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New approaches to nonlinear and optimal control of electric power systems

1. Outline

e The efficient functioning of electric power systems relies on the
solution of the associated nonlinear control and state estimation
problems

e The main approaches followed towards the solution of nonlinear
control problem are as follows: (i) control with global linearization
methods (ii) control with approximate (asymptotic) linearization
methods (iii) control with Lyapunov theory methods (adaptive control
methods) when the dynamic model of the electric power systems

IS unknown

e The main approaches followed towards the solution of the nonlinear
state estimation problems are as follows: (i) state estimation with
methods global linearization (ii) state estimation with methods of
approximate (asymptotic) linearization

e Factors of major importance for the control loop of electric power
systems are as follows (i) global stability conditions for the related
nonlinear control scheme (ii) global stability conditions for the related
nonlinear state estimation scheme (iii) global asymptotic stability for the
joint control and state estimation scheme
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2 . Nonlinear control and state estimation with global linearization

e To this end the differential flatness control theory is used

e The method can be applied to all nonlinear systems which
are subject to an input-output linearization and actually such
systems posses the property of differential flatness

e The state-space description for the dynamic model of the electric power systems is
transformed into a more compact form that is input-output linearized. This is achieved
after defining the system'’s flat outputs

e A system is differentially flat if the following two conditions hold: (i) all state variables and
control inputs of the system can be expressed as differential functions of its flat outputs (ii)
the flat outputs of the system and their time-derivatives are differentially independent,
which means that they are not connected through a relation having the form of an ordinary
differential equation

e With the applications of change of variables (diffeomorphisms) that rely
on the differential flatness property (i), the state-space description of the
electric power system is written into the linear canonical form. For the latter
state-space description it is possible to solve both the control and the state
estimation problem for the electric power system.
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3. Nonlinear control and state estimation with approximate linearization

e To this end the theory of optimal H-infinity control and the theory of
optimal H-infinity state estimation are used

e The nonlinear state-space description of the electric power system
undergoes approximate linearization around a temporary operating point
which is updated at each iteration of the control and state estimation algorithm

e The linearization relies on first order Taylor series expansion around the temporary
operating point and makes use of the computation of the associated Jacobian matrices

e The linearization error which is due to the truncation error of higher-order terms in the
Taylor series expansion is considered to be a perturbation that is finally compensated by

the robustness of the control algorithm

e For the linearized description of the state-space model an optimal H-infinity controller
is designed. For the selection of the controller’s feedback gains an algebraic Riccati

equation has to be solved at each time step of the control algorithm

e Through Lyapunov stability analysis, the global stability properties of
the control method are proven

e For the implementation of the optimal control method through the
processing of measurements from a small number of sensors in the
electric power system, the H-infinity Kalman Filter is used as a robust

state estimator
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4 . Nonlinear control and state estimation with Lyapunov methods

e By initially proving the differential flatness properties for the electric power
system and by defining its flat outputs a transformation of Its state-space
description into an equivalent input-output linearized form is achieved.

e The unknown dynamics of the electric power systems is incorporated
into the transformed control inputs of the system, which now appear
In its equivalent input-output linearized state-space description

e The control problem for the electric power systems of unknown dynamics in now turned
into a problem of indirect adaptive control. The computation of the control inputs of the
system is performed simultaneously with the identification of the nonlinear functions which
constitute its unknown dynamics.

e The estimation of the unknown dynamics of the electric power system is performed
through the adaptation of neurofuzzy approximators. The definition of the learning
parameters takes place through gradient algorithms of proven convergence, as
demonstrated by Lyapunov stability analysis

e The Lyapunov stability method is the tool for selecting both the gains of the stabilizing
feedback controller and the learning rate of the estimator of the unknown system’s
dynamics

e Equivalently through Lyapunov stability analysis the feedback gains of the state
estimators of the electric power system are chosen. Such observers are included in the
control loop so as to enable feedback control through the processing of a small number of
sensor measurements
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Example 1: Nonlinear control and state estimation using global linearization
1. Outline

* Nonlinear control for wind power generation units that
comprise wind turbines, a drivetrain and asynchronous
DFIG generators is developed using differential flatness
theory and the Derivative-free nonlinear Kalman Filter.

« The model of the wind power generation unit, is differentially flat and thus the
associated dynamic model can be transformed into a linear canonical form (Brunovsky
form) or equivalently into an input-output linearized form

* For the equivalent globally linearized model of the wind power generator a state feedback
controller can be designed, e.g. using pole placement methods. Such a controller processes
measurements of the turn speed of the turbine’s rotor, of the generator’s rotor as well as of
stator and rotor currents of the asynchronous generator

« To estimate the non-measurable state variables of the wind power unit, the
Derivative-free nonlinear Kalman Filter is used. This consists of the Kalman Filter
recursion applied to the local linearized model of the wind power unit and of an inverse
transformation that is based on differential flathess theory, which enables to compute
estimates of the state variables of the initial nonlinear model of the wind power system

« Furthermore, by redesigning the aforementioned filter as a disturbance
observer it becomes also possible to estimate and compensate for disturbance terms
that affect the wind power generation unit 6
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Example 1: Nonlinear control and state estimation using global linearization

Dynamic model of the wind-turbine, drive-train and asynchronous generator

The wind power generation unit comprising a multi-mass drive-train and a DFIG is shown in
the following diagram
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The wind power unit comprises a two-mass drive-train system receiving mechanical torque
from a wind turbine, and a DFIG. :
7
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Example 1: Nonlinear control and state estimation using global linearization

Dynamic model of the wind-turbine, drive-train and asynchronous generator

The rotational motion of the wind-turbine and of the drivetrain system is described by the
following differential equation

dw , .
It% — Cba:rm == Tls &= Btwt

Wt is the turn speed of the wind turbine
T, is the mechanical torque provided by the wind

Cba is a coefficient related with the pitch angle of the
turbine’s blades

The coefficient ¢p, IS a nonlinear function of blades
pitch angle, rotor speed and wind speed.

175 the torque of the low-speed shaft of the drivetrain
(shaft on the side of the wind turbine)

B; is a damping coefficient (friction) that opposes to
the rotational motion of the shaft
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Example 1: Nonlinear control and state estimation using global linearization
Dynamic model of the wind-turbine, drive-train and asynchronous generator

The torque of the low-speed shatft is given by
Tis = K1(6: — f5) + Di(we — wg) (2)
Ot isthe turn angle of the wind turbine

6, isthe turn angle of the generator’s (DFIG) rotor

K is an elasticity coefficient

Dy is a damping coefficient
Considering that damping is small the torque of the low speed shaft becomes
Tis = K1(6; — 6,)

The ratio between the torque of the wind turbine’s shaft (low-speed shaft) and the
torque of the DFIG shaft (high-speed shaft) is:

e e = 5 05 @

Lt is the number of teeth at the gears placed at the wind turbine’s side

g is the number of teeth at the gear placed at the generator’s side 9
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Example 1: Nonlinear control and state estimation using global linearization
Dynamic model of the wind-turbine, drive-train and asynchronous generator

The rotational motion of the Doubly-Fed Induction Generator is described by the following

differential equation:
J, % =Ty —T.— B, - w
97 dt hs e g " %g

J, is the moment of inertia of the generator’s rotor

is the turn speed of the generator’s rotor
T, Is the torque exerted at the high-speed shaft of the generator

B, is a damping coefficient (friction) that opposes to the rotor’s motion

T. s the electromagnetic torque of the generator and is given by

T = firgtbua—irit) (5

Is a variable related with the mutual inductance coefficient and with the number of poles

0
lird, irq| are the vector components of the DFIG’s rotor currents in the asynchronously rotating
dqg reference frame

|[",~‘;"sde Vsq] are the stator’'s components of the DFIG’s magnetic fluxin the asynchronously 10
rotating dq reference frame
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Example 1: Nonlinear control and state estimation using global linearization

Dynamic model of the wind-turbine, drive-train and asynchronous generator

The joint dynamics of the drivetrain and of the DFIG is expressed by the following wo
differential equations

Tedut — g T Ki(6 —6,) —

one arrives at the following state-space description of the system’s dynamics
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Example 1: Nonlinear control and state estimation using global linearization

Dynamic model of the wind-turbine, drive-train and asynchronous generator

About the dynamics of the electrical part of the wind power generation unit and

using the asynchronously rotating dq reference frame one has
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are the stator flux and the rotor currents

are the stator and rotor voltages

are the stator and rotor inductances

is the rotor’s angular velocity

Is the mutual inductance

are the stator and rotor resistances

12
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Example 1: Nonlinear control and state estimation using global linearization

Dynamic model of the wind-turbine, drive-train and asynchronous generator

Moreover, the following parameters are defined

. & A= _.l:E —-Li
gi=il _LLTLS 5= Mo TeTrpe
_ - —r
T = ET T2 = Ii-:,l"."S

The dynamic model of the electric part of the doubly-fed induction generator can be
also written in state-space equations form by defining the following state variables:

Ty = Yy, T = Ys,, L7 = iy, and xg = i,

The state-space model of the electrical part is:

: 1 M
T = — -85 + tdg®s + L7 + Us,
% 1 1
T = —dg®s — T %6 T _Tg T Us, ; @
Ty = —Brams + £ g 4 ((Wag — Ta)Ta — Yoy + =5V, — BUs,
e aliz

