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1 . Outline

● The reliable functioning of electric power systems relies on the

solution of the associated nonlinear control and state estimation

problems

● The main approaches followed towards the solution of nonlinear

control problem are as follows: (i) control with global linearization

methods (ii) control with approximate (asymptotic) linearization

methods (iii) control with Lyapunov theory methods (adaptive control

methods) when the dynamic model of the electric power systems

is unknown

● The main approaches followed towards the solution of the nonlinear

state estimation problems are as follows: (i) state estimation with

methods global linearization (ii) state estimation with methods of

approximate (asymptotic) linearization

● Factors of major importance for the control loop of electric power

systems are as follows (i) global stability conditions for the related

nonlinear control scheme (ii) global stability conditions for the related

nonlinear state estimation scheme (iii) global asymptotic stability for the

joint control and state estimation scheme
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2 . Nonlinear control and state estimation with global linearization

● To this end the differential flatness control theory is used

● The method can be applied to all nonlinear systems which

are subject to an input-output linearization and actually such

systems posses the property of differential flatness

● The state-space description for the dynamic model of the electric power systems is

transformed into a more compact form that is input-output linearized. This is achieved

after defining the system’s flat outputs

● A system is differentially flat if the following two conditions hold: (i) all state variables and

control inputs of the system can be expressed as differential functions of its flat outputs (ii)

the flat outputs of the system and their time-derivatives are differentially independent,

which means that they are not connected through a relying having the form of an ordinary

differential equation

● With the applications of change of variables (diffeomorphisms) that rely

on the differential flatness property (i), the state-space description of the

electric power system is written into the linear canonical form. For the latter

state-space description it is possible to solve both the control and the state

estimation problem for the electric power system.
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3 . Nonlinear control and state estimation with approximate linearization

● To this end the theory of optimal H-infinity control and the theory of

optimal H-infinity state estimation are used

● The nonlinear state-space description of the electric power system

undergoes approximate linearization around a temporary operating point

which is updated at each iteration of the control and state estimation algorithm

● The linearization relies on first order Taylor series expansion around the temporary

operating point and makes use of the computation of the associated Jacobian matrices

● The linearization error which is due to the truncation error of higher-order terms in the

Taylor series expansion is considered to be a perturbation that is finally compensated by

the robustness of the control algorithm

● For the linearized description of the state-space model an optimal H-infinity controller

is designed. For the selection of the controller’s feedback gains an algebraic Riccati

equation has to be solved at each time step of the control algorithm

● Through Lyapunov stability analysis, the global stability properties of

the control method are proven

● For the implementation of the optimal control method through the

processing of measurements from a small number of sensors in the

electric power system, the H-infinity Kalman Filter is used as a robust

state estimator
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4 . Nonlinear control and state  estimation with Lyapunov methods

● By initially proving the differential flatness properties for the electric power

system and by defining its flat outputs a transformation of Its state-space

description into an equivalent input-output linearized form is achieved.

● The unknown dynamics of the electric power systems is incorporated

into the transformed control inputs of the system, which now appear

in its equivalent input-output linearized state-space description

● The control problem for the electric power systems of unknown dynamics in now turned

into a problem of indirect adaptive control. The computation of the control inputs of the

system is performed simultaneously with the identification of the nonlinear functions which

constitute its unknown dynamics.

● The estimation of the unknown dynamics of the electric power system is performed

through the adaptation of neurofuzzy approximators. The definition of the learning

parameters takes place through gradient algorithms of proven convergence, as

demonstrated by Lyapunov stability analysis

● The Lyapunov stability method is the tool for selecting both the gains of the stabilizing

feedback controller and the learning rate of the estimator of the unknown system’s

dynamics

● Equivalently through Lyapunov stability analysis the feedback gains of the state

estimators of the electric power system are chosen. Such observers are included in the

control loop so as to enable feedback control through the processing of a small number of

sensor measurements
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• Furthermore, by redesigning the aforementioned filter as a disturbance

observer it becomes also possible to estimate and compensate for disturbance terms

that affect each local inverter.

5.1. Outline

• Decentralized control for parallel inverters connected

to the power grid is developed using differential flatness

theory and the Derivative-free nonlinear Kalman Filter.

• The problem is of elevated difficulty comparing to the control of stand-alone inverters

because in this case in the dynamics of each inverter one has also to compensate for

interaction terms which are due to the coupling with other inverters.

• The model of inverters, is differentially flat and thus the multiple inverters model can

be transformed into a set of local inverter models which are decoupled and linearized.

• For each local inverter the design of a state feedback controller becomes possible, e.g.

using pole placement methods. Such a controller processes measurements not only coming

from the individual inverter but also coming from other inverters connected to the grid.

• Moreover, to estimate the non-measurable state variables of each local inverter, the

Derivative-free nonlinear Kalman Filter is used. This consists of the Kalman Filter

recursion applied to the local linearized model of the inverter and of an inverse

transformation that is based on differential flatness theory, which enables to compute

estimates of the state variables of the initial nonlinear model of the inverter.

