3. Differential flatness properties of the DFIG system dynamics

The control input for the linearized and decoupled model of the DFIG is chosen as follows

The control input that is finally applied on the initial nonlinear model of

the DFIG is

Moreover, the following relation allows to compute the magnetic flux from stator currents

measurements

The turn angle x1=θ of the rotor can be directly measured

30

31

32
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4. Design of an adaptive neurofuzzy controller for the DFIG system

4.1. Transformation of MIMO nonlinear systems into the Brunovsky form

It is assumed now that after defining the flat outputs of the initial MIMO nonlinear system, and

after expressing the system state variables and control inputs as functions of the flat output and of

the associated derivatives, the system can be transformed in the Brunovsky canonical form

: is the state vector

: is the inputs vector

: is the outputs vector

33
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4. Design of an adaptive neurofuzzy controller for the DFIG system

4.1. Transformation of MIMO nonlinear systems into the Brunovsky form

Next the following vectors and matrices can 

be defined

Thus, the initial nonlinear system 

can be writtenin the  state-space form 

or equivalently in the state space form

where uxgxfv )()( +=

For the case of the MIMO diesel engine model

it is assumed that the functions         and         are

unknown and have to be approximated by neuro-

fuzzy networks  

T
pp
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where matrix A has the MIMO canonical form,

i.e. with elements
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Example 3: Nonlinear control and state estimation using Lyapunov methods

4. Design of an adaptive neurofuzzy controller for the DFIG system

4.1. Transformation of MIMO nonlinear systems into the Brunovsky form

Thus, the nonlinear system can be written in state-space form

which  equivalently 

can be written as

The reference setpoints for the system’s outputs 

where

are denoted as and the associated tracking errors are defined as 

The error vector of the outputs of the transformed MIMO system is denoted as
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Example 3: Nonlinear control and state estimation using Lyapunov methods

4. Design of an adaptive neurofuzzy controller for the DFIG system

4.2. Control law

The control signal of the MIMO nonlinear system contains the unknown nonlinear functions

f(x) and g(x) which can be approximated by

where

thus giving

while the weights vector is defined as

35
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4. Design of an adaptive neurofuzzy controller for the DFIG system

4.2. Control law

Similarly, it holds

thus giving

while the weights vector is defined as

However, here each row of       is vector thus giving

If the state variables of the system are available for measurement then a state-feedback

control law can be formulated as

36
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4. Design of an adaptive neurofuzzy controller for the DFIG system

4.3. Estimation of the state vector

The control of the system described by becomes more complicated when the state vector x

is not directly measurable and has to be reconstructed through a state observer. The following

definitions are used

When an observer is used to reconstruct the state vector, the control law

is the error of the state vector

is the error of the estimated state vector

is the observation error

By applying the previous feedback control law one obtains the closed-loop dynamics

It holds

and  by substituting           in the previous tracking error dynamics gives
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Example 3: Nonlinear control and state estimation using Lyapunov methods

4. Design of an adaptive neurofuzzy controller for the DFIG system

4.3. Estimation of the state vector

the new tracking error dynamics

or equivalently

where

and equivalently

with

with

A state observer is designed as: 

37

38
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Example 3: Nonlinear control and state estimation using Lyapunov methods

5. Application of adaptive neurofuzzy control to the DFIG system

5.1. Tracking error dynamics under feedback control

By applying differential flatness theory, and in the presence of

disturbances, the dynamic model of the DFRM comes to the form

The following control input is defined:

where: is a robust control term that is used for the compensation of the model’s

uncertainties as well as of the external disturbances

and: is the feedback gain

Substituting the control input into the system 39

39

40

40 one obtains
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81

5. Application of adaptive neurofuzzy control to the DFIG system

Moreover, using again Eq.           one obtains the tracking error dynamics40

The approximation error is defined as:

and considering that the estimated state vector is used in the control loop

the following description of the tracking error dynamics is obtained:

When the estimated state vector is used in the loop the approximation error is written as

while the tracking error dynamics becomes

5.1. Tracking error dynamics under feedback control

Using matrices A,B,K, 
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5.2. Dynamics of the observation error

The observation error is defined as:

By subtracting Eq. from Eq. one obtains:38 37

or equivalently:

which can be also written as:

5. Application of adaptive neurofuzzy control to the DFIG system
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5. Application of adaptive neurofuzzy control to the DFIG system