£

dg = Lmg 4+ Prgre + (g, —24)ey — Yorg + ——u,, — P,
Ts -:"LS g
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Example 1: Nonlinear control and state estimation using global linearization

Dynamic model of the wind-turbine, drive-train and asynchronous generator

The joint dynamics of the mechanical and electrical part of the wind power generation unit

ii = o
£g= —%{Ei—maj Vs EE‘F mT
&Lz = &4
Lq = %{mi — 23)72 — n(zars — 2r2e) — By - 24
e —%mﬁ + tgg®s + %ET + Usy
e —{J.Jﬂiq$5 — imﬂ + _mE + Usg
= —Braze + & $5 + (wag — mdjmg — Yoy — BUsy + 7o U2
o = e 4 Boyes + (win — E0)er —pons — B 4 2ot

This is an affine-in-the-input dynamical system which is written in the form:

i = £(x) + glz)u (®)

where:  xcR3*1 f(2)eR?*1) g(2)eR®*® and ueR*1L,
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Example 1: Nonlinear control and state estimation using global linearization

Dynamic model of the wind-turbine, drive-train and asynchronous generator

Vector f(x) and matrix G(x) are defined as follows:
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Example 1: Nonlinear control and state estimation using global linearization
3. Differential flatness of the wind power generation unit

» Differential flatness theory has been developed as a global linearization control

method by M. Fliess (Ecole Polytechnique, France) and co-researchers (Lévine, Rouchon,
Mounier, Rudolph, Petit, Martin, Zhu, Sira-Ramirez et. al)

- A dynamical system can be written in the ODE form S (w,w,w,...,w'")), i=12,....q
where,, (1) stands for the i-th derivative of either a state vector element or of a control input

* The system is said to be differentially flat with respect to the flat output
Y, = ¢(W,V.V,\./;/,...,W(a) ), i=1...m where Y=(Y1,Y2,s¥m)
if the following two conditions are satisfied
() There does not exist any differential relation of the form

R(Y, Y, Yo YP)) =0

which means that the flat output and its derivatives are
linearly independent

(i1) All system variables are functions of the flat output
and its derivatives

W(I) :l//(y1 Y, y"'"y(}/i)) 16
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Example 1: Nonlinear control and state estimation using global linearization
3. Differential flatness of the wind power generation unit

Next, it will be proven that the wind-power system which comprises the wind-turbine,
the drivetrain and the DFIG is a differentially flat one.

The flat outputs vector is taken to be
YV o= [y, @z, w50 = [0, g Paa]”

From the first row of the state-space model one has:

$2=¢1=?'$2=-'1'12'[E}>}

that is X, is a differential function of the flat outputs of the system

From the third row of the state-space model one obtains

A ﬁgi?ﬁq = .'1‘1-4{}': Y:I

which signifies that x, is also a differential function of the flat outputs of the system

From the sixth row of the state-space model one has that due to the assumption of field

orientation, that is
g — '31':'5:.? — [:]3 17
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Example 1: Nonlinear control and state estimation using global linearization

3. Differential flatness of the wind power generation unit

From the fifth row of the state-space model and using that

#g = W, = 0 and that o5 =1

one can solve with respect x;

wr = T i) 4 tagis — g — tg=er = Re(Y, 7))
AT Tz

which means that state variable x-, is a differential function of the flat output of the system

From the fourth row of the state-space model one can solve with respect to Xg.
This gives
By = —TL{% — %j,_::'_ + Lonaywg + Bog — L wg0g=
g —Im—[mcz— —J—{m—ma} + Linwrie + Byua=
wg = halY, Yj‘

Consequently xg is also a function of the differentially flat outputs of the system.

18
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Example 1: Nonlinear control and state estimation using global linearization

3. Differential flatness of the wind power generation unit

Next, from the second row of the state-space model of the system one
can solve with respect to the control input u,. This gives:

T = ::,'“-_.::T[ﬁg -+ %{mi — ﬁgjl —I—Etmg]:‘r T = QI{EY} @

which means that the control input u; is a differential function of the flat
outputs of the system.

Equivalently, from the seventh row of the state-space model of the system one can solve
with respect to the control input u,. This gives:

wy = gL {dr 4 Peges + %mﬁ + (g, — ®q) @ + Yoty + foagb= w = (Y, ¥ @

which shows that the control input u, is a differential function of the flat outputs of
the system

Finally, from the eight row of the state-space model of the system one can solve with
respect to the control input u3. This gives:

wy = ol (ks + S wg — Braws — (wag — w)er + Yows + frsgh= wy = (¥, Y) @

Considering that due to field orientation X = 0 and vy, = one ha that the control uj
Is also written as a differential function of the flat outputs of the power unit. 19
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Example 1: Nonlinear control and state estimation using global linearization
4. Transformation of wind-power system into input-output linearized form

The flat outputs of the system are differentiated successively, until the control
inputs reappear. Thus, from the first row of the state-space model one has:

i'l = ﬂgz}éi = ﬂlgz} |

Equivalently, one can write

1 = fal®) + Gar ()20 + Gaglw)en + Eﬁ:z{mj’“ﬁ

where I
f¢=—7f'[m1—m3:'—5g~mz

ber(@) =T gule) =0 gu(a)=0 (27)

From the third row of the state-space model and through successive differentiations one gets:

ga:l — _i_{ﬂ ol mqjl " Y ﬂﬁﬁ [Eﬁﬁ —I— ﬁ$4$5 + {{-'-qu o ﬂqj‘ ﬁjr =5 '-:rlﬂ ﬁa S .EEIEQ]
—ruwg [~ ggs — e+ Tows + e |-

_E [_L{m — mgj ﬁ{mama = ﬂ}'rﬂs:' Bg- m4]—
1
L

20
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Example 1: Nonlinear control and state estimation using global linearization
4. Transformation of wind-power system into input-output linearized form

or equivalently

ol = 11(0) + 0 (D1 + a1a() s + g1, (D)

where

film) = %{mz — mﬂ% — Ty [:ffms + Brgws + (g — @)@ — Yo% — ﬁﬂsq]—
— g [~ ggis — s + g + v |-

B, [ (o1 — 05) 22 — nlasiss — erine) — By - s

and also

Q‘bi{ﬂj =0 E"bg{mj' =0 Ebg{ﬁjl = _ﬂ'mﬁ{g}ﬁ}

Next, from the fifth row of the state-space model one obtains:

Zs = {[Zas — Lar] + TE[TEM + (wag — ®a)xs — Yoy — Bu.,+|}+
@

T, ol

21
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Example 1: Nonlinear control and state estimation using global linearization

4. Transformation of wind-power system into input-output linearized form
The previous relation can be also written in the concise form:

i.IEE T fc (:13) at= gt‘:i(m)ul at= gcz(m)uﬁ I Gz (m)HB @

where

fo(@) = {[772s — 57| + ML 2y + (wag — a)s — Yo7 — Bue,+]}

ges (@) =0 gep(x) = %% ges () =0

Using the previous analysis, the input-output linearized description of the

system becomes:

T P ($) Q’ai(m) Yoo (m) Gas (m) Gl
2 | = [ H@) |+ | 90:(2) g5.(®) 90s(2) | | w2
i5 fr: (ﬁ) gﬂi(m) Geg (m) Hes ($) Leg
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Example 1: Nonlinear control and state estimation using global linearization

4. Transformation of wind-power system into input-output linearized form

or equivalently by defining the vectors X = [&1, &3, ¢5]T} and [/ = [ui,ug?ug]T

one has _
X =Fx)+ Glz)U @

Next one can define the following virtual control inputs

v = fol@) + 9o, (@)r1 + goy (@)un + oo (@)us
vo = fol@) + gp, (@)1 + go(@)ue + go, (2)us
vy = fol®) + g0, (@) + 9o, (@)un + g ()us

The input-output linearized form of the system is written as:

o (3) _ on
= 4 g =Uy g = Ug

the stabilizing feedback control of the wind power generation unit is

vy = &1, 9 — k2] —21,9) — kS{e1 — 21.4)
vy = wyy — K(Es — F3,4) — K3(ds — ks,0) — ki(ws — @s,4)

Vg = iE.}-ﬂ- — kf (:1:5 T :i:5..,d) - kg(ﬂ;E o :EE‘-"":!T') 23
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Example 1: Nonlinear control and state estimation using global linearization
5. State estimation with the Derivative-free nonlinear Kalman Filter

To perform state estimation for the wind-turbine and DFIG power unit, there is need to
obtain measurements of some elements of the wind power unit’s state vector.

First, the turbine’s turn angle can be measured directly with the use of an encoder.