Example 1: Nonlinear control and state estimation using global linearization
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5.2. Dynamics of the inverter

Voltage inverters (DC to AC converters) are usually connected to their output to a LC

or a LCL filter

By applying Kirchhoff's voltage and current laws one obtains

For the representation of the voltage and current variables, denoted as                 

in the ab static reference frame one has

A

Example 1: Nonlinear control and state estimation using global linearization
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5.2. Dynamics of the inverter

Using the Park transformation this is also written as a complex variable in the form

Next, the voltage and current variables are represented in the rotating dq reference frame

By differentiating with respect to time one obtains the following description

Thus, one has for the current and voltage variables respectively,

By substituting Eq. into Eq. one obtains

B

B A

Example 1: Nonlinear control and state estimation using global linearization
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5.2. Dynamics of the inverter

Thus one arrives at a description of the inverter’s dynamics in the dq reference frame

The state vector of the system is taken to be

The active and the reactive power of the inverter are used next

By solving Eq.             and Eq.          with respect to the load currents one obtains

C

D

C D

Example 1: Nonlinear control and state estimation using global linearization
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5.2. Dynamics of the inverter

one finally obtains the state-space description of the inverter’s dynamics

and by using the state variables notation

thus, the inverter’s model is written in the nonlinear state-space form

Example 1: Nonlinear control and state estimation using global linearization
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• A dynamical system can be written in the ODE form q,...,,i),w,...,w,w,w(S )i(

i 21   =
•••

• The system is said to be differentially flat with respect to the flat output  

),...,,( 21 myyyy =where                                        m,...,i),w,...,w,w,w(y )a(

i 1  ==
•••



if the following two conditions are satisfied 

(i) There does not exist any differential relation of the form 

0),...,,,( )( =
•••

yyyyR

which means that the flat output and its derivatives are

linearly independent

(ii) All system variables are functions of the flat output

and its derivatives

),...,,,(
)()( iyyyyw i 

•••

=

)(iwwhere        stands for the i-th derivative of either a state vector element or of a control input                                      

• Differential flatness theory has been developed as a global linearization control

method by M. Fliess (Ecole Polytechnique, France) and co-researchers (Lévine, Rouchon,

Mounier, Rudolph, Petit, Martin, Zhu, Sira-Ramirez et. al)

5.3. Differential flatness of the inverter

Example 1: Nonlinear control and state estimation using global linearization
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5.3. Differential flatness of the inverter

The flat output of the inverter is taken to be the vector

The first row of the state-space equations is

The second row of the state-space equations is

These equations are rewritten as follows

E

F

Example 1: Nonlinear control and state estimation using global linearization
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5.3. Differential flatness of the inverter

By dividing the above two equations one gets 

while using in the notation the elements of the flat output vector this gives

By solving the above equation with respect to         gives

which is also written as G

Next Eq.             is substituted into Eq.     G E which gives.     

Example 1: Nonlinear control and state estimation using global linearization
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5.3. Differential flatness of the inverter

or equivalently.     

which finally gives.     H

Moreover, by substituting Eq.                into Eq.           one getsH G

From the last two rows of the state-space equations one has that

I

JThus, one obtains

This confirms the differential flatness of the model

Example 1: Nonlinear control and state estimation using global linearization
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5.4. Flatness-based control of the inverter

By considering the active and reactive power of the inverter as piecewise constant and by 

deriving and by deriving the first row of the state-space equations in time, one has

The time derivatives are substituted from the associated rows of the state-space

equations.

Example 1: Nonlinear control and state estimation using global linearization
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The previous relation can be also written using the notation of the Lie algebra-based

linearization

5.4. Flatness-based control of the inverter

where

In a similar manner, by differentiating the second row of the state-space equations 

with respect to time one has

Example 1: Nonlinear control and state estimation using global linearization
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5.4. Flatness-based control of the inverter

The previous relation can be also written using the notation of the Lie algebra-

based linearization

where

Thus, one obtains an input-output linearized description of the inverter

or equivalently

with

Example 1: Nonlinear control and state estimation using global linearization
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5.4. Flatness-based control of the inverter

For this form of the system’s dynamics the design of a state feedback controller is easy.

This takes the form

The control input that is actually applied to the inerter is given form

or equivalently

which means that the control input that is finally applied to the system is

Moreover, by defining the new state variables

the following state-space description is obtained

Example 1: Nonlinear control and state estimation using global linearization
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5.5. Equivalence between inverters and synchronous generators

Synchronization between parallel inverters is considered next. The functioning of the i-th

inverter is shown to be equivalent to a synchronous generator with turn speed denoted as

The deviation from the synchronous speed is shown to be proportional to the deviation

of the produced active power from a reference value

measured active power of the i-th power generation unit

desirable active power

”droop” gain which is practically computed by dividing the range of variation

of the inverter’s frequency by the maximum active power

Since the measured active power is obtained from the inverter’s real active power with 

a time delay in measurement, it holds that

or equivalently

Thus the i-th inverter’s dynamics is expressed as

KK

L

Example 1: Nonlinear control and state estimation using global linearization
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5.5. Equivalence between inverters and synchronous generators

By differentiating Eq. one obtainsK

Moreover, from Eq. one obtainsL

M

N

By substituting Eq. Into Eq. one obtainsN M

and using that one has

or equivalently with

Additionally, from Eq.           one hasKK

From the previous two equations one gets

or O

Example 1: Nonlinear control and state estimation using global linearization
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5.5. Equivalence between inverters and synchronous generators

In ideal conditions there is no interaction (power exchange) between distributed

power units connected to the same electricity grid.

However, frequently such interaction exists and in the latter case Eq. should

be enhanced by including an interaction term

O

where is the virtual turn angle that is associated with the i-th

power generation unit (inverter).

About the coupling coefficients           these are functions of the conductance of the grid 

line which connects the i-th to the j-th power generation unit, as well as of the grid voltage 

that is measured at points i and j respectively

Thus, finally the dynamics of the i-th power generation unit (inverter) is described

as a synchronous generator, which interacts with other generators In the grid

P

In this approach, it is considered that the i-th local controller not only processes

measurements coming from the associated power generation unit, but also uses

measurements coming from the other power units which are connected to the grid

Example 1: Nonlinear control and state estimation using global linearization
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5.6. Control for parallel inverters connected to the grid

By representing the inverter as a virtual synchronous generator then one has that its

dynamics is composed of two parts (i) the rotation part and (ii) the electrical part.

