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Nonlinear control and filtering for electric power systems

1. Outline

e The reliable functioning of electric power systems relies on the
solution of the associated nonlinear control and state estimation
problems

e The main approaches followed towards the solution of nonlinear
control problem are as follows: (i) control with global linearization
methods (ii) control with approximate (asymptotic) linearization
methods (iii) control with Lyapunov theory methods (adaptive control
methods) when the dynamic model of the electric power systems

IS unknown

e The main approaches followed towards the solution of the nonlinear
state estimation problems are as follows: (i) state estimation with
methods global linearization (ii) state estimation with methods of
approximate (asymptotic) linearization

e Factors of major importance for the control loop of electric power
systems are as follows (i) global stability conditions for the related
nonlinear control scheme (ii) global stability conditions for the related
nonlinear state estimation scheme (iii) global asymptotic stability for the
joint control and state estimation scheme




Nonlinear control and filtering for electric power systems

2 . Nonlinear control and state estimation with global linearization

e To this end the differential flatness control theory is used

e The method can be applied to all nonlinear systems which
are subject to an input-output linearization and actually such
systems posses the property of differential flatness

e The state-space description for the dynamic model of the electric power systems is
transformed into a more compact form that is input-output linearized. This is achieved
after defining the system'’s flat outputs

e A system is differentially flat if the following two conditions hold: (i) all state variables and
control inputs of the system can be expressed as differential functions of its flat outputs (ii)
the flat outputs of the system and their time-derivatives are differentially independent,
which means that they are not connected through a relying having the form of an ordinary

differential equation

e With the applications of change of variables (diffeomorphisms) that rely
on the differential flatness property (i), the state-space description of the
electric power system is written into the linear canonical form. For the latter
state-space description it is possible to solve both the control and the state ™
estimation problem for the electric power system.
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3. Nonlinear control and state estimation with approximate linearization

e To this end the theory of optimal H-infinity control and the theory of
optimal H-infinity state estimation are used

e The nonlinear state-space description of the electric power system
undergoes approximate linearization around a temporary operating point
which is updated at each iteration of the control and state estimation algorithm

e The linearization relies on first order Taylor series expansion around the temporary
operating point and makes use of the computation of the associated Jacobian matrices

e The linearization error which is due to the truncation error of higher-order terms in the
Taylor series expansion is considered to be a perturbation that is finally compensated by

the robustness of the control algorithm

e For the linearized description of the state-space model an optimal H-infinity controller
is designed. For the selection of the controller’s feedback gains an algebraic Riccati

equation has to be solved at each time step of the control algorithm

e Through Lyapunov stability analysis, the global stability properties of
the control method are proven

e For the implementation of the optimal control method through the
processing of measurements from a small number of sensors in the
electric power system, the H-infinity Kalman Filter is used as a robust

state estimator
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4 . Nonlinear control and state estimation with Lyapunov methods

e By initially proving the differential flatness properties for the electric power
system and by defining its flat outputs a transformation of Its state-space
description into an equivalent input-output linearized form is achieved.

e The unknown dynamics of the electric power systems is incorporated
into the transformed control inputs of the system, which now appear
In its equivalent input-output linearized state-space description

e The control problem for the electric power systems of unknown dynamics in now turned
into a problem of indirect adaptive control. The computation of the control inputs of the
system is performed simultaneously with the identification of the nonlinear functions which
constitute its unknown dynamics.

e The estimation of the unknown dynamics of the electric power system is performed
through the adaptation of neurofuzzy approximators. The definition of the learning
parameters takes place through gradient algorithms of proven convergence, as
demonstrated by Lyapunov stability analysis

e The Lyapunov stability method is the tool for selecting both the gains of the stabilizing
feedback controller and the learning rate of the estimator of the unknown system’s
dynamics

e Equivalently through Lyapunov stability analysis the feedback gains of the state
estimators of the electric power system are chosen. Such observers are included in the
control loop so as to enable feedback control through the processing of a small number of
sensor measurements
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Example 1: Nonlinear control and state estimation using global linearization
5.1. Outline

» Decentralized control for parallel inverters connected
to the power grid is developed using differential flatness
theory and the Derivative-free nonlinear Kalman Filter.

because in this case in the dynamics of each inverter one has also to compensate for
interaction terms which are due to the coupling with other inverters.

* The model of inverters, is differentially flat and thus the multiple inverters model can
be transformed into a set of local inverter models which are decoupled and linearized.

* For each local inverter the design of a state feedback controller becomes possible, e.g.
using pole placement methods. Such a controller processes measurements not only coming
from the individual inverter but also coming from other inverters connected to the grid.

* Moreover, to estimate the non-measurable state variables of each local inverter, the
Derivative-free nonlinear Kalman Filter is used. This consists of the Kalman Filter
recursion applied to the local linearized model of the inverter and of an inverse
transformation that is based on differential flathess theory, which enables to compute
estimates of the state variables of the initial nonlinear model of the inverter.

« Furthermore, by redesigning the aforementioned filter as a disturbance
observer it becomes also possible to estimate and compensate for disturbance terms
that affect each local inverter.
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Example 1: Nonlinear control and state estimation using global linearization

5.2. Dynamics of the inverter

Voltage inverters (DC to AC converters) are usually connected to their output to a LC

or a LCL filter
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By applying Kirchhoff's voltage and current laws one obtains
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Example 1: Nonlinear control and state estimation using global linearization

5.2. Dynamics of the inverter

Using the Park transformation this is also written as a complex variable in the form

X=X, ¥riXs

Next, the voltage and current variables are represented in the rotating dq reference frame

Xﬂ!q = Xabﬁ_jﬂ:};{aﬁ = quf:‘.jﬂ
where #(1) = fD (t)dt + bq

By differentiating with respect to time one obtains the following description
Xﬂb = —qu - 3 j"-'l-'Xriq
Thus, one has for the current and voltage variables respectively,

éf ab = i*’:f dq + (jw)ir dg
{jw}v.{ Jdg

.f ab — di-[’rf g

By substituting Eq. ‘ into Eq. @ one obtains

Lif.dq + jwirdq = —VI dq —

d 4
i VL.dqg + JwVL dq = c;ide — 5
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Example 1: Nonlinear control and state estimation using global linearization

5.2. Dynamics of the inverter
Thus one arrives at a descrintion of the invertar’s dvnamics in the dq reference frame

S VL.d =wVL ¢+ %iz.d = (;%f iL.d
dt‘L q —w'\"‘}“d - %?1 (}f L q
d,’[d—Wllq‘l-"_Vld__‘/l d
Lirg=—wira+1-Vig— 1-Vig

The state vector of the system is taken to be
jf — [I-;Ld? I’I}J“, y Ilf_ti'. if.qlT

The active and the reactive power of the inverter are used next

Pr=Vi,ir, + Vi iL,

@@

a5 = Vi ing — Vigin, —wCr(VE, + V2 ) +wly(i] 4 +1if )

By solving Eq. @ and Eq. @with respect to the load currents one obtains

S
prVL,+qsVL wL ¢V g (37, +i7, )

. - q el e Vi . —
Ly =" y2 IV32 +wCy ! Lg (VEIEVED)
. T, . [
11 i) f"I f‘li _uJC ‘)’ ""I‘f".l‘d(t]d‘-{bzlq')
‘q VE FV7 f (VE,+VE) 9
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Example 1: Nonlinear control and state estimation using global linearization

5.2. Dynamics of the inverter

and by using the state variables notation =~ =1 = Vi, 2 = Vi, 23 = ip, and x4 = i,

one finally obtains the state-space description of the inverter’s dynamics

i -—l-l‘ s _1_pr1+er2 iR 0 w[,f.r-g(.rg+.r'f;)
T cx” AL o T C o T T3+ Bl Tt (I]‘r+r§’) . 0 0
, A 1 1 prTa—qpxy v wlyxy(z3+a]) 0 0 ,
T —t0 e I o 4 e B b o JERRTYY g STV R B — u
da Tl = wry + Cy T4 Cy =xi+zx3 ")Cf'l'l : (z1+3) + 1 0 :
dt | rq prt il Lt u2
Wwry 4{.1?1 2 § 1
4 2 0 T