Due to the fact that the magnetic flux of the stator cannot be measured directly,
equations that provide indirect measurements of the flux (computed through
measurements of the stator and rotor currents) will be used,

rﬁbsd == Lsisd + Mi?“d ~
(ﬁbsq = Lsisq 5 M'I"T“q a '
Using the input-output linearized model
. (3) _ i
1= ¥z =Yy Ly =3

the state estimator for the wind-power generation system is given by

AL o A

with 2 = [84,64,8,,05,%.,,%.,,%:,]7 and KeR™2

24
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Example 1: Nonlinear control and state estimation using global linearization
5. State estimation with the Derivative-free nonlinear Kalman Filter

About the linearized state-space description of the system (canonical Brunovsky form)
it hnld< that

e

o

|
o o e e e
o e W o o W e W
e e B o o O o O
o e B e O e Wl
o B e e S = Bl e Wl
e e B o o N o O
R e e N o R R

3'::':1

|
D D D D D
e R = e R R

O O D O S
(7
3
Il
T ]

One can measure

(i) The turn angle of the turbine %4 = &%

(i) The turn angle of the generator %2 = 'Elg-
while about the magnetic flux it holds that % = %2 = %2, + ’Zﬁ;q,:_,;
and due to field orientation one has &5 = 2 = ’ziﬁs?g

Moreover, the following relation allows to compute the magnetic
flux from stator currents measurements
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Example 1: Nonlinear control and state estimation using global linearization

5. State estimation with the Derivative-free nonlinear Kalman Filter

The observer’s gain K;is obtained through the Kalman Filter recursion. The application
of the Kalman Filter to the linearized model of the system is known as Derivative-free

nonlinear Kalman Filter. |

Matrices A,, B, and C, are substituted by their discrete-time equivalents, through
the application of common discretization procedures. These equivalents are denoted as:
A4, By and Cy. Thus, finally the Kalman Filter’s recursion becomes:

The estimation process is complemented by inverse transformations
relying on the differential flathess properties of the system. These
allow for identifying the state variables of the initial nonlinear system

measurement update:

Ky(k) = P~ (k)CT[CaP~(R)CF + R
Z(k) = 27 (k) + K¢ (k)| 2 — 21
P(k) = P~(k) — K;(k)CyP~ (k)

P=(k+1)= AzP()AT 4+
Z7 (k4 1) = AzZ(k) —I—dBdﬂ(Fc}

time update:

26
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Example 1: Nonlinear control and state estimation using global linearization
5. State estimation with the Derivative-free nonlinear Kalman Filter
Next, it is considered that the input-output linearized wind-power generation system is subject
to additive input disturbances, having the following form:
£y = w1+ dy mf:' =g+ @g = w4 oy

Each disturbance input is considered to be described by its 2nd order
derivative and the associated initial conditions

The system’s state vector is extended by defining as additional state variables the
disturbance inputs and their time-derivatives.

Thus one obtains the following state-space description:

F=AF 4+ BV
7= 0

where the extended state vector is defined as

= [Pﬁn Ay B, Ad, FE &g, &7, &8y #e, &0, 1 S, ﬁia]
with &1 = &1, #o — ﬂ'l:n By o= w3, B4 = mEJ sy = mEJ sy = W,
B = @5 ﬂa—ﬂihﬂa—di ﬁm—ﬂﬁﬂaﬁn—ﬂﬁz:ﬂw de, #13 = ds.

and P [wikﬂE}wE'fdi}fdﬂ}fdz]T 27
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Example 1: Nonlinear control and state estimation using global linearization

5. State estimation with the Derivative-free nonlinear Kalman Filter

About matrices A,B and C appearing in the previous extended state-space description

loo0000000000
oooooool1o0000

ooolo00000000
ooooloooooonn
oooooooool1onn
ooooooilaooonn
ooooooooooolo
oooooooo10000
oooooooaooon
oooooooooolan
oooooooaoooon
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oooo000000000
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The extended state-observer for the system is

P AT BV e He (e B

with

and

d, =4 Rl o = (g BRI Y =

AT A

glooo000000000

Efo=

coool1o00000000

ooooooilo00000

10
=100
00

oooooo0000
10000000000
oo100000000
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Example 1: Nonlinear control and state estimation using global linearization

6. Simulation tests

The performance of the proposed flatness-based control approach for the wind-power
generation system that comprises a wind turbine, a drive-train and an asynchronous DFIG
generator has been further confirmed through simulation experiments.
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Example 1: Nonlinear control and state estimation using global linearization

6. Simulation tests
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Example 1: Nonlinear control and state estimation using global linearization

6. Simulation tests
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6. Simulation tests
Setpoint 4
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6. Simulation tests
Setpoint 5
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Example 1: Nonlinear control and state estimation using global linearization
7. Conclusions

e It has been proven that the state-space model of the wind power
system is a differentially flat one

e This signifies that all state variables and the control inputs of the system can be expressed

as differential functions of certain state vector elements, the latter known as flat outputs of
the system.

e The differential flatness property signifies that the power unit's dynamic model can be
transformed into the linear canonical (Brunovsky) form.

e After expressing the system’s dynamics into an input-output linearized form, the solution
of the associated control and state-estimation problems has become possible.

e To stabilize the asynchronous power generation unit a state feedback controller
has been designed with the pole-placement technique.

e To perform state estimation the Derivative-free nonlinear Kalman
Filter has been used

N )
: .
S
I\, —
\ I/
.
s

e By redesigning the aforementioned Kalman Filter as a disturbance SR———
observer it has become possible to identify in real-time additive
disturbance inputs that affect the dynamics of thepower unit.
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Example 2: Nonlinear control and state estimation using approximate linearization
1. Outline

e A new nonlinear H-infinity control approach is applied to wind power generation units. First,
the model of the wind power system undergoes approximate linearization, through Taylor series
expansion, round local operating points which are defined at each time instant by the present
value of the system’s state vector and the last value of the control input exerted on it.

e The linearization procedure requires the computation of Jacobian matrices. The modelling
error, which is due to the truncation of higher order terms in the Taylor series expansion is
perceived as a perturbation that should be compensated by the robustness of the control loop.
Next, for the linearized wind power generation system, an H-infinity feedback control loop is
designed.

e This approach, is based on the concept of a differential game that
takes place between the control input (which tries to minimize the
deviation of the state vector from the reference setpoints) and the
disturbance input (that tries to maximize it).

e In such a case, the computation of the optimal control input requires the solution of an
algebraic Riccati equation at each iteration of the control algorithm. The known robustness
properties of H-infinity control enable compensation of model uncertainty and perturbations

e The stability of the control loop is proven through Lyapunov analysis. Actually, it is shown that
H-infinity tracking performance is succeeded, while conditionally the asymptotic stability o&;[he
control loop is also demonstrated.
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Example 2: Nonlinear control and state estimation using approximate linearization

2. Dynamic model of the drivetrain and DFIG wind power generation unit

The wind power generation unit comprises a wind turbine, a drivetrain and an
asynchronous power generator (Doubly-fed induction generator - DFIG)

Gearbox o

Fig. 1: Wind power generation unit comprising a multi-mass drive-train and a DFIG
37
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g approximate linearization

2. Dynamic model of the drivetrain and DFIG wind power generation unit

m'1 = o
mlg = —%{ﬂ-l T ﬂgjl T .Egﬂg -+ %Tm
Hg = g
g = %{m — ﬂgj%f — nlwges — wrmg) — By - 2g
By = —= s g + M o + s,
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i = —ﬁmm + —ma + (tgq — m4}ma — pamy — Bug, + —L—t-ﬂg
g = —ms + ﬁmws + (ag — #a)wr — yaws — fos, + s

In vector fields form one has & = fie) + gl

where wcRE*Y, fle)e i, gle)eRP* and weR®¥1
with K2
—%{m ey ﬁgjl = .E'gmg
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Ky T
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Example 2: Nonlinear control and state estimation using approximate linearization

3. Approximate linearization of the wind power generation unit

The configuration of the control scheme for the DFIG-based wind power generation
system is given in the following diagram:

steabor
power

H

L SR :
:“\ES_T_."@_

rotor side metwork side
converter COMETtEr

Fig 2: Control of the DFIG-based wind power generation system through a back-to-
back voltage source converter
Tep 39
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Example 2: Nonlinear control and state estimation using approximate linearization

3. Approximate linearization of the wind power generation unit

The dynamic model of the wind power generation unit
undergoes approximate linearization around a temporary
operating point (x*,u*),

x* is the present value of the system’s state vector
u* is the last value of the control inputs vector

The operating point is updated at each iteration of the control method. The linearization
procedure makes use of first-order Taylor series expansion and relies on the computation
of the associated Jacobian matrices.

This gives: 2= de+ Bu+d @

d 1S the modelling error due to truncation of higher-order terms in Taylor series expansion

Matrices A and B are given

A = Volf () + 6(0)] [0y = A= Vo [F(#)] oo ©

B = Tﬂ[f{m} —|—g|{$}li&] ||::-:"‘,u"'j =85 = Q‘{ﬂj |l[:-:"‘;-_.="':|

Using the field orientation features of the asynchronous machine #: = ’ﬁ'jsq = and Vg = 0
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Example 2: Nonlinear control and state estimation using approximate linearization

3. Approximate linearization of the wind power generation unit

For the first row of the Jacobian matrix W f{)
filw file fifa Ffy(aw ;Fi o A (e
Get= Upegle=ly Spchs Uy SRSt =0,

SOk — 0 and 2460 _ g

For the second row of the Jacoblan matrix W )

Ffala) o4 dfala) af _ Ky af e af st
Tﬂa:fli_l B _J:: &i.:c{g:l B _Eg: ai:l-:{::l_ 2 ai:lcim:l_[j’ s _D’

SfEs) = (), 2fl = 0 and ) =
&g

For the third row of the Jacobian matrix f{ }

Afalw) Afale) Afate) _ Bfafe) 4y Bfalw) o Afale)
] 0, 1 () (0
Aoy R Awa T o 3 Hina Y e Y Ame .

aim) — () and 22—
S &g

For the fourth row of the Jacobian matrix . f{ &)