(i) Rotation part

(i) Electrical part

The synchronizing control approach for the i-th inverter makes use of Eq.            

and of the linearized inverter model given in Eq. 

Q

R

Q

R

Example 1: Nonlinear control and state estimation using global linearization
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5.6. Control for parallel inverters connected to the grid

First, the value of     , that is the active power that the i-th inverter should inject to the 

grid, is found from the solution of the control problem of Eq.  . 

Subsequently      is used in the computation of the solution of the control problem of 

Eq. R

Q

The computation of setpoints for the control of the electric part of the inverter is shown 

in the following diagram

Example 1: Nonlinear control and state estimation using global linearization
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5.6. Control for parallel inverters connected to the grid

It can be proven that the model of N-parallel inverters connected to the electricity grid is a 

differentially flat one

By defining as flat output a generalization of the state vector of the stand-alone

inverter, that is

or equivalently 

It can be confirmed that all state variables and control inputs for the model of the N 

coupled inverters can be expressed as functions of the aforementioned flat output 

Y and of its derivatives.

Example 1: Nonlinear control and state estimation using global linearization
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5.6. Control for parallel inverters connected to the grid

Using the previous flat output definition, and the state variables

one has the state-space description

where the control inputs of this model are defined as

The above mean that for the synchronization of the i-th virtual generator

(inverter) the control input (in the form of active power) is finally given by

S

T

U

Example 1: Nonlinear control and state estimation using global linearization
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5.7. Disturbances estimation with Kalman Filtering

A state estimator for each local power generation unit can be also designed in the

form of a disturbance observer.

It is considered that the linearized model of the i-th inverter is affected by additive

input disturbances

The disturbances’ dynamics can be represented by the n-th order derivative of 

the disturbances variables together with the associated initial conditions.

Thus the additive disturbances are equivalently described in the form

The state vector is extended by including as additional state variables the disturbances 

and their derivatives. Thus, one has

Example 1: Nonlinear control and state estimation using global linearization
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Therefore, one has the system’s dynamics in the extended spate-space form

5.7. Disturbances estimation with Kalman Filtering

where the extended inputs vector is  

while 

For the extended state-space description of the system the state observer

becomes

where 

while In the elements of the 10th and 12th rows which  

are all set to 0

Example 1: Nonlinear control and state estimation using global linearization



Nonlinear control and filtering for electric power systems

28

5.7. Disturbances estimation with Kalman Filtering

For the linearized model of the parallel inverters, state estimation is performed 

with the use of the Kalman Filter (Derivative-free nonlinear Kalman Filter)

In the filter’s algorithm, the previously defined matrices                       are substituted 

by their discrete-time equivalents                         This is  done through common 

discretization methods

The filter’s recursion is:

After identifying the disturbance terms, the control input of the inverter is modified as follows:

The inclusion of the disturbance estimation term     s                     in the feedback 

control inputs enables to compensate for effects of the perturbations

Example 1: Nonlinear control and state estimation using global linearization
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5.8. Simulation tests

The performance of the proposed distributed control scheme for the synchronization of 

parallel inverters was tested through simulation experiments. A model of N = 3 distributed 

power generation units was considered, while each one of these units was connected to the 

grid through an inverter

The three interconnected inverters, shown in Fig. 4, are assumed to have different model 

parameters which are described in Table I.

The objective is that all inverters (virtual synchronous generators ) finally attain the same 

frequency

Example 1: Nonlinear control and state estimation using global linearization
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5.8. Simulation tests

Test 1: (a) Angular speed of

power generation unit 1

Test 1: synchronization error between

power generation units 1 and 2

Test 1: Voltage components (in dq frame)

and their derivatives
Test 1: Estimation of disturbance

inputs

Example 1: Nonlinear control and state estimation using global linearization
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5.8. Simulation tests

Test 2: (a) Angular speed of

power generation unit 2

Test 2: synchronization error between

power generation units 2 and 3

Test 2: Voltage components (in dq frame)

and their derivatives

Test 2: Estimation of disturbance

inputs

Example 1: Nonlinear control and state estimation using global linearization
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5.8. Simulation tests

Test 3: (a) Angular speed of
power generation unit 3

Test 3: synchronization error between

power generation units 3 and 1

Test 3: Voltage components (in dq frame)

and their derivatives
Test 3: Estimation of disturbance

inputs

Example 1: Nonlinear control and state estimation using global linearization
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5.8. Simulation tests

Test 1: Three-phase

voltage variables
Test 2: Three-phase

voltage variables
Test 3: Three-phase

voltage variables

Test 1: Active and reactive

power of the inverter

Test 2: Active and reactive

power of the inverter

Test 3: Active and reactive

power of the inverter

Example 1: Nonlinear control and state estimation using global linearization
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5.8. Simulation tests

The presented simulation experiments demonstrated the efficiency of the control

method in tracking rapidly changing reference setpoints while also achieving good

transients. The associated results are outlined in Table II

The disturbances appearing in the simulation experiments could be met in

adverse operating conditions of the distributed power generation system.

Even for the latter case the good performance of the control loop is confirmed.

Such disturbances can be due to modelling errors (e.g. parametric changes in

the inverters’ model) or due to external perturbations (e.g. grid faults or

disturbances due to the connection or disconnection from the grid of power

generation units).