—WIg — ﬁl‘g
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Example 1: Nonlinear control and state estimation using global linearization
5.3. Differential flatness of the inverter

» Differential flatness theory has been developed as a global linearization control

method by M. Fliess (Ecole Polytechnique, France) and co-researchers (Lévine, Rouchon,
Mounier, Rudolph, Petit, Martin, Zhu, Sira-Ramirez et. al)

- A dynamical system can be written in the ODE form S (w,w,w,...,w")), i=12,....q
where,, (i) stands for the i-th derivative of either a state vector element or of a control input

* The system is said to be differentially flat with respect to the flat output
Y. :¢(W,V.V,\.I;l,...,W(a)), i=1...m where Y=(Y1.Y2:Ym)
if the following two conditions are satisfied
() There does not exist any differential relation of the form

R(Y,Y, Yo Y2 =0

which means that the flat output and its derivatives are
linearly independent

(i1) All system variables are functions of the flat output
and its derivatives

W(I) :l//(y, Y, yi"'iy(yi)) 11
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Example 1: Nonlinear control and state estimation using global linearization

5.3. Differential flatness of the inverter

The flat output of the inverter is taken to be the vector

y = [y1, 2] = [VLg, Vi, ]

The first row of the state-space equations is

1 1 prri+qyxa 1 wl fl‘)(:l‘?’-*}-l‘g) @
e — (T - —— — — — £ y = ‘.}‘ 3:) 4

The second row of the state-space equations is
1 prra+qsxi

s | 9
. g 1 wLyxi(z3+ad)

These equations are rewritten as follows

i -:JJL_F:I‘Q[IE'FTE}
Cy  zy+xj

LR i sl 1 PyT1+qyTa
= T1 — W — g, T8 + oy (ara))

+ w2

i -:JJLJ-:E:1|:TE+.1:§]
Cy Ti+T5

e A S A1 1 PfTra—qyTy

— W]
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Example 1: Nonlinear control and state estimation using global linearization
5.3. Differential flatness of the inverter

By dividing the above two equations one gets

pfxrytqpxo

1'1—“”37—8 ;1‘3+Cl ! 1, :C +WwTro
_xa _ 3 f (=1+=3)
rKr 1 1 PfT2—qf=y

(.r? ~f'.1:3?|
while using in the notation the elements of the flat output vector this give

ya - ’ I 1 (y2\Pry2—qsiu1
— =0 — WYo + —(= — —

L wy2 Cr (yl ) (yi'-i-y-i)
ety . 1 1 Pry1+4q5y2 ,
— — Wl — —T + 2 2 + Wi

+ wy2 =

By solving the above equation with respect to rs gives

= WD SR P o 1 (yoPry2—qyyr
23 =g, T4+ Crd yy Y2 T Wy ': Cru1) (vitv3) 92
: 1 Psy1tasy2 ,
TY1 — WYz + + wys }

s T TR, A 5
Cr (yi+u3)

which is also written as ~ z3 = — (37 )z4 + faly1, 91, y2, Y2) @

Next Eq. @ IS substituted into Eq. @ which gives.

s To—qrx
o = —wr1 + -%-1‘4 — —-}—E‘fﬂz‘_‘q—j‘ + WTr1—

, Cy (x1+x3)
wL x1 {[— 22 )24+ fa (v1.91.y2.dotys )] +22 }
1 whyzi{l=37)%4+fa(v1.01.v2.dotys, 1
Cy (x7+x3) 13
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Example 1: Nonlinear control and state estimation using global linearization
5.3. Differential flatness of the inverter

. ; : [ 1 fU2—qys1 :
or equivalently. o = —wy1 + groa — g AT +wyi+
1 wl,fgn{[—(z—f)rx+fa(y1.1'11.'y2.@'12)]'+1‘3}
- Cy (¥i+v3)
which finally gives. T4 = foly1,y1,y2, y2)

Moreover, by substituting Eq. @ into Eq. @ one gets

w3 = —(33) o (y1, 91, y2, 92) + faly1, 91, y2, 92)

From the last two rows of the state-space equations one has that

. 1 1
T3 = WTy — ¢ T1 =+ ;" @

: 1 1
: Ty = Mg o E o
Thus, one obtains ® S TR TR @

uy = Ly{is —wrq + ﬁ:ﬂl}:}ul = felyi, 91, y2.92)}

uz = L{3s — wzs + ﬁl‘g}:‘*ﬂz = faly1, 91, y2,92)}

This confirms the differential flatness of the model 14
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Example 1: Nonlinear control and state estimation using global linearization
5.4. Flatness-based control of the inverter

By considering the active and reactive power of the inverter as piecewise constant and by
deriving and by deriving the first row of the state-space equations in time, one has

, . . 2 2 \ v .
- 1 - 1 {(ps1+qreo)(xzi+x5)—(prri1+qrx2)(2x131+2x232)
T1 =WT9 + 7#-T3 — 7 : OES — A 7
1 w2 Cy 3 Cy (T¥+I§)2} |"9"1
r:-gr..,-l ‘
R Y e {w’*fi”'l(fg‘:'rg](lf*ﬂg)+f:f14ff2_{'2r3i3+211i-:)(f?"‘l‘%)} Do FH/
R o (z]+x3)”

o ij.I'g(;lfg-f-l‘:';)('Z.lniTl+21‘2i‘2)

F 3 . _D\h
(x1+x35)=

The time derivatives are substituted from the associated rows of the state-space

equations.
R e 1 s By (e (IR Y 1 {(prEitarda)(zi+x3)—(prr1+asrza)(2x1d1+2x0ds)
r1 = wTy + oF (wxy ;71 + uy ) o &+

wai'-_)(.r?i +.1‘21)(;z.‘%-{».rg)+w14]1'.g(_1§+.r.'“;)(2.r]i‘1 +2xaxa)
ad)? }

—wx2 + sz {

LB

wklL pxo 213(1‘?-&-1?3) s 1 1 O wlLrxo 211(;rl+1?§) Py i 1 o
+ O eyt W — [T+ ) + T gyt (—WEa — T2+ g un)

15
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Example 1: Nonlinear control and state estimation using global linearization
5.4. Flatness-based control of the inverter

The previous relation can be also written using the notation of the Lie algebra-based
linearization

Ty = L%hl(;r) + Ly, Lehy(x)uy + Lo, Lhy (z)usg
where

2 S, TG iy i 1 p(prEitapda)(zi+z3)—(prritarza)(2z1d1+220da)

o +L{wl,,ig(z§+xj-{)uf+z%)-w14,x2(r§+x§)(2mi,+212i2)}
Eall (z1+23)°

. TR
+w14!12.213(“'f’ Z-_j_r’)
Cy (z7+x3)

Ly Tigliale) = A fulmBe) i 44

_ wlyza 23, 1
Lg,Lshi(z) = Cr (a2+zd) Ly

In a similar manner, by differentiating the second row of the state-space equations
with respect to time one has

- . 2 2. o o
To — —1 A s 1 (prza—gra1)(zi+x5)—(PfTa—gfT1 (22131 +2x272))

-Hu'i‘l . #{ wk sy (1'§+:r.?1')(:r.f+;r§)+::Lfgflq(2:3i'3-+-'2mig)(rf-{-;r%) 3
Cy (z1+x3)*

—wh gy (+2)) (2ryi +2aad9) }
(x7+x3)°

16
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Example 1: Nonlinear control and state estimation using global linearization
5.4. Flatness-based control of the inverter

The previous relation can be also written using the notation of the Lie algebra-
based linearization