Afaie) _ Ky dfafe) _ Ffaley Iy ,1‘4 o) _ Faiw dfafw) _
L = o et = — T ~Bg, 2505t = Lmas, 2500 = —Lor,
Ifalw) _ 3fafw) _
83(0) _ I 4y and 230 Lo .
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Example 2: Nonlinear control and state estimation using approximate linearization
3. Approximate linearization of the wind power generation unit

For the fifth row of the Jacobian matrix

dfgle) 0 dfglew] dfeglw)

S dfe(a) _ dfefe) 1 dfs(e)
ey T Fwo T [:I3' & 2 [:I 0 J e T ! e = Lldn
8fs(s) _ M opg Ssle) _ g
L s

For the sixth row of the Jacobian matrix Vol {m:'

Sf el Sfei ) (@) _ dfele) _ ﬂfa ) _ Afele) _ 1
r;&;-::: =4 J;"i:f =0, J;"i:: 0, dwog U Jag “dp aee E

_{_1,1‘3:.: Dand _{_l,fg:-:

For the seventh row of the Jacobian matrix Tm Tl

Ayl Afelm o
ele) = g, 2le) = g, 2L 2o Sblel

g ﬁﬁﬁ_mﬂ: fln) _ £ bz

dwg T ! Fuwe —ﬁﬁq)
- — . Sl
Afelm) d dfy (e E { ;1 =
Spe T _'-:'JE a1 Sus Gldg — ¥4

For the eighth row of the Jacobian matrix % f{)

dfs(e) _ o O 915 3
79%131_[]3 D)= 0,22 = ), %&ﬂ R (S,

. o [

o
Afsle) dfsle) 42
T = dg — ¥4 and R e 2
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Example 2: Nonlinear control and state estimation using approximate linearization
3. Approximate linearization of the wind power generation unit

After linearization around its current operating point, the model of the wind-turbine
and DFIG asynchronous-generator power system is written in the form @

r = dep 4 Fud d.
The dynamics of the system of Eq. @can be also written in the form

# = Ae 4+ Fut Bu* — Bu* 4 o @

and by denoting d; = —F=*+4d; as an aggregate disturbance term one obtains

& = Aw+ Bu+ Bu*+ ds
By subtracting Eq. from Eq.@ one has

#— g =Ale — 20 + But ds — do @

By denoting the tracking error as £ = #— &4 and the aggregate disturbance term as
s dy — oy the tracking error dynamics becomes

¢ = Ae 4+ Budd
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Example 2: Nonlinear control and state estimation using approximate linearization
4. Design of the H-infinity feedback controller

The initial wind power system is assumed to be in the form

= (e )y BeERE mER™

where the linearization point (temporary equilibrium) is defined by the present value of the
system’s state vector and the last value of the control inputs vector exerted on it

b, wl p=ilalt), alt =T,

The linearized equivalent of the system is described by

v = Ax + Bu+ Ld zeR™ wueR™, dcH"

where matrices A and B are ohtained from the computation of the Jacobians

88 B4 . Bf1 84 8h . 81

A Sazq i Etixee, ||:w* ) B = 5“1 5“2 . 5% |[m*,u*]
Bfn  8fn .. Bfa Bfe  8fn . Bfn
Sy o Sy, Sy Hua St

and vector d denotes disturbance terms due to linearization errors.

The problem of disturbance rejection for the linearized model that is described by

¥ =Ar+ Bu+ Ld

y=Cu 44
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Example 2: Nonlinear control and state estimation using approximate linearization

5. Lyapunov stability analysis

\
The tracking error dynamics for the PEM fuel cells system is written
in the form .

g6 = Ae 4+ Bu+ Ld

where in the case of the considered wind power system L=1E€ R® with | being the
identity matrix. The following Lyapunov function is considered

V= %ETPE @
where & =x—%g Is the state vector’s tracking error

V =1lde+ Bu+ LdTP + 1eTPlde + Bu + Ldj=

V =37 AT + T BT 4+ dT LT Pe+
+1eTPlAe + Bu+ Ld]=

V=1TATPe+ 1uT BT Pe+ LdT LT Pe+t
1efPAe+ tet PBu+ e PLd
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Example 2: Nonlinear control and state estimation using approximate linearization
5. Lyapunov stability analysis
The previous equation is rewritten as

V =1cT(4TP + PA)e + (1vT BT Pe + LeT PBu)+
+(1dT LT Pe + LT PLd)

Assumption: For given positive definite matrix Q and coefficients r and p there exists a
positive definite matrix P, which is the solution of the following matrix equation

ATP+ PA=-Q+ P(2BBT - %LLT)P @
Moreover, the following feedback control law is applied to the PEM fuel cells model

R —%ETPE

By substituting Eq. @ and Eq. one obtains

i

$eT[-Q + P(BBT — 2 LLT)Ple+
+ef PB(—1BTPe+ eT PLd=

46
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Example 2: Nonlinear control and state estimation using approximate linearization

5. Lyapunov stability analysis

Continuing with computations one obtains

V=—1eTQe+ (1PBBTP:z— seze’ PLLT) Pe
—L.TPEBTPe +eTPLd

which next gives
V =—%eTQe— sxeT PLLTPe+ T PLd

or equivalently
V — —%ETQE _,, ﬁgETPLLTPE—F
+1eTPLd + 1dT LT Pe @

Lemma: The following inequality holds

$eTLd + $dIT Pe — 5L:eT PLLT Pe<ip®d"d
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Example 2: Nonlinear control and state estimation using approximate linearization

5. Lyapunov stabilitv analvsis

Proof : The binomial I:pf:tf— LE?:IE is considered. Expanding the left part of the above inequality

one gets g
o%a? + b2 —2ab = 0= %pgag—kﬁgﬁﬁg—ab;} 0=
ab— 5zb% < 10%% = Lab+ tab— ﬁgbz < 30%a

The following substitutions are carried out: 3z — d and ,{;. ol I'pr
and the previous relation becomes

LdTLTPe + $eTPLd — SyeT PLLT Pe<}p?dTd
Eq. Is substituted in Eq.@ and the inequality is enforced, thus giving
V< — 1eTQe+ 1p%d7d @

Eq. @ shows that the H-infinity tracking performance criterion is satisfied.
The integration of V from O to T gives

o S T o B
fo Vigdi< — 1f0 |lel|gdt + 302 5 |14 dit=

1]

e T3
WA(T) + fy llellgae=2vi0) + o* fy |la]|*
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Example 2: Nonlinear control and state estimation using approximate linearization
5. Lyapunov stability analysis

Moreover, if there exists a positive constant Jif; = 00 such that

f37119)1%d < D4

then one gets

fo llel|Bdt < 2V () 4 o* My
Thus, the integral f;‘j||e||%dﬁ is bounded.

clear that e(t) will be also bounded since

e(t) € Qe = {e|e” Pe<OV(0) 4 p? My} |

According to the above and with the use of Barbalat’s Lemma one obtains:

M eae(t) = 0.

This completes the stability proof. 49
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6. Robust state estimation with the use of the H-infinity Kalman Filter

e The control loop has to be implemented with the use of information provided by a small
number of measurements of the state variables of the wind power system

e To reconstruct the missing information about the state vector of the wind power system it is
proposed to use a filter and based on it to apply state estimation-based control .

e The recursion of the H-infinity Kalman Filter, for the wind power system, can be
formulated in terms of a measurement update and a time update part

Measurement D(k) = [ — W (k)P~ (k) + CT (k)R(k)~'C(k)P~(k)]~"
update K (k) = P~ (k)D(k)CT (k)R(k)™*
#(k) = & (k) + K (k)[y(k) — C&~ (k)]

Time i~ (k +1) = A(k)z(k) + B(k)u(k)
update P~ (k+1) = A(k)P~(k)D(k)AT (k) + Q(k)

where it is assumed that parameter 6 is sufficiently small to assure that the covariance matrix
P-(k) — 6W(k) + CT(k)R(k)~'C(k)

Is positive definite 50
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Example 2: Nonlinear control and state estimation using approximate linearization
7. Simulation tests

* The performance of the proposed nonlinear H-nfinity control scheme for the wind power
generation system is tested through simulation:

Linearization ofthe wind-turbine
and DFIG model

x=Ax +Bu+1ld
4=Vix '(x“z.-')‘ B =V, ‘e

.“1, B, L
Solution of the algebraic
Riccati equation
Afpspiso-plerT- 1 _uTyp-o
¥ lp &
P
H-infinity u=Ke Nonlinear dynamics x
control gain ) of the wind-turbineand .
1 DFIG model 4
K=-=BTp .
r x= f(x.u)

Fig.3 Diagram of the nonlinear optimal control

With the use of the proposed H-infinity control method, fast and accurate tracking of the
reference setpoints of the wind power system’s state variables was achieved 51
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Example 2: Nonlinear control and state estimation using approximate linearization

7. Simulation tests

Setpoint 1
05 ) ) ) 'l,_._.J__.-._: T EAT
PO | oot A O g
3 7 T |
o . . . : : 4
| O L .| A .
: : ; ; : o
VR S S
0 5 10 158 2 x5 @ £ 4
I )
e ; ;
o 1 L. 1 :- 1 .: -]
2 : : ™
S . SR - 4
£ onk T .
é - ---:ng—'aﬂ
1 I ! I I I I !