Example 1: Nonlinear control and state estimation using global linearization
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5.9. Conclusions

• The inverter’s model satisfies differential flatness properties, which allows to transform 

the inverter’s model to the linear canonical form.  

• Next, the problem of control and synchronization of parallel inverters connected to the 

grid was analysed. It has been shown that, the dynamics of each inverter can be written in 

a form that is equivalent to the model of the synchronous power generator. 

• Using the latter description one can compute the active power that each inverter should be 

contributing so as to remain synchronized with the reference frequency of the grid.

• The active power and the frequency associated with the inverter were used next to

compute the control input that is applied to the inverter’s electrical model.

• Thus, finally the synchronization problem of each local inverter was turned into a

problem of nonlinear feedback control for the associated inverter’s electrical model.

• To compensate for additive disturbance terms that affect

the local inverters’ models, the Derivative-free nonlinear

Kalman Filter was redesigned as a disturbance observer.

• The performance of the proposed distributed feedback

control scheme for parallel inverters was tested through

simulation experiments

Example 1: Nonlinear control and state estimation using global linearization
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Example 2: Nonlinear control and state estimation using approximate linearization

● A new nonlinear H-infinity control approach is applied to PEM fuel cells. First, the dynamic

model of the PEM fuel cells undergoes approximate linearisation, through Taylor series

expansion, round local operating points which are defined at each time instant by the present

value of the system’s state vector and the last value of the control input exerted on it.

● The linearization procedure requires the computation of Jacobian matrices. The modelling

error, which is due to the truncation of higher order terms in the Taylor series expansion is

perceived as a perturbation that should be compensated by the robustness of the control loop.

Next, for the linearized PEM fuel cells model, an H-infinity feedback control loop is designed.

● This approach, is based on the concept of a differential game that

takes place between the control input (which tries to minimize the

deviation of the state vector from the reference setpoints) and the

disturbance input (that tries to maximize it).

● In such a case, the computation of the optimal control input requires the solution of an

algebraic Riccati equation at each iteration of the control algorithm. The known robustness

properties of H-infinity control enable compensation of model uncertainty and perturbations

● The stability of the control loop is proven through Lyapunov analysis. Actually, it is shown that

H-infinity tracking performance is succeeded, while conditionally the asymptotic stability of the

control loop is also demonstrated.

6.1. Outline
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Example 2: Nonlinear control and state estimation using approximate linearization

6.2. Nonlinear dynamics of the PEM Fuel Cells

6.2.1. Nonlinear state equations model of the PEM fuel cells

The PEM fuel cells system is depicted in the following diagram

Focusing on the cathode,

the state vector of the model

is defined as

2pO oxygen concentration at the cathode

2pN nitrogen concentration at the cathode

cp compressor’s rotation speed

smp Isupply manifold pressure

By applying the ideal gas law and by considering that the volume of the cathode is known 

one has

1



Nonlinear control and filtering for electric power systems

38

Example 2: Nonlinear control and state estimation using approximate linearization

6.2.Nonlinear dynamics of the PEM Fuel Cells

6.2.1. Nonlinear state equations model of the PEM fuel cells

is the mass of the vapor in mole,

is the mass of the air in mole,

is the relative humidity in ambient conditions,

is the saturation pressure in ambient temperature,

is the atmospheric pressure

is the cathode inlet orifice constant.

vM

incaaM ,,

ca

)( atmsat Tp

atmp

incak ,

The outlet flow rates of oxygen and nitrogen                       and                      are 

calculated from the mass fraction of oxygen and nitrogen in the stack after reaction

outoW ,2
outNW ,2

5
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6.2. Nonlinear dynamics of the PEM Fuel Cells

6.2.1. Nonlinear state equations model of the PEM fuel cells

The flow rate at the cathode’s exit                 is calculated by the nozzle flow equation
outcaW ,

where γ is the ratio of the specific heat capacities of the air

and the pressure of the cathode is given by

The mass flow rate of oxygen is expressed as

where n is the number of cells in the stack, F is the Faraday number and Ist is the stack 

current. The compressor’s turn speed is related to the associated mechanical torque

6

7

8

where is the mechanical input torque and is the load torquecm cp

Example 2: Nonlinear control and state estimation using approximate linearization
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Example 2: Nonlinear control and state estimation using approximate linearization

6.2. Nonlinear dynamics of the PEM Fuel Cells

6.2.1. Nonlinear state equations model of the PEM fuel cells

In              V is the volume of the cathode, R is the universal gas constant, 

and                           are the mass concentrations (in mole) of oxygen and nitrogen.
20M

2NM

1

The incoming flow rates of oxygen  and nitrogen are given by

2

where        is the oxygen mass fraction of the inlet air,              is the nitrogen mass fraction 

of the inlet air, and                is the mass flow rate entering the cathode which is given by

20x
201 x−

incaW ,

3

where            is the humidity ratio
atmw

4
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Example 2: Nonlinear control and state estimation using approximate linearization

6.2. Nonlinear dynamics of the PEM Fuel Cells

6.2.1. Nonlinear state equations model of the PEM fuel cells

9

10

where                       are motor constants, 

is the specific heat capacity of air 

is the compressor mass flow rate.

cmv Rk ,

pC

cpW

The dynamics of the air pressure in the supply manifold depend on the compressor flow into 

the supply manifold                     , on the flow out of the supply manifold into the cathode                     

and on the compressor flow temperature
wcpcp AW =

inWco, cpT

where              is the supply manifold volume and           is the temperature of the air leaving 

the compressor
cpTsmV

11

12
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6.2. Nonlinear dynamics of the PEM Fuel Cells