Tg = L‘J.?.h.g{.'r.} + Lg,Liha(z)ui + Lg, Lha(x)uz

where
’ - . 92 9 o .. . A
2 L, S 1 ! 1 f(pgEo—gsz1)(x1+x3)—(psra—grx1)(2T1T1+2x932)
L’fh"?.(l") = —WI1 + C—f(—UvIS) . C_f{ (z2+23)2 H
Wil — Ry wa.i'l(r§+x%)(;r¥+1‘g)—wa:zth(.r%-i-:r.g)(?mi‘1+21'-3;i‘.2)}
Cy (z3+23)°
1 ;‘.'[4‘(1‘12;1?3(\'4)1‘.1—-[‘171‘1) 1 w14f11211(—w13—117-12)
Cy (z7+x3) Cy (z1+73)
it _iwL_,-:nE;r:aL
Ly Lsha(z) = — o wiep 1;
E L) = i wlipnglng 4 5 e
oL fI2GE) = T o\ =2I 23y Ly T Ly

Thus, one obtains an input-output linearized description of the inverter

Ty = L?-hl(;r) + L, Lihi(z)uy + Lo, Lphy(x)usg
. .1‘2 = L?hz(l‘) + L’ga th-z(;lf)'lll + Lgbth.-z(I)'UQ
or equivalently
vl = L-Eh] () + Ly, Lyhi(z)ur + Lg, Lyhi(z)us

_'.f ' i ¢
1 1 with vy = th--;_)(l') + Ly, Lyho(x)uy + Ly, L tho(x)us 17

;.I?g =
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Example 1: Nonlinear control and state estimation using global linearization
5.4. Flatness-based control of the inverter

For this form of the system’s dynamics the design of a state feedback controller is easy.
This takes the form

v = ‘11 k(i r‘li) — l.é 7 I‘li)
vy = &§ — kj(d2 — 23) — kj(z2 — §)
The control input that is actually applied to the inerter is given form ¢ = 7 + Mu

— ,
or equivatentty  (11) = (1£5.5) + (12 7mte) 12 7mce)) (o)
which means that the control input that is finally applied to the system is
=M1 — f)
Moreover, by defining the new state variables =z = x4, 23 = 71, z3 = x5 and z4
the following state-space description is obtained

2'1 0 1 0 0 A 0 0
z22] _ |0 0 0 O)f=z]|, |1 O] (uw
z3f [0 0 0 1ffz] {0 O (vz@)
Z4 00 0 0/ \z 0 1

e R
i
p SO
[l
ST
O -
e Y o
il =
(e £} )
B,
<
[ S /- B R

""lllll|
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Example 1: Nonlinear control and state estimation using global linearization
5.5. Equivalence between inverters and synchronous generators

Synchronization between parallel inverters is considered next. The functioning of the i-th
inverter is shown to be equivalent to a synchronous generator with turn speed denoted as w;

The deviation from the synchronous speed is shown to be proportional to the deviation
of the produced active power from a reference value

Ad; —w; —wg = _km{.ﬁm . Pfdf]' @

otk measured active power of the i-th power generation unit
B desirable active power
k,,  "droop” gain which is practically computed by dividing the range of variation

of the inverter’s frequency (wmaz-wmin) by the maximum active power P; .

Since the measured active power is obtained from the inverter’s real active power with

a time delay in measurement, it holds that
P (s) = e s P(s) OrF equivalently T, P™ = —P™ 4+ P, @

Thus the i-th inverter’s dynamics is expressed as

A = Aws
M el iy o

19
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Example 1: Nonlinear control and state estimation using global linearization

5.5. Equivalence between inverters and synchronous generators

By differentiating Eq. @ one obtains

Ty =~ Aw, + PI— P, @

Moreover, from Eq. @ one obtains

FP=—o-F"+ P @
By substituting Eq. @ Into Eq. @ one obtains

'——:Iq,p! .P]l“_kp_LPd

and using that P?=0 one has

Aw; = %ﬂm = f—:ﬂ or equivalently JiAd; = P™ — P, With  J; = 7, [k,

Additionally, from Eq. @ one has

Wi —Wa — kD;Pzd — _k Pm:>Pm = Al W + rwd + Pld:>
P7rf 2i Aw' + P
From the prEVIOUS two equatlons one gets

Ay = —kp P™ +kp BT OF JAdy = —Dp,Awi + PL— P, @ 20
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Example 1: Nonlinear control and state estimation using global linearization

5.5. Equivalence between inverters and synchronous generators

In ideal conditions there is no interaction (power exchange) between distributed
power units connected to the same electricity grid.

However, frequently such interaction exists and in the latter case Eq. @should
be enhanced by including an interaction term

JiAioy = — Dy, Aw; + (P2 — Pi) + > i=1.j2iGiisin(d; — &;)

1

where 4 is the virtual turn angle that is associated with the i-th
power generation unit (inverter).

About the coupling coefficients Gi; these are functions of the conductance of the grid
line which connects the i-th to the j-th power generation unit, as well as of the grid voltage
that is measured at points i and j respectively

Thus, finally the dynamics of the i-th power generation unit (inverter) is described
as a synchronous generator, which interacts with other generators In the grid

Ad(t) = Au(t @
JlAw'l(t) = —Dpl.AOJ-,'(I) + (Pld(t) f + Z i,] SIII () (5))

In this approach, it is considered that the i-th local controller not only processes
measurements coming from the associated power generation unit, but also uses
measurements coming from the other power units which are connected to the grid 21
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Example 1: Nonlinear control and state estimation using global linearization
5.6. Control for parallel inverters connected to the grid

By representing the inverter as a virtual synchronous generator then one has that its
dynamics is composed of two parts (i) the rotation part and (ii) the electrical part.

() Rotation part

Adi(t) = Awi(t)
Ji&ir(t) = —Dp, Awi(t) + (PA(E) — Pi(t)) + ;2 G sin(6: — 55)

(i) Electrical part

r .2 92
Y 1 1 PfVigtasVig | o~y wL ¢V, (17, +i7 )
v, ) w‘]‘q + oF" i, (o7 TT‘;— + wa‘ L VE +“"i.2q) 0 0
s 1V B 0N, N . pf‘z qr‘zd —WwC Vi + wl Vi, (17, +i7,) 0 0 V;
#| 0| = | T BT g, SRR Ty | L o | b
; II,; 5 “q 1 ¢ d “q I‘f ‘/lq
i, Wil, = Ty VL4 0 il

K 1 7 ['f

The synchronizing control approach for the i-th ':uuferter makes use of Eq.

@

and of the linearized inverter model given in Eq.

22
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Example 1: Nonlinear control and state estimation using global linearization
5.6. Control for parallel inverters connected to the grid

First, the value of F;, that is the active power that the i-th inverter should inject to the
grid, is found from the solution of the control problem of Eq.

Subsequently F: is used in the computation of the solution of the control problem of
Eq.