5.3. Approximation of functions f(x,t) and g(x,t)

Next, the first of the approximators of the unknown system dynamics is defined

containing kernel functions

where are fuzzy membership functions

appearing in the antecedent part of the l-th fuzzy rule 

Fig 2: Neurofuzzy approximator
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5. Application of adaptive neurofuzzy control to the DFIG system

5.3. Approximation of functions f(x,t) and g(x,t)

The variation ranges for the weights are given by

The value of the approximation error that corresponds to the optimal values of the

weights vectors is

The values of the weights that result in optimal approximation are

Similarly, the second of the approximators of the unknown system dynamics is defined

Example 3: Nonlinear control and state estimation using Lyapunov methods
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Example 3: Nonlinear control and state estimation using Lyapunov methods

5. Application of adaptive neurofuzzy control to the DFIG system

5.3. Approximation of functions f(x,t) and g(x,t)

which can be also written in the following form

with

and

Moreover, the following weights error vectors are defined

which is next written as

41
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Example 3: Nonlinear control and state estimation using Lyapunov methods

6. Lyapunov stability analysis

The following Lyapunov function is considered: 

The selection of the Lyapunov function is based on the following principle

of indirect adaptive control

this results

into

By deriving the Lyapunov function with respect to time one obtains:

42
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6. Lyapunov stability analysis

The equation is rewritten as:

which finally takes the form:

Assumption 1: For given positive definite matrices Q1 and Q2 there exist positive definite

matrices P1 and P2, which are the solution of the following Riccati equations

43

44
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6. Lyapunov stability analysis

By substituting the conditions from the previous Riccati equations into the derivative of the

Lyapunov function one gets:

or:

● The supervisory control term consists of two terms:

where assuming that the measurable elements of vector

the term au Is given by

45
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6. Lyapunov stability analysis

● The control term Is given by

is an H-infinity control used for the compensation of the approximation error w and 

the additive disturbance   

Its first component                    has been chosen so as to compensate for the term

which appears in the previously computed function about ˙V . 

By including also the second component              one has that              is computed 

based on the feedback only the measurable variables                              out of the 

complete vector 

Eq.                                                  Is     finally rewritten  as 

● is a control used for the compensation of the observation error (the control term 

has been chosen so as to satisfy the condition

46
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6. Lyapunov stability analysis

Fig. 3 Adaptive neurofuzzy control scheme for the DFIG

By substituting the supervisory control term in the derivative of the Lyapunov function

one obtains
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Example 3: Nonlinear control and state estimation using Lyapunov methods

6. Lyapunov stability analysis

or equivalently

Besides, about the adaptation of the weights of the neurofuzzy network

it holds

and also

By substituting the above relations in the derivative of the Lyapunov function one obtains

or

47
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6. Lyapunov stability analysis

Taking into account that

one gets

Since

it holds

Therefore, one finally obtains

Next, the following approximation error is defined
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Example 3: Nonlinear control and state estimation using Lyapunov methods

6. Lyapunov stability analysis

Thus, one obtains

Denoting the aggregate approximation error and disturbances vector as

the derivative of the Lyapunov function becomes

which in turn is written as

Lemma: The following inequality holds

48
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Example 3: Nonlinear control and state estimation using Lyapunov methods

6. Lyapunov stability analysis

Proof: 

The binomial is considered. Expanding the left part of the above

inequality one gets

By substituting one gets

Moreover, by substituting the above inequality into the derivative of the Lyapunov

function one gets

which is also written as

with

49
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Example 3: Nonlinear control and state estimation using Lyapunov methods

6. Lyapunov stability analysis

Hence, the performance criterion is derived. For sufficiently small the inequality will

be true and the tracking criterion will be satisfied. In that case, the integration of ˙V from 0

to T gives

It is assumed that there exists a positive constant such that

Therefore for the integral one gets

Thus, the integral is bounded and according to Barbalat’s Lemma

50
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Example 3: Nonlinear control and state estimation using Lyapunov methods

7. Simulation tests

● The efficiency of the proposed flatness-based control method for doubly-fed induction

generators has been confirmed with the use of simulation experiments.

.