6.2.1. Nonlinear state equations model of the PEM fuel cells

The nonlinear state-space model of the PEM fuel-cells model is based on 

Eq. 1 8 11

13

14

15

16

The  control input u depends the motor’s current. The control input ζ is the stack 

current (which can be considered as an external perturbation to the model

Example 2: Nonlinear control and state estimation using approximate linearization
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Example 2: Nonlinear control and state estimation using approximate linearization

6.2. Nonlinear dynamics of the PEM Fuel Cells

6.2.2. State-space description of the PEM fuel cells

The previous set of state-space equations is also written in the form

where

and

Although global linearization of this nonlinear model is possible through elaborated state

variables transformations (diffeomorphisms), the approach to be followed next is

approximate linearization and H-infinity (optimal) control.
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6.3. Linearization of the PEMs Fuel Cells model

After linearization round its current operating point the system’s model

is written as

Parameter d1 stands for the linearization error in the system’s model

A

At every time instant the control input is assumed to differ from the control input

appearing in by an amount equal to , that isA

The system’s dynamic model undergoes linearization round its present operating point (x*,u*),

where x* is the present value of the finance system’s state vector and u* is the last value of the

control input vector that was applied on it.

Thus one arrives at the approximately linearized description of the system:

where d1 is the linearization error due to truncation of higher-order terms in the Taylor

series expansion and

In a similar manner, one has that

Example 2: Nonlinear control and state estimation using approximate linearization



Nonlinear control and filtering for electric power systems

45

6.3. Linearization of the PEMs Fuel Cells model

By subtracting Eq. from Eq. one hasD A

E

F

The dynamics of the system of Eq. can be also written in the form

and by denoting as an aggregate disturbance term one obtains

C

D

A

By denoting the tracking error as and the aggregate disturbance term as

the tracking error dynamics becomes

Example 2: Nonlinear control and state estimation using approximate linearization
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Example 2: Nonlinear control and state estimation using approximate linearization

6.4. Design of the H-infinity feedback controller

The initial PEM fuel cells system is assumed to be in the form

The linearized equivalent of the system is described by

where matrices 𝐴 and 𝐵 are obtained from the computation of the Jacobians

and vector 𝑑 denotes disturbance terms due to linearization errors.

The problem of disturbance rejection for the linearized model that is described by

where the linearization point (temporary equilibrium) is defined by the present value of the

system’s state vector and the last value of the control inputs vector exerted on it
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Example 2: Nonlinear control and state estimation using approximate linearization

The tracking error dynamics for the PEM fuel cells system is written in the form

where in the case of the considered DC power system with I being the

identity matrix. The following Lyapunov function is considered

T

1

2

6.5. Lyapunov stability analysis

where Is the state vector’s tracking error

5RIL =
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Example 2: Nonlinear control and state estimation using approximate linearization

6.5. Lyapunov stability analysis

The previous equation is rewritten as

Moreover, the following feedback control law is applied to the PEM fuel cells model

By substituting Eq. and Eq. one obtains

3

4

3 4

Assumption: For given positive definite matrix Q and coefficients r and ρ there exists a

positive definite matrix P, which is the solution of the following matrix equation
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6.5. Lyapunov stability analysis

Continuing with computations one obtains

which next gives

or equivalently

Lemma: The following inequality holds

5
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6.5. Lyapunov stability analysis

Proof : The binomial is considered. Expanding the left part of the above inequality

one gets

Eq. is substituted in Eq. and the inequality is enforced, thus giving

6

6 5

Eq. shows that the H-infinity tracking performance criterion is satisfied.

The integration of from 0 to T gives

7

7

•

V

The following substitutions are carried out:

and the previous relation becomes

Example 2: Nonlinear control and state estimation using approximate linearization
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Example 2: Nonlinear control and state estimation using approximate linearization

6.5. Lyapunov stability analysis

Moreover, if there exists a positive constant                    such that

then one gets

Thus, the integral is bounded.

According to the above and with the use of Barbalat’s Lemma one obtains:

Moreover, V(T) is bounded and from the definition of the Lyapunov function V it becomes

clear that e(t) will be also bounded since

Τhis completes the stability proof.

8
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6.6. Robust state estimation with the use of the H-infinity Kalman Filter

● The control loop has to be implemented with the use of information provided by a small

number of measurements of the state variables of the PEM fuel cells system

● To reconstruct the missing information about the state vector of the PEM fuel cells system it is

proposed to use a filter and based on it to apply state estimation-based control .

● The recursion of the H-infinity Kalman Filter, for the PEM fuel cells model, can be

formulated in terms of a measurement update and a time update part

where it is assumed that parameter θ is sufficiently small to assure that the covariance matrix

Measurement

update

Time

update

Is positive definite
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6.7. Simulation tests

• The performance of the proposed nonlinear H-nfinity control scheme for the PEM fuel cells

system is tested through simulation:

With the use of the proposed H-infinity control method, fast and accurate tracking of the 

reference setpoints of the PEM fuel cells system’s state variables was achieved

Fig.2 Diagram of the nonlinear optimal control
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6.7. Simulation tests

(a) Test 1: Convergence of state variables
(green line) to setpoint 1 (red line)41 xx −

(b) Test 1: Control input u applied to
the PEM fuel cells model

(a) Test 2: Convergence of state variables
(green line) to setpoint 1 (red line)

41 xx −
(b) Test 2: Control input u applied to
the PEM fuel cells model
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6.7. Simulation tests

(a) Test 3: Convergence of state variables
(green line) to setpoint 1 (red line)41 xx −

(b) Test 3: Control input u applied to
the PEM fuel cells model

(a) Test 4: Convergence of state variables
(green line) to setpoint 1 (red line)

(b) Test 4: Control input u applied to
the PEM fuel cells model41 xx −
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6.7. Simulation tests

(a) Test 5: Convergence of state variables
(green line) to setpoint 1 (red line)41 xx −

(b) Test 5: Control input u applied to
the PEM fuel cells model
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6.8.  Conclusions

● A new nonlinear H-infinity control method has been developed for the

dynamic model of PEM fuel cells. The first stage for the method’s

implementation has been the linearization of the fuel cells’ dynamic

model round local operating points.