i 5 10 18 om0 & @ & 4
I (3=

Fig.4a Convergence of state variables
X, and X, to their reference setpoints

5 1 1 : 1 1 1 l*:-'d
L] - a1
v A
5 N
=5 1 1 1 1 1 1 1 I
] 5 1] 15 20 25 x x 4
iea 3=
5 : : —y
==
O "
: o
=5 1 1 1 1 1 1 1 |
] 5 1] 15 20 25 x x 4
Iiea |5
10 T T T T T T I':I
] x |'j
Lt : T A
; : | -
Au | i I I I I | [
] 5 i [1] 15 20 25 x x 4
iea =)

Fig.4b Convergence of state variables
X5 X7 and Xg to their reference setpoints

52



New approaches to nonlinear and optimal control of electric power systems
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7. Simulation tests

Setpoint 2
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7. Simulation tests

Setpoint 3
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Example 2: Nonlinear control and state estimation using approximate linearization

7. Simulation tests
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8. Simulation tests

Setpoint 1
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Fig.8a Variation of control inputs

u, u, and u; when tracking setpoint 1
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Fig.8b Variation of control inputs

u, u, and u; when tracking setpoint 2
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8. Simulation tests
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Fig.9b Variation of control inputs
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8. Simulation tests

Table I: RMSE of state variables in tracking of setpoints
No RMSEz: | RMSExzs | RMSExzs | RMSEx»
setpoint 1 (0.0001 (0.0001 0.0052 (0.0038
setpoint 2 (0.0001 (0.0005 0.0030 0.0059
setpoint 3 (0.0001 (0.0001 0.0082 0.0068
setpoint 4 (0.0001 (0.0005 0.0038 (0.0045
setpoint b 0.0001 (0.0002 0.0015 (0.0036

Table II: RMSE of state variables under model disturbance
% Aa | RMSExz, | RMSEx, | RMSEx: | RMSEx-
0 0.0001 0.0005 (0.0034 (0.0059
10 0.0001 0.0005 0.0041 (0.00568
20 0.0001 0.0005 0.0049 0.0057
30 0.0001 0.0005 0.0053 0.0056
40 0.0001 (0.0005 0.0071 0.0055
5 0.0001 0.0006 0.0086 (0.0054
60 0.0001 0.0006 0.0097 0.0052
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9. Conclusions

e A new nonlinear H-infinity control method has been developed for the
dynamic model of wind power systems. The first stage for the method’s
implementation has been the linearization of the fuel cells’ dynamic
model round local operating points.

e At every time instant, these equilibria consisted of the present value
of the system’s state vector and of the last value of the control input that
was exerted on it.

e For this linearization, Taylor series expansion has been applied to
the fuel cells’ dynamic model and the associated Jacobian matrices
have been computed.

e For the linearized equivalent model of the system H-infinity nonlinear
optimal control has been applied.

e The modelling errors which were due to the approximate linearization of the system
were perceived as disturbances affecting the wind power system’s dynamics and were
compensated by the robustness of the H-infinity controller.

e Moreover, conditions which assure the asymptotic stability of the control loop have been
formulated. The efficiency of the nonlinear H-infinity control method has been further
confirmed through simulation experiments.
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1. Outline

e The article proposes an adaptive control approach that is capable of
compensating for model uncertainty and parametric changes of the
doubly-fed induction generators (DFIGSs), as well as for the lack of
measurements about the DFRM’s state vector elements.

e First it is proven that the DFIG’s model is a differentially flat one.
By exploiting differential flatness properties it is shown that the
DFRM model can be transformed into the linear canonical form.

e For the latter description, the new control inputs comprise unknown nonlinear functions
which can be identified with the use of neurofuzzy approximators. The estimated
dynamics of the machine is used by a feedback controller thus establishing an indirect
adaptive control scheme.

e Moreover, to enforce the robustness of the control loop, a supplementary
control term is computed using H-infinity control theory.

e Another problem that has to be dealt with comes from partial measurements of the
state vector of the generator. Thus, a state observer is implemented in the control loop.

e The stability of the considered observer-based adaptive control approach is proven
using Lyapunov analysis.Moreover, the performance of the control scheme is evaluated 60
through simulation experiments.
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2. Dynamic model of the doubly-fed induction generators

The equations of th rotational motion of the rotor of the Doubly-fed induction

generator are given by
Jo=T, —Ksw—T,

J ' moment of inertia of the rotor, 15 : externally applied mechanical torque that makes
T. : electrical torque due to the machine’s currents kgw - friction term

| =

.

NS

The wind generated mechanical torque is 7, = —prR*C,,(\, 3)v?

§

power

DFIG

H

Turbine
rotor

l|
B

I 1

T
rotor side network side
converter converter

Fig 1. Configuration of a doubly-fed induction generator unit in the power grid
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2. Dynamic model of the doubly-fed induction generators

In a compact form, the doubly-fed induction generator can be described by the following set
of equations in the d - g reference frame that rotates at an arbitrary speed denoted as wy,

d_?ﬁ:—d‘ == wdqu{"sq . T_ls'vlf"i'Sd T a AI Ird T Usa
d;:tq = %Uf’sq + Bwpthgy, — ’7"2'137‘(, - (wdq e V'B:USq UL Urq @
d;;d. = —Bw,s, + T%‘I;'Jsd + (Wdqg — Wr)ir, — Yoiry — PUs, + L Ura @
ﬂf{%] qiuw]? Ty ?}ﬂ{i are the stator flux and the rotor currents

Usyy Usygy Upyy Upy, are the stator and rotor voltages

L cand ok, are the stator and rotor inductances
A is the rotor’s angular velocity
M Is the mutual inductance

E. and £, are the stator and rotor resistances 62
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2. Dynamic model of the doubly-fed induction generators

Moreover, the following parameters are defined

 y e . s gl
g=il _LLTLS B = fim.:r TeTrpe
_ _ —r
T = ET T2 = Ii-:,l"."S

The angle of the vectors that describe the magnetic flux ©s, and ©s;
Is first defined for the stator

U
p=tan~ (=2
Vs,
Moreover, it holds that
S ; - Tr""'Sa_ pre ,l’bsb : ’ ‘,‘yv f—
cos(p) = 15t sin(p) = i and ||Y|| =

Therefore, in the rotating d—q frame of the generator, and under the condition of
field orientation, there will be only one non-zero component of the magnetic flux g,
while the component of the flux along the g axis equals 0

The dynamic model of the doubly-fed induction generator can be also written in state-space
equations form by defining the following state variables:

Ty = 0, Lo =Wy, £3 = Wy, o= ~z;'wsq, Ty =fpy dnd Tg = (.
63
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2. Dynamic model of the doubly-fed induction generators

Thus, the state-space model of the induction generator becomes

2
ok
K, T, -

Sp= ——lxy -y 1

j _] j(irqx3 = irdx4)

l| ; T
. 1 M
X3= — —X3 + 0ggXa + —X5 + Vs, @
Ts Ts
: 1 M
Ts Ts
p 1
— PXoX4 + e (dq — X2)X6 — VX5 + — Vi~ PVs,

; 1
G il PXaX3 — (Wdqg — X2)X5 — VX6 + 1 Va PVsq 10
S r

The state-space model of the asynchronous generator is also written
in the affine-in-the-input form

T = f(x) + ga(®)Vr,; + go(T)Vp, @

= [or,me9,25, 20,25, ;‘1’.6]T

X5 =

with
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2. Dynamic model of the doubly-fed induction generator

and
( I \
Biwia T G g o
—= gy — “P iy B3 —5;04)
1 ]@I
——-‘1‘,3 — (.u‘dq’l’.4 - —"17r =+ Ugy @
i) =
H(z) —wdq13—l14+ﬁ16+18
431214+*—r3+( g — T3)Tg — Yox5 — P,

£14+13121‘3—( Wdgq —lz)lr— Yoxg — Pus )

)
O‘
—
SN—
—~~
o
)
o
o
o
Q
~|—=
3
~—
~

while the active and reactive power of the generator are given by

P, = Rl Y —w. e, $ma 4,

Q//' l\'

"1} ’ )
Qs — .[")'n{USI:} = 'l"Sdi’Sq —= 'Usqisd ' J,‘ }‘1 | A f .
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3. Differential flatness properties of the DFIG system dynamics

The flat outputs of the system are defined as “
y1 =0 ory =1
Yo = Ugd — 'Q".vgq or Yo = ;1'% — ;1‘7121

=Wl gy =&z =

; ; i T
i == ——Jimg — —L? Hwers — TsTe) =
By =W == Yo et ‘}II:EEES — Tgly)

Deriving the last row of the previous equation with respect to time one
obtains

It holds that

E}’F} = —Emii + L{dens + Bats — Te%a — Pata) =

yEB:I = —H—Fﬁfi T ijﬁ{[‘gm-ﬁi + Brary + (Waq — T2)Te—
—y2is — Pus, ] + LMi} + EEE[_LEB + Wdg %4 + %Eﬁ + s, ] @

—ﬂmai{ ﬁmzmq i T3 o+ (Md = Ez:'ﬂa = ’}235—
—Pus,] + srte} — Jus[—wars — Soa+ Lag + ]

Moreover, about the second flat output it holds 66
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3. Differential flatness properties of the DFIG system dynamics
Ho = 20503 + 204T4=
E;rE — QEB[—%ES —I—DJQIQE4 + %35 + @5{6]4_ @

+2ma[—0dgTs — =24 + g + U, | =

Consequently, it holds

ijp = 2ia[— 225 + Wiy By + EEE + u,, ]+
+233[__$3 gy By E5]-|-
24— wagrs — Loy + %ma +u, ]+
H-2y[— gy s — Lty + Haig]
or equivalently

o = 2[— 225 + wggs + Has + 15,7+
—Zxg[—2mp+ g 4 + Emﬁ + s,

—deqms[—mazqms e —ma + ;]

—I— m3{[ Prozy + ﬁ—ﬁs =+ l:wa!q — Ez:'ﬂa—
—Ya2ly — }%w] + opt}

+2[—tagts — a4 + Lag + v, ]
—Seggta[— = + ig®a + Emﬁ + s,
— 2y [—tggrs — Ly + g+,
QI4E{[E$4 + ﬁﬁzms + (Matq — %o) Tg—
— Y22 — Pus,] + .:rL STtz )
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3. Differential flatness properties of the DFIG system dynamics

It holds that
Ty My o= @

Considering that the field orientation condition x4 = fqﬁsq =0

mgzm. @

Moreover, for the first flat output it holds

i = —K; E;‘i m + 4. /U2te=
N e SRS 2000

Additionally, for the second flat output it holds

one obtains

Ho = 2 Mosng 4 20,28 =
i + l:i Zﬂsd:@a EEBEE =
el 2y
e = yot(F Z? - d)v’_ 17520

Therefore, x5 is also a function of the flat output and of its derivatives.
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3. Differential flatness properties of the DFIG system dynamics

Moreover, by solving the system of equations of and. @ with respect to .Up ;Up

one obtains that the control inputs are functions of the flat output and its derivatives.