The computation of setpoints for the control of the electric part of the inverter is shown
in the following diagram

l.J" + Pr" 6]
@ Contml Wirtual Synchronous | .
Gererator
C
. Pl:*
+ w
LER o :.L.q
¥ SErpaint
Computation
o
Vid
- + o Vi
Vie L} Control — Irverter

23
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Example 1: Nonlinear control and state estimation using global linearization
5.6. Control for parallel inverters connected to the grid

It can be proven that the model of N-parallel inverters connected to the electricity grid is a
differentially flat one

By defining as flat output a generalization of the state vector of the stand-alone
inverter, that is

i

¥ = v 0n00 008 n a1

or equivalently

i il
Isolation switch

Local Local Local Local
bs bus s bus
Imverter || Logal Ivereer || Local Imereer || oy Inverter || Local
1 load 1 1 load 2 3 load3| """ N lad N
0G1 bG2 DG3 DGN
Fhotovoltaics Pholmvolzics Batiery Fuel calls

It can be confirmed that all state variables and control inputs for the model of the N
coupled inverters can be expressed as functions of the aforementioned flat output
Y and of its derivatives. 24
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Example 1: Nonlinear control and state estimation using global linearization
5.6. Control for parallel inverters connected to the grid
Using the previous flat output definition, and the state variables

i & . i i - S a g e
21 =Y, 29 = Y1, 23 = Y2, 24 = Y2, Zp =Y 24— 13

one has the state-space description

] 01000 0 0\ /[ 00 0
2\ (0000000\(35 (100\ 5
#1_Jooo0o 100 0|]|z4], 00("‘})
#1 oo oo 0ollz]l"]o 10|\
0000GO0DT1O0]|][z 0 0 0] \"3
\s¢/ \ooo0o0o0o00/\&)/ \oo 1)

where the control inputs of this model are defined as
of = =Dy Aut) + (PHO) — Pit) + £, Gpsin6, - 5)] ()

vh = L2hy"(2) + Ly, Lyhi(z)ul + L, Lyhi (z)u @
% = L2ho'(z) + Ly, Lhb(z)ui + Ly, Lphb(z)ub

The above mean that for the synchronization of the i-th virtual generator
(inverter) the control input (in the form of active power) is finally given by

P = —Jii$, — Dy, Z i Gy 112(11,—IIJ)+ @
K (o )J A

25
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Example 1: Nonlinear control and state estimation using global linearization

5.7. Disturbances estimation with Kalman Filtering

A state estimator for each local power generation unit can be also designed in the
form of a disturbance observer.

It is considered that the linearized model of the i-th inverter is affected by additive
input disturbances

5= ol +df
5§ = vl + db
5% = v} + d

The disturbances’ dynamics can be represented by the n-th order derivative of
the disturbances variables together with the associated initial conditions.

Thus the additive disturbances are equivalently described in the form

&\ = fa,, d3” = fa, end d = fy,

The state vector is extended by including as additional state variables the disturbances
and their derivatives. Thus, one has

"R U CRIT N T S ST SR Y S i
2, ¥y = Zy +Vy, 23 = Z4, Z4 = Zg + Vg, Z5 = Zg, Zg — %11 + V3,

Il

o
£l

= z3p, %11 = ds and zj3 = ds. 26
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5.7. Disturbances estimation with Kalman Filtering

Therefore, one has the system’s dynamics in the extended spate-space form
Ze = AeZe + Beve

Vs = ['1'1?[;-. 'l"%r U%r fdl !ffiz': fd.'i]T

where the extended inputs vector is

_ (010000000000 (000000 (100)
while 000000100000 100000 000
000100000000 000000 010
000000001000 010000 000
000001000000 000000 001

A _|000000000010] , _fo01000f _|000

¢~ 1000000010000 ¢~ f000000| “¢ =000
000000000000 000100 000
000000000100 000000 000
000000000000 000010 000
000000000001 000000 000
\000000000000) \000001) \000)

For the extended state-space description of the system the state observer
becomes

RS RS R
where As = M and O = G
while B, differs from B. In the elements of the 10t and 12" rows which

27

are all setto 0
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5.7. Disturbances estimation with Kalman Filtering

For the linearized model of the parallel inverters, state estimation is performed
with the use of the Kalman Filter (Derivative-free nonlinear Kalman Filter)

In the filter’s algorithm, the previously defined matrices 4. Be and Ce  gre substituted
by their discrete-time equivalents Ae;,Bc; and C.; This is done through common
discretization methods

The filter’s recursion is:

measurement update:

K¢(k) = P~ (k)C] [Cey P~ (K)CTL, + R(K)] !
#(k) = &~ (k) + K (K)[Ce, (k) — Ce,3(K)
P(k) = P~ (k) — K(k)C., P~ (k)

time update:

= A, P(K)AT, + Q(k)
= A, (k) + Be,v(k)

After identifying the disturbance terms, the control input of the inverter is modified as follows:

v} = 21 — k(21 — ,iiii) — A},(* —2%) — 2%
vy = 23 kg("s—?'g)—ké(f»s—f?:g)—zg
vy = 25 — k(25 — 25) — kp(z5 — 25) — 211

The inclusion of the disturbance estimation term 7. Z2 and 211 in the feedback

_ o T 28
control inputs enables to compensate for effects of the perturb.di, d2 and ds
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5.8. Simulation tests

The performance of the proposed distributed control scheme for the synchronization of
parallel inverters was tested through simulation experiments. A model of N = 3 distributed

power generation units was considered, while each one of these units was connected to the
grid through an inverter

Table 1
Parameters of the Inverters
Invy || Invg || Invy
Ly (mH) || 105 || 10.3 || 10.1
Cy (mF) || 0.04 || 0.03 || 0.02
pr (Kw) [ 21.1 || 223 || 23.6

The three interconnected inverters, shown in Fig. 4, are assumed to have different model
parameters which are described in Table I.

The objective is that all inverters (virtual synchronous generators ) finally attain the same
frequency w; 29
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5.8. Simulation tests
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5.8. Simulation tests
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5.8. Simulation tests
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5.8. Simulation tests
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5.8. Simulation tests

The presented simulation experiments demonstrated the efficiency of the control
method in tracking rapidly changing reference setpoints while also achieving good

transients. The associated results are outlined in Table Il

Table 11
RMSE for the distributed inverters
RMSE; || RMSE; || RMSE;
W 0.0225 0.0427 0.0199
Vi, 0.0180 0.0008 0.0003
VL, 0.0246 0.0020 0.0010

The disturbances appearing in the simulation experiments could be met in
adverse operating conditions of the distributed power generation system.,

Even for the latter case the good performance of the control loop is confirmed.
Such disturbances can be due to modelling errors (e.g. parametric changes in

the inverters’ model) or due to external perturbations (e.g. grid faults or
disturbances due to the connection or disconnection from the grid of power

generation units).

34
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5.9. Conclusions

* The inverter’s model satisfies differential flathess properties, which allows to transform
the inverter’s model to the linear canonical form.

* Next, the problem of control and synchronization of parallel inverters connected to the
grid was analysed. It has been shown that, the dynamics of each inverter can be written in
a form that is equivalent to the model of the synchronous power generator.

 Using the latter description one can compute the active power that each inverter should be
contributing so as to remain synchronized with the reference frequency of the grid.

* The active power and the frequency associated with the inverter were used next to
compute the control input that is applied to the inverter’s electrical model.

» Thus, finally the synchronization problem of each local inverter was turned into a
problem of nonlinear feedback control for the associated inverter’s electrical model.

» To compensate for additive disturbance terms that affect
the local inverters’ models, the Derivative-free nonlinear
Kalman Filter was redesigned as a disturbance observer.