● At every time instant, these equilibria consisted of the present value

of the system’s state vector and of the last value of the control input that

was exerted on it.

● For this linearization, Taylor series expansion has been applied to

the fuel cells’ dynamic model and the associated Jacobian matrices

have been computed.

● For the linearized equivalent model of the system H-infinity nonlinear

optimal control has been applied.

● The modelling errors which were due to the approximate linearization of the system

were perceived as disturbances affecting the fuel cells’ dynamics and were compensated

by the robustness of the H-infinity controller.

● Moreover, conditions which assure the asymptotic stability of the control loop have been

formulated. The efficiency of the nonlinear H-infinity control method has been further

confirmed through simulation experiments.
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● The article proposes an adaptive control approach that is capable of

compensating for model uncertainty and parametric changes of the

doubly-fed reluctance machines (DFRMs), as well as for the lack of

measurements about the DFRM’s state vector elements.

● First it is proven that the DFRM’s model is a differentially flat one.

By exploiting differential flatness properties it is shown that the

DFRM model can be transformed into the linear canonical form.

● For the latter description, the new control inputs comprise unknown nonlinear functions

which can be identified with the use of neurofuzzy approximators. The estimated

dynamics of the machine is used by a feedback controller thus establishing an indirect

adaptive control scheme.

● Moreover, to enforce the robustness of the control loop, a supplementary

control term is computed using H-infinity control theory.

● Another problem that has to be dealt with comes from partial measurements of the

state vector of the generator. Thus, a state observer is implemented in the control loop.

● The stability of the considered observer-based adaptive control approach is proven

using Lyapunov analysis.Moreover, the performance of the control scheme is evaluated

through simulation experiments.

7.1. Outline
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7.2. Dynamic model of the doubly-fed reluctance machine

The brushless doubly-fed reluctance machine has two separate stator windings where the

first one is noted as power winding while the second one is noted as control winding. The

power winding is directly connected to the 3-phase grid and using the dq reference notation

one has two voltage components anddv
qv

The power winding has poles while the secondary (control) winding has     
poles. The rotor of the machine has no windings and the number of poles in it is 
usually chosen to be

1p 2p

2/)( 21 ppp +=
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The frequency of current at the primary winding is the one of the grid and is denoted as .

The secondary winding is connected to the grid through an AC/DC/AC converter thus it can

have current at a frequency different from the one of the grid, which is denoted as .

1

2

7.2. Dynamic model of the doubly-fed reluctance machine

By applying Kirchhoff’s laws at the primary and the secondary winding of the reluctance 

machine one obtains the dynamic model of its electrical part. Thus, at the primary winding 

one has 

while at the secondary winding it holds

The magnetic flux at the primary winding is the result of the inductance of this winding 

and of the mutual inductance (coupling) with the secondary winding

Equivalently, the magnetic flux at the secondary winding is the result of the inductance of this 

winding and of the mutual inductance (coupling) with the primary winding

1

2

3
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7.2. Dynamic model of the doubly-fed reluctance machine

grid voltage components through connection to primary winding

voltage components at the AC/DC/AC converter of the secondary winding

grid current components through connection to primary winding

current components at the AC/DC/AC converter of the secondary winding

components of the magnetic flux at the primary winding

components of the magnetic flux at the secondary winding

11, LR

22 , LR

resistance and inductance of the primary winding

resistance and inductance of the secondary winding

mutual inductance (coupling) between the primary and secondary winding

The electromagnetic torque of the machine is

4

5
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7.2. Dynamic model of the doubly-fed reluctance machine

The dynamics of the rotational motion of the machine is given by 

The active and the reactive power of the reluctance machine are given by

5

6

7

By combining the previous equations             to           of the machine’s dynamics one has1 3

8
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7.2. Dynamic model of the doubly-fed reluctance machine

Next, by defining the state vector

the state-space description of the system becomes

with

where

and

10

9
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7.3. Differential flatness properties of the DFRM system dynamics

The flat output of the model is chosen to be

where and

From the first row of the states-space model of Eq.              one has10

11

Moreover, from and by differentiating its last row with respect to time one gets11

12

From the second and fourth row of the state-space model of Eq. one gets10

13

7.3.1. Proof of differential flatness of the DFRM model
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7.3. Differential flatness properties of the DFRM system dynamics

From the third and fifth row of the state-space model of Eq. one gets10

14

By substituting Eq. and Eq. into Eq. one gets11 12 13

By substituting Eq. and Eq. into Eq. one gets11 12 14

15

16

By solving Eq. and Eq. with respect to and one gets3x 3

•

x
15 16

17

By substituting Eq. into Eq. one gets17 11

7.3.1. Proof of differential flatness of the DFRM model
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7.3. Differential flatness properties of the DFRM system dynamics