Therefore, the model of the DFIG is a differentially flat one.

Next, to design the flatness-based controller for the DFIG the following transformation of
the state variables is introduced:

2 =4, 22 =11, 2z =11, 24 = U=, 25 = 2

Using a notation of variables as in the case of Lie algebra-based linearization it holds

Z) = Zy
Zy = Z3

Zz = f1(x) + g1a()ug + g1 ()
Z.4 = Z5

Zs = fo(X) + g2a(X)uy + g2p (XU,
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3. Differential flatness properties of the DFIG system dynamics

where | fi(0) =Kl EKpe, - T 4 3(rezs — 26z
+3x6[—':_sx3 + WdqZ4q + 'ﬁixb -+ 'Usd]
— Fag[—wdg®s — 7 %4 + T T + Vs,
— By [—Braza + Lxs + (wdq — fl:z)fce — Y225 — Bus,]
+3zs[Lxq+ Bizats + (Wag — %2) %5 — YoTs — B,

g1a(x) =% g =3
£()= .,
(—7%s — S %5 + 2”6«)[-—133 +wdq334 + By + v, |+

(—ix“ T —&;36 + 2y, )[ —Wdqg%s — —fc4 T e T Us ]+

(wdq—rcz)xe Yoits — Pus, )+

2M — Z2)%s — Yale — BUs ]
oM 1 _2M 1
Y2a (X) = 1 oL, 3 gZh(x) = "rs oL S
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3. Differential flatness properties of the DFIG system dynamics

Therefore, one obtains the decoupled and linearized representation of the system
(z‘f”) (B, (1) 900 () @
Zy f2(x)] \g2a(x)  g2p(x)/ \U2
e ,, E s/
(5 ) = ot i ‘
5 .‘

OV I Ve )

or equivalently

where

Moreover, by defining the new control inputs

vy = f1(x) + g1a(ug + g1p (X,

vy = fo(x) + g2a (uy + gop(Xu,

one can also have the description in the MIMO canonical form
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3. Differential flatness properties of the DFIG system dynamics

i 01 0 0 0% [z 0 0
4o 00 1 0 0|z 0 0
isl=10 000 0||=m|+]|1 0
4 00 0 0 1|2 0 0
fe 00 0 0 0/ \z 0 1

= Ef{sj — kij-:ll:ﬁi —Eﬂf:l — nzﬂgij (}3"1 —
wp = #F — kP (g — 25) —

The control input that is finally applied on the initial nonlinear model of

the DFIG is ) o
M=) @

The turn angle x,=06 of the rotor can be directly measured

Moreover, the following relation allows to compute the magnetic flux from stator currents
measurements

'Eiljs,c,; — 5'3-'5,@; + M'z'-:-'-,c,;
’E'IJSQ = 72
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4. Design of an adaptive neurofuzzy controller for the DFIG system

4.1. Transformation of MIMO nonlinear systems into the Brunovsky form

It is assumed now that after defining the flat outputs of the initial MIMO nonlinear system, and
after expressing the system state variables and control inputs as functions of the flat output and of

the associated derivatives, the system can be transformed in the Brunovsky canonical form

$'1=$g
$'2=$3

ﬁ-‘.-"i -1 = m-‘.-"i

By = f‘l'[ﬁ} =t Zi'j:-lﬁi;.:'[ﬁ}ﬁj + 4

meﬂ-i-l—i = m-:-'-1-|—2
g 3 = ey -3

Tpol = Hp

p = fple) + E?=19w{m:'“j + d,

i = [y, ,#)° IS the state vector
A T .

@ = [ug, -+, #]" s the inputs vector
y=[wm, - ,z|T :isthe outputs vector

(5|

Lo

By

A

Ty — 1

Wp— 1
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4. Design of an adaptive neurofuzzy controller for the DFIG system
4.1. Transformation of MIMO nonlinear systems into the Brunovsky form

Next the following vectors and matrices can Thus, the initial nonlinear system
be defined can be writtenin the state-space form

FO)=[f(x), .. Fr(0]

000 =[0100, o g OOT" X = Ax+ B[ f (X)+ g(x)u+d]
o T y = CXx

with g; (x) =[gg; (x), ... 9T
A=diag[A,..,Ay], B=diag[B,,...,B,]

c’ =diag[Cy,...,Cp], d =[d1’---’dp]T

or equivalently in the state space form

X = Ax+ Bv+Bd

where matrix A has the MIMO canonical form, y =Cx
l.e. with elements
0 1.0 . o where V= f(x)+g(x)u
O 01 .. 0
A=l oo e For the case of the MIMO diesel engine model
00 0 . 1 it is assumed that the functions f(X) and 9(X) are
000 ..0] unknown and have to be approximated by neuro-

fuzzy networks
Bl =[0 0 .. 0 Iy, Ci=fL 0 .. 0 O],
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4. Design of an adaptive neurofuzzy controller for the DFIG system

4.1. Transformation of MIMO nonlinear systems into the Brunovsky form

Thus, the nonlinear system can be written in state-space form

&= Aw+ B[f(«) + gl )+ d]

".'-'jn' v
which equivalently #= Ae+ Boat+ Bd where o = fla) + gle)u
can be written as y=C" g
The reference setpoints for the system’s outputs Bttt Hp k

are denoted as  %1m: 't ¥ and the associated tracking errors are defined as

BT

&1 = &1 — TfHm
Ey = o — o

& = Yp — Ypm
Ei ['91:- :-E?J']T
[5"1'-'“:- T %]T

[y'lm:- 3 E'é‘?"'g ]T 75
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4. Design of an adaptive neurofuzzy controller for the DFIG system
4.2. Control law

The control signal of the MIMO nonlinear system contains the unknown nonlinear functions
f(x) and g(x) which can be approximated by

.I'}{Imf]' = Dr(x)0r,  Ex|8e) = Delx)6;

where @ Ax) = (EM(R), E3(x),- - £3(2)),

460 = (80,2, 97 (0)

thus giving do (xR e )
o= |9 ¢E o

ot - @)

while the weights vector is defined as  g.7 = (@l 82 ... 61"
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4. Design of an adaptive neurofuzzy controller for the DFIG system
4.2. Control law

Similarly, it holds ~ ®g(x) = (&2 {;f}}.ég""{x}} . é_;.“ {x})r

ﬁ;{.‘-’[} = [: El {I}}tﬁéﬁ{x}} ' .[E.'ﬁ[lej

thus giving bt (R @t e g ()
o= | W @ - 6

R R e e

: : : . r
while the weights vector is defined as 8, = (8}, 82, ..., 851",

However, here each row of Eg Is vector thus giving

gl g2 .. gF

Eﬁl 351 5%1

A= EZ E2 El
1 2 r

Em Bm TR -

If the state variables of the system are available for measurement then a state-feedback
control law can be formulated as

u= g (x|6) [ Fxl6s) + % + Kol "
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4. Design of an adaptive neurofuzzy controller for the DFIG system
4.3. Estimation of the state vector

The control of the system described by becomes more complicated when the state vector x

Is not directly measurable and has to be reconstructed through a state observer. The following
definitions are used

g=x—1x.,: Isthe error of the state vector

R o is the error of the estimated state vector

§=¢—&=(X—Xn) — (X—Xn) isthe observation error
When an observer is used to reconstruct the state vector, the control law
B e (¥ e
w=g" (%6) [ FRI8r) + o — KT+ ul)

By applying the previous feedback control law one obtains the closed-loop dynamics

) = fla) + o()F B [-F B+ o) - KTe 4w+ d=
A7) = fle) + [s.a-{m]' - §(8) + 4(#)]57(#) [—f{m} +on’ = KTét u,]+d=
) = [fw) — (&) + [ale) — 58wt o’ — KTé 4 w44

tholds & = & — sy = A7) = 2l g o)

and by substituting 3,1"'":' 1the previous tracking error dynamics gives 78
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4. Design of an adaptive neurofuzzy controller for the DFIG system
4.3. Estimation of the state vector

the new tracking error dynamics

e+ o) = o) — KTet o+ [#() - F(@)
+lo(#) = (8wt d

or equivalently

¢= Ae— BKTé4 Bu, + B{[f(«) — &)+
+[a(w) — G{& ]2+ d} @

gy =0C7e
1 2 T . : Cou 1_-1 e
where = [E R o "E?}] with &£ = [E'i:- iy By g ]T 1:- Q:-“ vl
and equivalently &=[&, &, ..., &7 with &= [g, & &, ... &', i=1,2...,p