» The performance of the proposed distributed feedback
control scheme for parallel inverters was tested through
simulation experiments 35




Nonlinear control and filtering for electric power systems

Example 2: Nonlinear control and state estimation using approximate linearization
6.1. Outline

e A new nonlinear H-infinity control approach is applied to PEM fuel cells. First, the dynamic
model of the PEM fuel cells undergoes approximate linearisation, through Taylor series
expansion, round local operating points which are defined at each time instant by the present
value of the system’s state vector and the last value of the control input exerted on it.

e The linearization procedure requires the computation of Jacobian matrices. The modelling
error, which is due to the truncation of higher order terms in the Taylor series expansion is
perceived as a perturbation that should be compensated by the robustness of the control loop.
Next, for the linearized PEM fuel cells model, an H-infinity feedback control loop is designed.

e This approach, is based on the concept of a differential game that
takes place between the control input (which tries to minimize the
deviation of the state vector from the reference setpoints) and the
disturbance input (that tries to maximize it).

e In such a case, the computation of the optimal control input requires the solution of an
algebraic Riccati equation at each iteration of the control algorithm. The known robustness
properties of H-infinity control enable compensation of model uncertainty and perturbations

e The stability of the control loop is proven through Lyapunov analysis. Actually, it is shown that
H-infinity tracking performance is succeeded, while conditionally the asymptotic stability of the

control loop is also demonstrated. 36
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6.2. Nonlinear dynamics of the PEM Fuel Cells

6.2.1. Nonlinear state equations model of the PEM fuel cells
The PEM fuel cells system is depicted in the following diagram

— S e J——— Focusing on the cathode,
S s the state vector of the model
and water Is defined as
(—
DC/DC converter G = [po p\' W p ]T
S oy MiNagsyYWeps Fsm
Anode! W Cathode
T PEM T
) () ,
Reformer A PO, oxygen concentration at the cathode
Compressor

Humidifier

PN, nitrogen concentration at the cathode

Humidifier , .
~ - —~ @, compressor’s rotation speed
Sk i Psm  Isupply manifold pressure
Fuel Cells Stack

By applying the ideal gas law and by considering that the volume of the cathode is known
one has

dpo, __ RT 7 v, 4
dt2 s A.I('.)‘:_) ""«ta (I/1 OQ.in - “ OQ«OUt . 11 OQ.rcact)

dt = j\[_,\;g ‘/;.a (‘I Noin — II Ng,out)

37
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6.2.Nonlinear dynamics of the PEM Fuel Cells
6.2.1. Nonlinear state equations model of the PEM fuel cells

M vV Is the mass of the vapor in mole,
M _ Is the mass of the air in mole,
a,ca,in
¢ca Is the relative humidity in ambient conditions,

Psat (Tatm) IS the saturation pressure in ambient temperature,
Patm is the atmospheric pressure

kca,in Is the cathode inlet orifice constant.

The outlet flow rates of oxygen and nitrogen \\\/

0, 0ut and WN2 out are

calculated from the mass fraction of oxygen and nitrogen in the stack after reaction

",‘I’,’ =5 M 09 POs I:";’
O2,0ut Mo, POy +MNyPNy+Mypsat | €@ ;out

- My povy W,
N2.0ut = Mo, 00y +MNy PNy +Mypoar  ©3:0Ut @ 38
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6.2. Nonlinear dynamics of the PEM Fuel Cells
6.2.1. Nonlinear state equations model of the PEM fuel cells

The flow rate at the cathode’s exit Wca is calculated by the nozzle flow equation

,out

I.,I,;" - CI) JA’I'pca (pat.nz )%
caout = “JRTF \ pea

5, y—1
if Batm s (2o )wr LI (Betm) S

where y is the ratio of the specific heat capacities of the air

and the pressure of the cathode is given by ~ Pea = POs + PNo + Psat

The mass flow rate of oxygen is expressed as
W0, react = S#-Mo,

where n is the number of cells in the stack, F is the Faraday number and Ist is the stack
current. The compressor’s turn speed is related to the associated mechanical torque

dw,
22 = 7 (rom — e

where T, is the mechanical input torque and 7¢, is the load torque 39
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6.2. Nonlinear dynamics of the PEM Fuel Cells

6.2.1. Nonlinear state equations model of the PEM fuel cells

In @ V is the volume of the cathode, R is the universal gas constant,

and M 0, M N are the mass concentrations (in mole) of oxygen and nitrogen.
2

The incoming flow rates of oxygen and nitrogen are given by

H""?O'.z in — LO» H’fCaein @

1’1""'}\72 Jin — (1 — X0, )I""'rca.,in

where XO2 is the oxygen mass fraction of the inlet air, 1 — Xo2 Is the nitrogen mass fraction

of the inlet air, and W/

cain Is the mass flow rate entering the cathode which is given by

h Y
Al Renub Research
om

; ".' . 1 2 A N www.renub.c
4! caan — 7 Eidaiin 'l"ca,z’n ( Psm — P in) @ S e e e
where Wi Is the humidity ratio ﬂsi

—

w _ ]\IU (,bcapsal (Tat')n)
R { : ublished: April,
atm A[a,ca.i.n Patm —@PcaPszat (Tatm) F:mblhdAp i

16 Resab Resasech - All Kights Reserved
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6.2. Nonlinear dynamics of the PEM Fuel Cells
6.2.1. Nonlinear state equations model of the PEM fuel cells

A’ AT 4 |
Tem = Tlem R (lcm)kvwcp @

TC- - C'P Tatm, (patrn)’\r:l rros 1]'[1'

P Wep Tep Peca cp

where kV; Rcm are motor constants,

C p Is the specific heat capacity of air

ch is the compressor mass flow rate.

The dynamics of the air pressure in the supply manifold depend on the compressor flow into
the supply manifold W, = Ayep, on the flow out of the supply manifold into the cathode
Wco, in and on the compressor flow temperature Tcp

dpsm RT.p t1x7
Izlkt = M, me [H cp — }“ca,‘z’n (1 sm pca)l @

where V sm IS the supply manifold volume and T is the temperature of the air leaving

the compressor S
1 @

Ta. T am ¥
Tcp — atm + 77:17 [(Ifahn ) ;
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6.2. Nonlinear dynamics of the PEM Fuel Cells
6.2.1. Nonlinear state equations model of the PEM fuel cells

The nonlinear state-space model of the PEM fuel-cells model is based on ‘ <
HOJORE

" < c3T 1"’1;(:0,0111
T1 =c1(Z4 — T3 — Tz —C2) —

cazitcswatcs  CTS

c3 '-r‘.?n'rca.out
C4Tr1+Cs5T2+C6

Ty = cg(Ty — 21 — Ty — Cy) —

T3 = —CgT3 — CIO[( 41)612 =2 1] + Ci13U

Ty = cra{l + (7)™ — 1)
(W cp — c16(Ta — l-l ~25 —ieg)]

()
()

The control input u depends the motor’s current. The control input C is the stack
current (which can be considered as an external perturbation to the model 12
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6.2. Nonlinear dynamics of the PEM Fuel Cells
6.2.2. State-space description of the PEM fuel cells

The previous set of state-space equations is also written in the form

T = f(x)+ g(z)u=

where

f(z) =

W .
[ a-n-n-a)- St e
c3(ra —z1 — g — €3) — AR
—coz3 — cro[(Z4)12 — 1]
\014{1 t+e15[(4)°12 — 1]} [Wep — cr6(za — 21 — 22 — 02)])
hi By

and

T
g(z)=(0 0 e13 0)
Although global linearization of this nonlinear model is possible through elaborated state

variables transformations (diffeomorphisms), the approach to be followed next is
approximate linearization and H-infinity (optimal) control. 43
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6.3. Linearization of the PEMs Fuel Cells model

The system’s dynamic model undergoes linearization round its present operating point (x*,u*),

where x* is the present value of the finance system’s state vector and u* is the last value of the
control input vector that was applied on it.

Thus one arrives at the approximately linearized description of the system:
¥=Ax+Bu+d
where d, is the linearization error due to truncation of higher-order terms in the Taylor

series expansion and
A= V[fllH"g )]\u*
In a similar manner, one has that

B = Vu[f )”] ]x u* =B = g( )
After linearization round its current operating point the system’s model @&
IS written as :
p=Arp+ Bud dy @

® @ HYDROGEN

Parameter d, stands for the linearization error in the system’s model [§ &

At every time instant the control input #* is assumed to differ from the control input #:
appearing in @ by an amount equal to A« thatis g% = 44 As

ﬂld=ﬂﬂd—|—5'&¢*—|—dg 14
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6.3. Linearization of the PEMs Fuel Cells model

The dynamics of the system of Eq. @can be also written in the form

# = Ae 4+ Fut Bu* — Bu* 4 o @

and by denoting d; = —F=*+4d; as an aggregate disturbance term one obtains
6=Ao+ButBu+ds (D)
By subtracting EqQ. @ from Eq.@ one has
#— g =Ale — 20 + But ds — do _

By denoting the tracking error as £ = #— &4 and the aggregate disturbance term as
s dy — oy the tracking error dynamics becomes

Svem Hoed Bopdld @ 45
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6.4. Design of the H-infinity feedback controller

The initial PEM fuel cells system is assumed to be in the form

= (e )y BeERE mER™

where the linearization point (temporary equilibrium) is defined by the present value of the
system’s state vector and the last value of the control inputs vector exerted on it

b, wl p=ilalt), alt =T,

The linearized equivalent of the system is described by

v = Ax + Bu+ Ld zeR™ wueR™, dcH"

where matrices A and B are ohtained from the computation of the Jacobians

ah  8H . 8ft 2h  8H 0 . B

A= o fee B e B=| g8 22 . |l
Bl Bfn . Bfn i 2fn . Bfn
Sy o Sy, g o St

and vector d denotes disturbance terms due to linearization errors.