By substituting Eq. into Eq. one gets17 14

19

From Eq. and Eq. one gets18 19 20

By substituting Eq. into Eq. one gets20 17

20 21By substituting Eq. and into Eq. one gets11

21

22

Thus all state variables are differential functions of its flat output

Moreover, by solving the fourth and fifth row of Eq. with respect to the control10

Inputs one has that these are also differential functions of the flat output

Consequently, the state-space model of the DFRM is a differentially flat one

7.3.1. Proof of differential flatness of the DFRM model
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7.3. Differential flatness properties of the DFRM system dynamics

7.3.2. Transformation of the DFRM model into a canonical form

Next, the model is transformed into the canonical form. By differentiating the first row of Eq,

with respect to time  one obtains

10

and by substituting in the above equation from Eq one gets54 ,
••

xx 11

23

24

25

26

Example 3: Nonlinear control and state estimation using Lyapunov methods
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7.3. Differential flatness properties of the DFRM system dynamics

7.3.2. Transformation of the DFRM model into a canonical form

Moreover, from the fifth row of the state-space model one gets

where

and

Thus, by defining the state variables z1 = x1 and z2 = x4 one arrives at the input-output 

linearized form of the system

with

27

28

29

30

31
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7.4. Design of an adaptive neurofuzzy controller for the DFRM system

7.4.1. Transformation of MIMO nonlinear systems into the Brunovsky form

It is assumed now that after defining the flat outputs of the initial MIMO nonlinear system, and

after expressing the system state variables and control inputs as functions of the flat output and of

the associated derivatives, the system can be transformed in the Brunovsky canonical form

: is the state vector

: is the inputs vector

: is the outputs vector
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7.4. Design of an adaptive neurofuzzy controller for the DFRM system

7.4.1. Transformation of MIMO nonlinear systems into the Brunovsky form

Next the following vectors and matrices can 

be defined

Thus, the initial nonlinear system 

can be writtenin the  state-space form 

or equivalently in the state space form

where uxgxfv )()( +=

For the case of the MIMO diesel engine model

it is assumed that the functions         and         are

unknown and have to be approximated by neuro-

fuzzy networks  

T
pp

T

pp

T
piii

T
n

T
n

dddCCdiagC

BBdiagBAAdiagA

xgxgxg

xgxgxg

xfxfxf

],...,[],,...,[

],...,[],,...,[

])(...,),([)(

])(...,),([)(

])(...,),([)(

11

11

1

1

1

==

==

=

=

=

  

  

 with

where matrix A has the MIMO canonical form,

i.e. with elements

ii rr

iA

















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





=

0...000

1...000

...............

0...100

0...010

ir
T
iB = 1]10...00[  

iriC = 100...01

Cxy

duxgxfBAxx

=
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•
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~

Cxy

dBBvAxx

=
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• ~
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7.4. Design of an adaptive neurofuzzy controller for the DFRM system

7.4.1. Transformation of MIMO nonlinear systems into the Brunovsky form

Thus, the nonlinear system can be written in state-space form

which  equivalently 

can be written as

The reference setpoints for the system’s outputs 

where

are denoted as and the associated tracking errors are defined as 

The error vector of the outputs of the transformed MIMO system is denoted as
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7.4. Design of an adaptive neurofuzzy controller for the DFRM system

7.4.2. Control law

The control signal of the MIMO nonlinear system contains the unknown nonlinear functions

f(x) and g(x) which can be approximated by

where

thus giving

while the weights vector is defined as



Nonlinear control and filtering for electric power systems

73

Example 3: Nonlinear control and state estimation using Lyapunov methods

7.4. Design of an adaptive neurofuzzy controller for the DFRM system

7.4.2. Control law

Similarly, it holds

thus giving

while the weights vector is defined as

However, here each row of       is vector thus giving

If the state variables of the system are available for measurement then a state-feedback

control law can be formulated as
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7.4. Design of an adaptive neurofuzzy controller for the DFRM system

7.4.2. Estimation of the state vector

The control of the system described by becomes more complicated when the state vector x

is not directly measurable and has to be reconstructed through a state observer. The following

definitions are used

When an observer is used to reconstruct the state vector, the control law

is the error of the state vector

is the error of the estimated state vector

is the observation error

By applying the previous feedback control law one obtains the closed-loop dynamics

It holds

and  by substituting           in the previous tracking error dynamics gives
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7.4. Design of an adaptive neurofuzzy controller for the DFRM system

7.4.2. Estimation of the state vector

the new tracking error dynamics

or equivalently

where

and equivalently

with

with

A state observer is designed as: 

A

B
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7.5. Application of adaptive neurofuzzy control to the DFRM system

7.5.1. Tracking error dynamics under feedback control

By applying differential flatness theory, and in the presence of

disturbances, the dynamic model of the DFRM comes to the form

The following control input is defined:

where: is a robust control term that is used for the compensation of the model’s

uncertainties as well as of the external disturbances

and: is the feedback gain

Substituting the control input into the system C

C

D

D one obtains
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77

7.5. Application of adaptive neurofuzzy control to the DFRM system

Moreover, using again Eq.           one obtains the tracking error dynamicsD

The approximation error is defined as:

and considering that the estimated state vector is used in the control loop

the following description of the tracking error dynamics is obtained:

When the estimated state vector is used in the loop the approximation error is written as

while the tracking error dynamics becomes

7.5.1. Tracking error dynamics under feedback control

Using matrices A,B,K, 
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7.5.2. Dynamics of the observation error

The observation error is defined as:

By subtracting Eq. from Eq. one obtains:B A

or equivalently:

which can be also written as:
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7.5. Application of adaptive neurofuzzy control to the DFRM system