A state observer is designed as:

i BETe4+ K [e1 — C7 8

8= 078
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5. Application of adaptive neurofuzzy control to the DFIG system
5.1. Tracking error dynamics under feedback control

By applying differential flatness theory, and in the presence of
disturbances, the dvhamic model of the DFRM comes to the form

= + (- u+
(Iﬂ) (fg(.l‘f] '?E(Tt]' ! d‘i
The following control input is defined:
_ gi(z,t) _l{ 'r{ll . .]E:]-IZI-.H - I{F e+ Ue, !
— \ga(z, t) 4 fa(x, 1) KI')"~ U,
where: [uﬂl uﬂg]f is a robust control term that is used for the compensation of the model’s
uncertainties as well as of the external disturbances

and: ﬁff=[5:’1}ﬁéwwk§,_1>k§,]. is the feedback gain

Substituting the control input into the system one obtains
(11) _ (fl(:r,t)> N <91(' )) (f}l( ))-1_
g fa(z,t) go(z,t) ] \ga(z,1)
74 fi(z.t) KT (T di
3 (ié’) (ﬁ(r t>) - (Ké" ) Y () o <d) A
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5. Application of adaptive neurofuzzy control to the DFIG system

5.1. Tracking error dynamics under feedback control

Moreover, using again Eq. one obtains the tracking error dynamics

€1 filx.t) — fl(;z:.t) gi(z,t) — g1(x.1) [{17'" “Lais ] dl
. = , , A ; -+ ' : ' — % 5 1
(633) (fg(.‘r.t) — fa(x, t) g2(x,t) — go(x, t) . ]\ér i U, pe ds
The approximation error is defined — (ﬁ'ix*"f:' _Jﬁ{"’f*f}) (51 %) _5:'1{"*53')
YT A - A T ek - gl )"
0100 0 0 PP T
Using matrices AB,K, ,_[0 0 0 0| 5 |1 0 KT (I\l K: K I\4>

g oo Ll*®"|o ®© K2 K2 K2 K2
00 0 0 0 1

and considering that the estimated state vector is used in the control loop

the following description of the tracking error dynamics is obtained:

N A - G 4 (808G 4 4
o= te-aterms sl (00 TR0 )+ (SR80

When the estimated state vector is used in the loop the approximation error is written as

_ (Alx) - A& g% ) — g1 (%) ’
- (R A+ (=)

while the tracking error dynamics becomes e=Ade—BET6 4L B, 4+ Bw A Bd 81
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5. Application of adaptive neurofuzzy control to the DFIG system

5.2. Dynamics of the observation error

== .‘. A

The observation error is defined as: & = =it e

By subtracting Eq ‘ from Eq@ one obtains:

¢— &= Ale— & + Bu.+ B{[f (=9 - fl&,8)+
+ale, ) — (& Hlut d} — K07 (e— g

81—51 ZC(PI{E—E?:I

or equivalently:
= Ae+ Bu.+ B{[f(e.®) — f(#,8)]+ [g{e.t) — §(&.8)]u+ 4} — KL.CTE

g =Tz

which can be also written as:

E={4d- K,CT\e+ Bu, + Bw+d)

=Tz
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5. Application of adaptive neurofuzzy control to the DFIG system

5.3. Approximation of functions f(x,t) and g(x,t)

Next, the first of the approximators of the unknown system dynamics is defined

§8) = (A{ #l67) #eRDY fi(a)8;) € R“’“)
Fa(#[8r) R fz{mlﬂf} S

Fig 2. Neurofuzzy approximator

ini | if s [Tioap, (4)
containing kernel functions %4 et ¥ g

J qﬁ' {m} ELi]._.[ 1#.-1 (8]
where #A;é{ﬁj' are fuzzy membership functions

appearing in the antecedent part of the I-th fuzzy rule
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5. Application of adaptive neurofuzzy control to the DFIG system

5.3. Approximation of functions f(x,t) and g(x,t)

Similarly, the second of the approximators of the unknown system dynamics is defined

_ (51(8)84) R §1(8]8,) < R“‘”)

5é) = (ég{ﬁmg} e Rex1

Ly Lo

a(#|8,) € R1%2

The values of the weights that result in optimal approximation are

§ = arg ming en,, [supscu, (F(e) — £(#(87))]
95 = arg ming eno [SUPser, (9(%) — §(#]9,))]

The variation ranges for the weights are given by

My, = {8;eR™: ||8s||<ms, }
ME'EI Z{SQERh: ||S§||£m£"g}

The value of the approximation error that corresponds to the optimal values of the
weights vectors is

w = {#(e,8) = f(#187) ) + (ale¥) - 5(2167)) = 84
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Example 3: Nonlinear control and state estimation using Lyapunov methods
5. Application of adaptive neurofuzzy control to the DFIG system

5.3. Approximation of functions f(x,t) and g(x,t)

which is next written as

w= (e t) - F(2167) + falog) - Falo)) +

+ (gle ) — G(2(8,) + 5(8]8,) — {&62)) = :

which can be also written in the following form

with w= (wetw)

w, = {[f{e.8) - £(818;)] + la(e.t) — §(816,) ]} v

and

wy = {[F(#[87) — F(E89)] + [6(8, 82) — (&187)]} =

Moreover, the following weights error vectors are defined
8y = 85 — 8}
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6. Lyapunov stability analysis

The following Lyapunov function is considered:

V = 38 Pre+ 32T Poet 267 8¢ + Ftr(8] 6, FEHE FAE

The selection of the Lyapunov functlon is based on the following principle
of indirect adaptive control

= "

€1 limy oo #(F) = walt)  thisresults  limy_yeo () = wal®)
g = into
g vlimiesssalt =ralt).
By deriving the Lyapunov function with respect to time one obtains:
V=18pst LT Péy LeThe+ 17 Pt
s it Skl
+o 8 8 4 ot 6] =

s ; {a-BKTIE + KOCTé}TP16 4 leTP1 (A — BKT)8 + K,CTe)

+%{ (A —KOCT)é+Buc+B&+Bw} 1514

- i %5
- %éTPz{(A — KoCT)& + Buc + Bd + Bw)} + l{)f of + itr[(:'g ag] =
n 72
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6. Lyapunov stability analysis

The equation is rewritten as:

V=21 T{A BK)T 4+ 2" CKJ Y Pre+ §8" Pi{(Ad - BEK e+ K,CTe}+ waw
Sl {e (AT Ly ET+wTET+dT.ET}Pgé+

187Py{{A — K.CT)e+ Bua+ Bu + By + L 676, + 1zf*-r*['fi' By] =

which finally takes the form:

‘L‘f = —*T{A BEEKTYTP 6+ 1T CKT P &t
*TP (A - BET&4 1392131}{ CT et
+3 T{A K0T Pe4 i{uT—l—tu +dT) BT Pyay:
41T P (A - K CT}.9-|— 1Ty Blos 4w + d)+
P e

+?1'5'?'5' £+ gtr (6, 8]

Assumption 1: For given positive definite matrices Q1 and Q2 there exist positive definite
matrices P1 and P2, which are the solution of the following Riccati equations

(A—BEOVTP 4+ B(A-BEKTY+ @1 =0
i o BBy B P Pl SO0
—FB(E - BB P4 Q=0
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Example 3: Nonlinear control and state estimation using Lyapunov methods

6. Lyapunov stability analysis

By substituting the conditions from the previous Riccati equations into the derivative of the
Lyapunov function one gets:

V= {(4- BETYTE 4 Py{d - BET) 64 eTCKT Pié4

+2&7 (A - K0T R -|-P2{A K, cﬂ‘%}a}p
+ETPEE{%+ z a,} R 5“‘5‘; + Tir[f, 8]

h:i||—|-

or: Vo= _%ATQ1§+ ETCHTP B— lET{QE PQE{_ i —EE'BTPE}E'F
-|—ETPQEI[‘?.¢Q+ a4 ._qg get E'Tﬂ_f g ﬁ’.r*[ﬂ Eg]

e The supervisory control term 4, consists of two terms:u, and .

1
== TP B + Au,

where assuming that the measurable elements of vector © € are {€1,€3.- - . €k},

the term AU, Is given by

P11€1 + P13€3 + - - - + P1r€r
. P13€1 + P33€3 + - - - + P3k€p
—%TPQB+Aua:—1 P13€1 T P33€3 P3k€k

P1k€1 + P3r€3 + - - - + Prk€r
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6. Lyapunov stability analysis

e The control terl up. |s given by

up = —[(PyB)" (P2 B)| ' (PaB)" CK, Pyé

is an H-infinity control used for the compensation of the approximation error w and
the additive disturbance .

Uy

Its first component —1:7P,B  has been chosen so as to compensate for the term

lng,—é-[-};;;.,.a which appears in the previously computed function about "V .