● Fast and accurate tracking of the  setpoints was achieved. The transients of the state 

variables did not exhibit abrupt changes and the variations of the control input were smooth

● There was no need to measure the entire state vector of the generator. Measurements 

were obtained in real-time only about the rotation angle of the rotor and the stator currents 

● Under the proposed control scheme the machine can function at variable operating 

conditions and under variable mechanical excitation. This makes the DFIG more efficient In 

energy harvesting

● There was no need to measure or estimate the mechanical 

excitation provided by the wind. Efficient control can be 

achieved by adjusting only the rotor currents 

● The dynamic model of the DFIG was taken to be completely unknown. The system’s dynamics

were identified with the used of the previously analyzed neurofuzzy approximators
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Example 3: Nonlinear control and state estimation using Lyapunov methods

7. Simulation tests

Fig 4a, Convergence of the rotor’s speed x1

and of its derivative x2 to their reference

setpoints

Fig 4b, Convergence of the stator’s magnetic

flux x3 and of its derivative x4 to their reference

setpoints

Setpoint 1
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Example 3: Nonlinear control and state estimation using Lyapunov methods

7. Simulation tests

Fig 5a, Convergence of the rotor’s speed x1

and of its derivative x2 to their reference

setpoints

Fig 5b, Convergence of the stator’s magnetic

flux x3 and of its derivative x4 to their reference

setpoints

Setpoint 2
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7. Simulation tests

Fig 6a, Convergence of the rotor’s speed x1

and of its derivative x2 to their reference

setpoints

Fig 6b, Convergence of the stator’s magnetic

flux x3 and of its derivative x4 to their reference

setpoints

Setpoint 3
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7. Simulation tests

Fig 7a, Convergence of the rotor’s speed x1

and of its derivative x2 to their reference

setpoints

Fig 7b, Convergence of the stator’s magnetic

flux x3 and of its derivative x4 to their reference

setpoints

Setpoint 4
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Example 3: Nonlinear control and state estimation using Lyapunov methods

7. Simulation tests

Fig 8a, Convergence of the rotor’s speed x1

and of its derivative x2 to their reference

setpoints

Fig 8b, Convergence of the stator’s magnetic

flux x3 and of its derivative x4 to their reference

setpoints

Setpoint 5
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Example 3: Nonlinear control and state estimation using Lyapunov methods

7. Simulation tests

Fig 9a, Convergence of the rotor’s speed x1

and of its derivative x2 to their reference

setpoints

Fig 9b, Convergence of the stator’s magnetic

flux x3 and of its derivative x4 to their reference

setpoints

Setpoint 6
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Example 3: Nonlinear control and state estimation using Lyapunov methods

7. Simulation tests

Fig 10a, Convergence of the rotor’s speed x1

and of its derivative x2 to their reference

setpoints

Fig 10b, Convergence of the stator’s magnetic

flux x3 and of its derivative x4 to their reference

setpoints

Setpoint 7
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8. Conclusions

● A solution to the problem of model-free adaptive control for doubly-fed

Induction generators has been proposed

● It was proven that the dynamic model of the DFIG is a differentially

flat one. The flat outputs of the model were taken to be the rotor’s turn

speed and the magnetic flux of the stator.

● By proving differential flatness properties for the machine,

the transformation of its model to the linear canonical form was achieved.

● In this new linearized description the control inputs comprised

nonlinear terms which were related to the system’s unknown dynamics.

● These terms were dynamically identified with the use of neurofuzzy

approximators. These estimates of the unknown dynamics were used in turn in the

computation of a feedback control input, thus establishing an indirect adaptive

control scheme.

● It was also assumed that only the output of the DFIG could be directly measured

and that the rest of the state vector elements of the machine had to be computed

with the use of a state-observer.

● The stability of the control loop was proven with the use of Lyapunov analysis.

Example 3: Nonlinear control and state estimation using Lyapunov methods
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8. Conclusions

grigat@ieee.org

● New approaches to nonlinear and optimal control of electric

power systems have been analyzed, and their applications to

electric power generators and power electronics have been shown

● The main approaches for nonlinear control have been: (i) control with global linearization

method (ii) control with approximate (asymptotic) linearization methods (iii) control with

Lyapunov theory methods (adaptive control) in case that the model of the electric power

system is unknown

● Flatness-based control and its adaptive fuzzy implementation have been shown as very

efficient for controlling a wide class of electric power systems. Besides a novel method of

Nonlinear optimal control for electric power systems has been analyzed