The problem of disturbance rejection for the linearized model that is described by

v =Ar+ BEu4 Ld
=l

46
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6.5. Lyapunov stability analysis

The tracking error dynamics for the PEM fuel cells system is written in the form

é=Ae+ Bu+Ld @

where in the case of the considered DC power system L=1|¢€¢ R®>  with I being the
identity matrix. The following Lyapunov function is considered

V==1elPe
where & =% —x  Isthe state vector’s tracking error

V =1lde+ Bu+ LdTP + 1eTPlde + Bu + Ldj=

V =37 AT + T BT 4+ dT LT Pe+
+1eTPlAe + Bu+ Ld]=

V=1TATPe+ 1uT BT Pe+ LdT LT Pe+t
1efPAe+ tet PBu+ e PLd

47
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6.5. Lyapunov stability analysis

The previous equation is rewritten as

V =1cT(4TP + PA)e + (1vT BT Pe + LeT PBu)+
+(1dT LT Pe + LT PLd) oo

Assumption: For given positive definite matrix Q and coefficients r and p there exists a
positive definite matrix P, which is the solution of the following matrix equation

ATP+PA=-Q+ P(2BBT - S LLT)P @

Moreover, the following feedback control law is applied to the PEM fuel cells model

i —%ETPE @
By substituting Eq. @ and Eq. @ one obtains

i

zel[-Q+ P(2BBY — ﬁgLLT:IP]E—I—
+ef PB(—1BTPe+ eT PLd=

<40
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6.5. Lyapunov stability analysis
Continuing with computations one obtains

V=—1eTQe+ (1PBBTP:z— seze’ PLLT) Pe
—L.TPEBTPe +eTPLd

which next gives

et e — 1 T PLLT Pe+ ¢TPLd

or equivalently

‘___T oz 1 T T
V— [t QE .-'5' PLL PE+@ s

+;eTPL.::f+ LdTLT Pe {'g

Lemma: The following inequality holds

$eTLd + $dIT Pe — 5L:eT PLLT Pe<ip®d"d

49
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6.5. Lyapunov stabilitv analvsis

Proof : The binomial l:pf:tf— %5}2 is considered. Expanding the left part of the above inequality
one gets '

o FUELCELL

pgag—k—igbz—ﬁabl_}D:}%pgmg—l—ﬁgﬁnz—ab“}-ﬂ:}-
ab — 52b% < 0% = Jab 4 jab— 520 < 50%

The following substitutions are carried out: 3z — 4 and ,{;. o A PT
and the previous relation becomes

(&)

LdTLTPe + $eTPLd — SyeT PLLT Pe<}p?dTd

Eq. @ IS substituted in Eq.@ and the inequality is enforced, thus giving

QO

Ve cetQe %pzﬁfrcf

Eq. @ shows that the H-infinity tracking performance criterion is satisfied.
The integration of V from O to T gives

o S T o B
fo Vigdi< — 1f0 |lel|gdt + 302 5 |14 dit=

1]

e T3
WT)+ fo llellae=2v(0) + 62 /g lal] e 50
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6.5. Lyapunov stability analysis

Moreover, if there exists a positive constant Jif; = 00 such that

o || Hydrogen Station
fo lldllPdt = My
then one gets

L a a . Fuel‘éﬁ;e: Tank ="
fo llellget = 2V(0) + o* My

<&

Thus, the integral f;‘j||e||%dﬁ is bounded.

Moreover, V(T) is bounded and from the definition of the Lyapunov function V it becomes
clear that e(t) will be also bounded since

e(t) € Qe = {e|e” Pe<OV(0) 4 p? My} |

According to the above and with the use of Barbalat’s Lemma one obtains:

M eae(t) = 0. »

This completes the stability proof.



Nonlinear control and filtering for electric power systems
Example 2: Nonlinear control and state estimation using approximate linearization
6.6. Robust state estimation with the use of the H-infinity Kalman Filter

e The control loop has to be implemented with the use of information provided by a small
number of measurements of the state variables of the PEM fuel cells system

e To reconstruct the missing information about the state vector of the PEM fuel cells system it is
proposed to use a filter and based on it to apply state estimation-based control .

e The recursion of the H-infinity Kalman Filter, for the PEM fuel cells model, can be
formulated in terms of a measurement update and a time update part

Measurement D(k) = [I — 8W (k)P (k) + CT(k)R(k)"'C(k)P~ (k)]~"

update K (k) = P~ (k)D(k)CT (k)R(k)™"
.l(l\) =g {A) + I{(k_)[y(:k] — (_".".'1"_{}6_)]

Time i~ (k +1) = A(k)z(k) + B(k)u(k)
update P~(k+1) = A(k)P~(k)D(k)AT (k) + Q(k)

where it is assumed that parameter 0 is sufficiently small to assure that the covariance matrix
P—(k) — 6W (k) + CT(K)R(k)-1C(k)

Is positive definite 52
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6.7. Simulation tests

» The performance of the proposed nonlinear H-nfinity control scheme for the PEM fuel cells
system is tested through simulation:

Linearization of the
fuel cell’s dynamics

x=Ax+Bu-+Ld

B=Vf, |

Q) Tl o o
¥ix u) Mix ou)

A=Nf

A B L

Solution of the algebraic
Riccati equation

1 |
A'P+PA+Q-P—BB' “’—‘1.1.’ P =0
r 2p“
P
= 2 H-infinity [, - . [Nonlinear dynamics of|  *
—/;)—v control gain —» the fuel cells B
>_—lpry y
K “:8 F x= fxu)

Fig.2 Diagram of the nonlinear optimal control

With the use of the proposed H-infinity control method, fast and accurate tracking of the
reference setpoints of the PEM fuel cells system’s state variables was achieved 53
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6.7. Simulation tests

(a) Test 1: Convergence of state variables

Xy — X4 (greenline) to setpoint 1 (red line)
0 SW;QQI 2 e[1 e 2

(a) Test 2: Convergence of state variables
X{— X4 (green line) to setpoint 1 (red line)

1 1 1
§ 10 15 2

(b) Test 1: Control input u applied to
the PEM fuel cells model

T T
all l
i

5 10 [ p

(b) Test 2: Control input u applied to
the PEM fuel cells model 34
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6.7. Simulation tests

T 5 W 15 2

me (s£¢)

&

b

i

| :

| T St

0 5 W 5 M D 5 W 5 AN
ame (550) ame (sec

(a) Test 3: Convergence of state variables
X; — X4 (greenline) to setpoint 1 (red line)

0 §

1 15 2 0 5 W 5 A2
me (sec)

(a) Test 4: Convergence of state variables
X, — X4 (green line) to setpoint 1 (red line)

T
B i
100k - - ;_
-0 i
] 5 10 2

(b) Test 3: Control input u applied to
the PEM fuel cells model

(b) Test 4: Control input u applied to
the PEM fuel cells model
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6.7. Simulation tests

e T o

AT

(a) Test 5: Convergence of state variables
(green line) to setpoint 1 (red line)