By including also the second component Au, onehasthat s is computed

based on the feedback only the measurable variables {(;,1‘@3'. o .} out of the
complete vector {éi.€q.--- . €1} T

1 E . . T ol C e
Eq. u,=——& PyB+ Au, finally rewritten as  ug = —1é' PoB + Au,.

7

e b s a control used for the compensation of the observation error (the control term
has been chosen so as to satisfy the condition
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Example 3: Nonlinear control and state estimation using Lyapunov methods
6. Lyapunov stahilitv analvesic

i ” O s {7 : R
1 M e i ,'1.';r||hrn1_§_'é_’,a' ¥ e ) — 3
: » q-—%ﬂrﬁ:—

" s marina g | |
It I'IRE%\L.: Ll

#lxrl
—r___,_

Fig. 3 Adaptive neurofuzzy control scheme for the DFIG

By substituting the supervisory control term in the derivative of the Lyapunov function
one obtains

V= —1TQé+ TCKTPie— 1T Qo+ 1‘TPEEETP28—%ETPEEETPEH

+87 B Bu, + & FyBuy + & B, Blw + d) + 2678, + ﬁ*‘[ﬁ'g A 90
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Example 3: Nonlinear control and state estimation using Lyapunov methods

6. Lyapunov stability analysis
yap y y o

or equivalently e —4 16T 0,8 — _éTQEE_ JEETPQEETPQH
+&T Py Blw + ) o E'TS °F —w[.ﬁ' ag]

Besides, about the adaptatlon of the weights of the neurofuzzy network

it hold
i 6y = ;6% = 8 6, =8,~0x =46,

and also :
B = -1 ®(#)TBT R
8, = — o B(&)TBT PyeeT

By substituting the above relations in the derivative of the Lyapunov function one obtains

V= —187Q8 - 187QqE - —;f &' P, BBTFye+ BT Byi{w + d)+
+%{ 1) PrBR(#)(85 — 61+
+:L(—p)tr[we” Py BE(#)(6, — 62)]

or

V= —28TQ8 - %_TQQE - —;EETPQBETP e+ BT Pya(w + d)+
T i ?1)'?25@{ £)(8 — 85)+
+(— w}ﬁf[w P, B §(#(8,) — 5(2]87)] 91
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Example 3: Nonlinear control and state estimation using Lyapunov methods
6. Lyapunov stability analysis

Taking into account that = € B**' and " PB(§(=|8,) — &(=|8)) € B2

Onegels o 1sTgus - 387Qu8 - a8 P,BBTPyet BT Ry At
+ 1 (—70)ET B BO(2)(85 — 63)+
+a(— “yo)tr ¥ PaB{a(216,) — §(2162)) s
Since e By B{§(#165) — 5(#]0%))ne BT
't holds tr(e7 BB (6(w18,) — b(al85)) =

= el Py B{§{»|8s) — w|02))w

Therefore, one finally obtains

V= —187Q8 - 187QqE - _;EETPQEETPQH BT Byefw + d)+
o (—)ET B BO(#)(8 — 8+
-I—,%ﬂ —TE}ETPEB{ﬁ{ﬁ|Hg} - é{%lﬁ'ﬁ}w

Next, the following approximation error is defined

wa = [f(2]83) — F(218,)] + [5(2187) — §(8184)]=
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Example 3: Nonlinear control and state estimation using Lyapunov methods

6. Lyapunov stability analysis .

Thus, one obtains

V=108 - 187Qe - LT R, BBT R+
+ETPya(aw + d) + 27 Pa B,

Denoting the aggregate approximation error and disturbances vector as
g = + r:g—l— T
the derivative of the Lyapunov function becomes
V = —387Q16 — 327 Que— 7@ P,BET Pye+ & Py Bu

which in turn is written as

V=-16T¢ 86— 1872 — 2T P, BETPyet
—|—%éTPE'EU1 + %'Eﬂ-l ETPE'E

Lemma: The following inequality holds

&7 FyBu, + twl BT — ;1,e7P,BBTPF,z
G I S
= EEARLS R 93

L=
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Example 3: Nonlinear control and state estimation using Lyapunov methods

6. Lyapunov stability analysis
Proof:
The binomial  {ga— 28>0  Is considered. Expanding the left part of the above
inequality one gets
p2m2+ L _Dah = 0=
L0 o b2 — ab = 00
T RT Bl e
ab — sigb? = 1p%a* =
2ab+ Tab— ﬁgbg < 1pta’

By substituting & = and b = &' FuE  one gets

i BT e+ 38T PyBun — 028 P, BBTPyE
AR R &
= oFpuly uh

Moreover, by substituting the above inequality into the derivative of the Lyapunov

function one gets i i ) i
V- EéTgié — EéTQEé‘l‘ EPEWTEUI |

- i 1
V- EETQE + Epﬂw?wi

which is also written as

M o

&) [ ]
with &= ( ):— Q = ( Di QE) — dmg[[;;?'h[;}'g]
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Example 3: Nonlinear control and state estimation using Lyapunov methods

6. Lyapunov stability analysis

Hence, the .. performance criterion is derived. For sufficiently small 2 the inequality will
be true and the &_. tracking criterion will be satisfied. In that case, the integration of "V from O
to T gives

T T T
fo V(B < 3 fTIBIRd+ 32 fo [lon Pkt =
2V(T) =2V (0) < — [ ||BlIB e+ 62 Jlun] et =
QV(TY + fo || Bl% di < 2V(0)+ @ [ [y ]2t

It is assumed that there exists a positive constant ,, >0 suchthat =~ %+ —

o Nl || = D,

Therefore for the integral J'fHEH%dﬁ one gets

[ 111 < 270 + 4
0

| N i !
Thus, the integral f.;. || ||::;| is bounded and according to Barbalat’s Lemma

limyyeaelt)=10
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Example 3: Nonlinear control and state estimation using Lyapunov methods
7. Simulation tests

e The efficiency of the proposed flatness-based control method for doubly-fed induction
generators has been confirmed with the use of simulation experiments.

e The dynamic model of the DFIG was taken to be completely unknown. The system’s dynamics
were identified with the used of the previously analyzed neurofuzzy approximators

e There was no need to measure the entire state vector of the generator. Measurements
were obtained in real-time only about the rotation angle of the rotor and the stator currents

e There was no need to measure or estimate the mechanical
excitation provided by the wind. Efficient control can be
achieved by adjusting only the rotor currents

e Under the proposed control scheme the machine can function at variable operating
conditions and under variable mechanical excitation. This makes the DFIG more efficient In
energy harvesting

e Fast and accurate tracking of the setpoints was achieved. The transients of the state
variables did not exhibit abrupt changes and the variations of the control input were smooth
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Example 3: Nonlinear control and state estimation using Lyapunov methods
7. Simulation tests

Setpoint 1

rotarspeed =1 (p.Uu.d

drdt =1

Fig 4a, Convergence of the rotor’s speed x;
and of its derivative X, to their reference
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Fig 4b, Convergence of the stator’'s magnetic
flux x; and of its derivative x, to their reference
setpoints
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7. Simulation tests

Setpoint 2
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Fig 5a, Convergence of the rotor’s speed x;
and of its derivative X, to their reference
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Fig 5b, Convergence of the stator’'s magnetic
flux x; and of its derivative x, to their reference
setpoints
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Example 3: Nonlinear control and state estimation using Lyapunov methods
7. Simulation tests

Setpoint 3

rotorspeed 1 0p.Uu

drdt =1

Fig 6a, Convergence of the rotor’s speed x;
and of its derivative x, to their reference
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Fig 6b, Convergence of the stator’'s magnetic
flux x; and of its derivative x, to their reference
setpoints
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7. Simulation tests

Setpoint 4
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Fig 7a, Convergence of the rotor’s speed x;
and of its derivative x, to their reference
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7. Simulation tests

Setpoint 5

rotorspeed x1(p.u.

drdt =1

Fig 8a, Convergence of the rotor’s speed x;
and of its derivative X, to their reference
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Fig 8b, Convergence of the stator’'s magnetic
flux x; and of its derivative x, to their reference
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7. Simulation tests

Setpoint 6
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7. Simulation tests

Setpoint 7
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8. Conclusions

e A solution to the problem of model-free adaptive control for doubly-fed
Induction generators has been proposed

e |t was proven that the dynamic model of the DFIG is a differentially
flat one. The flat outputs of the model were taken to be the rotor’s turn
speed and the magnetic flux of the stator.

e By proving differential flatness properties for the machine,
the transformation of its model to the linear canonical form was achieved. A

e In this new linearized description the control inputs comprised
nonlinear terms which were related to the system’s unknown dynamics.

e These terms were dynamically identified with the use of neurofuzzy
approximators. These estimates of the unknown dynamics were used in turn in the
computation of a feedback control input, thus establishing an indirect adaptive
control scheme.

e It was also assumed that only the output of the DFIG could be directly measured
and that the rest of the state vector elements of the machine had to be computed
with the use of a state-observer.

e The stability of the control loop was proven with the use of Lyapunov analysis.
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8. Conclusions

e New approaches to nonlinear and optimal control of electric
power systems have been analyzed, and their applications to
electric power generators and power electronics have been shown

New approaches to nonlinear and optimal control of electric power systems

e The main approaches for nonlinear control have been: (i) control with global linearization
method (ii) control with approximate (asymptotic) linearization methods (iii) control with
Lyapunov theory methods (adaptive control) in case that the model of the electric power

system is unknown

e Flatness-based control and its adaptive fuzzy implementation have been shown as very
efficient for controlling a wide class of electric power systems. Besides a novel method of
Nonlinear optimal control for electric power systems has been analyzed
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