7.5.3. Approximation of functions f(x,t) and g(x,t)

Next, the first of the approximators of the unknown system dynamics is defined

containing kernel functions

where are fuzzy membership functions

appearing in the antecedent part of the l-th fuzzy rule 
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7.5. Application of adaptive neurofuzzy control to the DFRM system

7.5.3. Approximation of functions f(x,t) and g(x,t)

The variation ranges for the weights are given by

The value of the approximation error that corresponds to the optimal values of the

weights vectors is

The values of the weights that result in optimal approximation are

Similarly, the second of the approximators of the unknown system dynamics is defined

Example 3: Nonlinear control and state estimation using Lyapunov methods
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7.5. Application of adaptive neurofuzzy control to the DFRM system

7.5.3. Approximation of functions f(x,t) and g(x,t)

which can be also written in the following form

with

and

Moreover, the following weights error vectors are defined

which is next written as
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7.6. Lyapunov stability analysis

The following Lyapunov function is considered: 

The selection of the Lyapunov function is based on the following principle

of indirect adaptive control

this results

into

By deriving the Lyapunov function with respect to time one obtains:
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7.6. Lyapunov stability analysis

The equation is rewritten as:

which finally takes the form:

Assumption 1: For given positive definite matrices Q1 and Q2 there exist positive definite

matrices P1 and P2, which are the solution of the following Riccati equations
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7.6. Lyapunov stability analysis

By substituting the conditions from the previous Riccati equations into the derivative of the

Lyapunov function one gets:

or:

● The supervisory control term consists of two terms:

where assuming that the measurable elements of vector

the term au Is given by
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7.6. Lyapunov stability analysis

● The control term Is given by

is an H-infinity control used for the compensation of the approximation error w and 

the additive disturbance   

Its first component                    has been chosen so as to compensate for the term

which appears in the previously computed function about ˙V . 

By including also the second component              one has that              is computed 

based on the feedback only the measurable variables                              out of the 

complete vector 

Eq.                                                  Is     finally rewritten  as 

● is a control used for the compensation of the observation error (the control term 

has been chosen so as to satisfy the condition
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7.6. Lyapunov stability analysis

The control scheme is depicted in the following diagram

By substituting the supervisory control term in the derivative of the Lyapunov function

one obtains
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7.6. Lyapunov stability analysis

or equivalently

Besides, about the adaptation of the weights of the neurofuzzy network

it holds

and also

By substituting the above relations in the derivative of the Lyapunov function one obtains

or
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7.6. Lyapunov stability analysis

Taking into account that

one gets

Since

it holds

Therefore, one finally obtains

Next, the following approximation error is defined
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7.6. Lyapunov stability analysis

Thus, one obtains

Denoting the aggregate approximation error and disturbances vector as

the derivative of the Lyapunov function becomes

which in turn is written as

Lemma: The following inequality holds
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7.6. Lyapunov stability analysis

Proof: 

The binomial is considered. Expanding the left part of the above

inequality one gets

By substituting one gets

Moreover, by substituting the above inequality into the derivative of the Lyapunov

function one gets

which is also written as

with
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7.6. Lyapunov stability analysis

Hence, the performance criterion is derived. For sufficiently small the inequality will

be true and the tracking criterion will be satisfied. In that case, the integration of ˙V from 0

to T gives

It is assumed that there exists a positive constant such that

Therefore for the integral one gets

Thus, the integral is bounded and according to Barbalat’s Lemma
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7.7. Simulation tests

The efficiency of the proposed flatness-based control method for doubly-fed reluctance

machines has been confirmed with the use of simulation experiments.

The dynamic model of the DFRM was taken to be completely unknown. The system’s

dynamics were identified with the used of the previously analyzed neurofuzzy approximators.

Fast and accurate tracking of the  setpoints was achieved. The transients of the state 

variables did not exhibit abrupt changes and the variations of the control input were smooth

Tracking of setpoint 1 for the doubly-fed 

reluctance machine
Tracking of setpoint 2 for the doubly-fed 

reluctance machine
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7.8. Conclusions

● A solution to the problem of model-free adaptive control for brushless

doubly-fed synchronous reluctance machines has been proposed

● It was proven that the dynamic model of the DFRM is a differentially

flat one. The flat outputs of the model were taken to be the rotor’s turn

speed and the currents of the secondary (control) winding of the stator.

● By proving differential flatness properties for the machine,

the transformation of its model to the linear canonical form was achieved.

● In this new linearized description the control inputs comprised

nonlinear terms which were related to the system’s unknown dynamics.

● These terms were dynamically identified with the use of neurofuzzy

approximators. These estimates of the unknown dynamics were used in turn in the

computation of a feedback control input, thus establishing an indirect adaptive

control scheme.

● It was also assumed that only the output of the DFRM could be directly measured

and that the rest of the state vector elements of the machine had to be computed

with the use of a state-observer.

● The stability of the control loop was proven with the use of Lyapunov analysis.

Example 3: Nonlinear control and state estimation using Lyapunov methods
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8. Final Conclusions

grigat@ieee.org

● Methods for nonlinear control and state estimation in electric

power systems have been developed

● The main approaches for nonlinear control have been: (i) control with global linearization

method (ii) control with approximate (asymptotic) linearization methods (iii) control with

Lyapunov theory methods (adaptive control) in case that the dynamic model of the

electric power system is unknown

● The main approaches for nonlinear state estimation are: (i) nonlinear state estimation with

methods of global linearization (ii) nonlinear state estimation with methods of approximate

(asymptotic) linearization