¥ l‘\z

- e

(b) Test 5: Control input u applied to
the PEM fuel cells model

: : : : H H H : H
1 1 1 1 1 1 1 1 1
i . 1 ] L g . s ]

Table I: RMSE of the fuel cell’s state variables

parameter

PO,

p 4‘\'-2

oy
W(;P

Ps,,

RMSE;
RMSE>
RMSE;
RMSE,
RMSE;

7.40-10~°
0.82.107°
7.94.107°
2.34-10~*
1.86.1074

8.88.10~°
1.17-1074
9.53.107?
9.81:10=2
2.24.10~4

1.08-10~>
4.35-10~4
7.52.107¢
9.16-10~*
1.48.107°

7.91.10 %
14.0-107%
6.76-1074
18.0-10~%
6.64.10~%
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6.8. Conclusions

e A new nonlinear H-infinity control method has been developed for the g Ty T
dynamic model of PEM fuel cells. The first stage for the method’s |
implementation has been the linearization of the fuel cells’ dynamic
model round local operating points.

e At every time instant, these equilibria consisted of the present value
of the system’s state vector and of the last value of the control input that
was exerted on it.

e For this linearization, Taylor series expansion has been applied to ‘ ‘ \ 1 \ } }
the fuel cells’ dynamic model and the associated Jacobian matrices

have been computed. = m /a
1
— .QE’

I

e For the linearized equivalent model of the system H-infinity nonlinear
optimal control has been applied.

e The modelling errors which were due to the approximate linearization of the system
were perceived as disturbances affecting the fuel cells’ dynamics and were compensated
by the robustness of the H-infinity controller.

e Moreover, conditions which assure the asymptotic stability of the control loop have been
formulated. The efficiency of the nonlinear H-infinity control method has been further

confirmed through simulation experiments. 7



Nonlinear control and filtering for electric power systems

Example 3: Nonlinear control and state estimation using Lyapunov methods

7.1. Outline

e The article proposes an adaptive control approach that is capable of
compensating for model uncertainty and parametric changes of the
doubly-fed reluctance machines (DFRMs), as well as for the lack of
measurements about the DFRM’s state vector elements.

e First it is proven that the DFRM’s model is a differentially flat one.
By exploiting differential flatness properties it is shown that the
DFRM model can be transformed into the linear canonical form.

e For the latter description, the new control inputs comprise unknown nonlinear functions
which can be identified with the use of neurofuzzy approximators. The estimated
dynamics of the machine is used by a feedback controller thus establishing an indirect
adaptive control scheme.

e Moreover, to enforce the robustness of the control loop, a supplementary
control term is computed using H-infinity control theory.

e Another problem that has to be dealt with comes from partial measurements of the
state vector of the generator. Thus, a state observer is implemented in the control loop.

e The stability of the considered observer-based adaptive control approach is proven
using Lyapunov analysis.Moreover, the performance of the control scheme is evaluated 58
through simulation experiments.
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7.2. Dynamic model of the doubly-fed reluctance machine

The brushless doubly-fed reluctance machine has two separate stator windings where the
first one is noted as power winding while the second one is noted as control winding. The

power winding is directly connected to the 3-phase grid and using the dq reference notation
one has two voltage components Vd and V

3-phase grid
AC/DC/AC
converter
Reluctance
_.-Rotor _
"""" Electric [T e-
L - Power frequency w, Cantrol E"; -,
17 Electric Winding Windi clyic ~.

4 Inding Frequencyl s
/ frequency '
{ w, ]
\ W, 5

\\ ',

fa -~
£ poles  Smmssscsdal. Ceeecesmens T P, poles

The power winding has P; poles while the secondary (control) winding has P,

poles. The rotor of the machine has no windings and the number of poles in it is
usually chosento be p=(p,+p,)/2
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7.2. Dynamic model of the doubly-fed reluctance machine

The frequency of current at the primary winding is the one of the grid and is denoted as .()
The secondary winding is connected to the grid through an AC/DC/AC converter thus it can

have current at a frequency different from the one of the grid, which is denoted as @y

By applying Kirchhoff’s laws at the primary and the secondary winding of the reluctance

machine one obtains the dynamic model of its electrical part. Thus, at the primary winding
one has

/:\1(1 = —Rii1d + wiA1q + V1d @
Mg = —Rii1g — w114 + vig
while at the secondary winding it holds

A
A

/.\')d =

.

2q

(O] Lo
[ I

d+w
g — W

(SR S
| =T (%

i +
i +

[ =T (]

= ;
Rt "

2q —

The magnetic flux at the primary winding is the result of the inductance of this winding
and of the mutual inductance (coupling) with the secondary winding

AMa = Lyiig + Lyoiog @
A1g = Lyiyg — Lapiag

Equivalently, the magnetic flux at the secondary winding is the result of the inductance of this

winding and of the mutual inductance (coupling) with the primary winding
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7.2. Dynamic model of the doubly-fed reluctance machine

R, L,
RZ,LZ
L1

The electromagnetic torque of the machine is

Mg = Loigg + Ligig @
Aog = Loiog — Lyaiyg
grid voltage components through connection to primary winding

voltage components at the AC/DC/AC converter of the secondary winding

grid current components through connection to primary winding
current components at the AC/DC/AC converter of the secondary winding
components of the magnetic flux at the primary winding

components of the magnetic flux at the secondary winding

resistance and inductance of the primary winding

resistance and inductance of the secondary winding

mutual inductance (coupling) between the primary and secondary winding

_— ®

1Pr(Ading + Argioa)-

] O
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7.2. Dynamic model of the doubly-fed reluctance machine

The dynamics of the rotational motion of the machine is given by

= $Eian (it | (5
+(Te + Tn) =5 [3 720+ (Mding + Xigisa) + L]
The active and the reactive power of the reluctance machine are given by

pP* = (v 1di1d+V1qt1d), Q" = 3(viaitg — vigita) @

<

&‘_.

By combining the previous equations @ to @ of the machine’s dynamics one has
w= %(%17}‘ r(L1t1ai2q + L12i2aiag + Lit1gi2q + L12iogiaq)) @

=14 = 0’{ RiLoiyg + w1y L)Ilq—d1L9L1722q+L)V+
+RyLysisg — woloLyaing + woL3yiy, — Ligvag}

ftzlq = 0{—RyLai1q +wiLiLoiyg + wiLaLisiog—

—ROnglzq —w')L)lel‘)d-i-w'leqlld lel‘zq}

Li2qg = 0{—RyL1gizg — wi1L1Lygiyg + w1 L35izg — L1aVi—
—Ro Lyizq + waliLaisg — waly L1ztig + Livad}

d - =z - . i : ‘ 2
Liog = 0{—RyL12i1q — wiL1Lyoig — wi L3yioa—

—RoL1iog — wol1Loiog — walL12i1d4 + L1vag }
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7.2. Dynamic model of the doubly-fed reluctance machine

Next, by definina the state vector

T1 = W, T3 = U4, T3 = t1q, T4 = 124, T = I2g

E | . . n 1 2

the state-space description of the system becomes

i = f(x) + g(@)u (o)

with reR**! ueR?**1, f(xr)eR>*! and g(z)eR%*2,

where 0 0
—oLqs 0
br 4 ,3J pr(L1zaxs + Liazazs + Lizaxs + Liazszs) + TT'"\ and .gi== ag 0%12
- 1
0 olLo

—0R1Loxy — owiL1Loxy — owiLaLyoxs + oLaV—
—0RyLgxy — ows Lo Lysxs + ()'wf_)L%g‘Ig

—oR1Laxs — owiL1Loxo + owiLol1axsa—
fim) = —~0 Ry Lygxs — 0wy Ly Lyaxwy + 0wy L3,19

—0R1L1pz2 — owi L1L12x3 + owi Liyxs — 0 L1aVe—
—0RyLyxy + owyLiLoxy — owsL1Lysxs

4‘)
—0R1 Liaxs — owi L1 Liaxs — ow1 Liyrs—
\ —O'RQL‘l;l.‘g — O'WQL]LQI;; — O'nglL]QIQ )
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7.3. Differential flatness properties of the DFRM system dynamics
7.3.1. Proof of differential flathess of the DFRM model
The flat output of the model is chosento be Y

= [y1,99]

and Y2 = x4 = i2d.
From the first row of the states-space model of Eq. one has

1 - 31 3
, |1 + bx =22y (Lioxars + Lqx rr—L).rIr——m
2 = L”pr(lqr [1  aas 7 pr(Lisxsrs 14 123 )]
1
Z — g5 Ljo

s L (1)
3 Lz, : . ;i

a7 T2pr(L12s [yl +by1 — 577 L, Pr(L12T3T5 + L1yaTs + L1azazs — 7)==

T9 = foly1, 91,73, T5)

Moreover, from @ and by differentiating its last row with respect to time one gets

1‘2 :ﬁ;(Y,S},is,i73,Is-.i5) @

From the second and fourth row of the state-space model of Eq. one gets

Liis + Li2ig =

where y1 = 21 = w

5
I
|

Li[oRyLoxy — 6wy Ly Loxs — owy LoLyoxs + 0LoVy — 6 Ry Lysxy — owaloLygws + 0'(4,'-2L~"1221.‘.3]+ @
L]‘Z[O'R]L-lgl‘g = O'wlLlL]Q‘Ig + O'wlL%-zl‘f, = O'Ll-‘_)Vs = 0R2L-1J‘4 + O'w-_zL-]Lg;I“r) = 0’(4)-2L1L1-)J‘3]
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7.3. Differential flatness properties of the DFRM system dynamics®
7.3.1. Proof of differential flatness of the DFRM model

From the third and fifth row of the state-space model of Eq. (10) one gets
Loiz — Ligis =

Ly[—0 R Laxg — owy L1 Loxg + owy LoLysxy — 0 RoLyoxs — owoLoLygxy + owqy Liyx0]—
12| — 0ty Lo

‘ W .
.) & o & i o o B
Lis[—0RyLyoxg — 0wy L1L1gxs — 0wy Liyty — 0 RoLyxs — ows Ly Loy — owaLy Lyoxs]

By substituting Eq. @ and Eq. @ into Eq. @ one gets

a1T3 + a2xrs + a3rs; + a4l = h1(Y, Y Y) @

By substituting Eq. @ and Eq. @ into Eq. @ one gets

bixs + boxs + bsxs + bads = ha(Y. Y Y)
By solving Eq. @ and Eq. ‘ with respectto X3 and

r3 = mi(Y. Y Y Ts5, Ts)
By substituting Eq. @lnto Eq. @ one gets

c1x5 + coiy = ny (VYY)

®

one gets

S,
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7.3. Differential flatness properties of the DFRM system dynamics

7.3.1. Proof of differential flatness of the DFRM model

By substituting Eg. @ into Eq. one gets
dizs + dogs = na(Y,Y,Y)

From Eq. and Eq. onegets g, =p(Y.Y.Y)
By substituting Eq. into Eq. @ one gets x5 = mq(Y, V.o ¥, b ) @
By substituting Eq. and @ into Eq. @ one gets 1, = my (Y, % ) @

Thus all state variables «;, # = 1,--- .5 iare differential functions of its flat output

Moreover, by solving the fourth and fifth row of Eq. with respect to the control

Inputs one has that these are also differential functions of the flat output

= j:,,,] (Y. ¥ oonn) uy = Ji (YU ¥

Consequently, the state-space model of the DFRM is a differentially flat one 66
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7.3. Differential flatness properties of the DFRM system dynamics

7.3.2. Transformation of the DFRM model into a canonical form

Next, the model is transformed into the canonical form. By differentiating the first row of Eq,
with respect to time one obtains

e b 3 14
T1=—5T1+ 557,

-

&1 = fi(z) + gui(z)ur + grz(z)us @

fi(z) = —Fa1+

Lz
9

—0RyL1oxy — 0wy LoLoTs + 0wy Liaws)+
+23r %‘f’*pr('Zlers)[—GRl Loxs — owiL1Loxs + owi LaLiaoxs—
—oRsL1sx5 — owaLaliaxs + ow-zL-%r_,;r.-z]
+55-52p, (Lyx5)[0 Ry L1gwy — 0wy Ly Lyaxs + 0wy L3pxs — oLyaVe—
—oRaL1x4 + owaL1Loxs — wa-_),Lqu-z;Ifg]-l-
+23r I—Lllzp,.(ZLI:)J,‘g =+ L-1:IT4)[—O'R1 Lisxg — owi LiLiox9 — 0&)1L%2‘1T4—
—0‘R2L11‘5 — 0&)2L1L-2174 e O’ng-lngIQ]

gu1(z) = 35-%2pr(L1zs)(oL1 — oL12) @

3
2J.

gi12(z) = 5>

3 Lizp, (9L1035)(0L12) + (2L12ws + Liza)(oL1)

(L-11T5)[—0R1 Loxo — owi1L1Loxg — owiLaliaxs + o LaVs—

zpr[Ll;'I"-QI{, + Lixo7s + 2L1233x5 + 2L 107375 + Litaxs + L1'.l?4i‘5]

and by substituting in the above equation X4, X5 from Eq @ one gets
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7.3. Differential flatness properties of the DFRM system dynamics
7.3.2. Transformation of the DFRM model into a canonical form

Moreover, from the fifth row of the state-space model one gets

t4 = fo(z) + g21(x)u1 + goo(T)us @

) r
fo(x) = oR1Lis2xs — owi1 L1L12x3 + owi1Lisxs — oL1aVs—
—0Rolyxy + owoliLoxs — owo L1 L1913

Thus, by defining the state variables z, = x, and z, = x, one arrives at the input-output
linearized form of the svstem

where

21 0O 1 O 1
Hl=[0 0 o]z
Zq 0O 0 0 z
with
vi = 2¢ — Ki(z1—28) — K
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7.4. Design of an adaptive neurofuzzy controller for the DFRM system
7.4.1. Transformation of MIMO nonlinear systems into the Brunovsky form

It is assumed now that after defining the flat outputs of the initial MIMO nonlinear system, and
after expressing the system state variables and control inputs as functions of the flat output and of

the associated derivatives, the system can be transformed in the Brunovsky canonical form

$'1=$g
$'2=$3

ﬁ-‘.-"i -1 = m-‘.-"i

By = f‘l'[ﬁ} =t Zi'j:-lﬁi;.:'[ﬁ}ﬁj + 4

meﬂ-i-l—i = m-:-'-1-|—2
g 3 = ey -3

Tpol = Hp

p = fple) + E?=19w{m:'“j + d,

i = [y, ,#)° IS the state vector
A T .

@ = [ug, -+, #]" s the inputs vector
y=[wm, - ,z|T :isthe outputs vector

i =&
o = By —1
o = mﬁ-—ﬁ"?:,+1
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7.4. Design of an adaptive neurofuzzy controller for the DFRM system
7.4.1. Transformation of MIMO nonlinear systems into the Brunovsky form

Next the following vectors and matrices can Thus, the initial nonlinear system

be defined can be writtenin the state-space form
FO)=[f00), .. (0] . -
900 =[6:(0, - GO K= A BLT09 g 0gu ]
With 600 =[95: (0, . G OO e
A=diag[A,..., Ay], B=diag[By,...,By] or equivalently in the state space form
c' =diag[Cy,....Cpl, d =[dy,....d ]’ o A+ BYABd

where matrix A has the MIMO canonical form, y=Cx

I.e. with elements

_ where V= f(x)+g(x)u

0 1 0 .. 0
O 01 .. 0

A=l . For the case of the MIMO diesel engine model
000 . 1 it is assumed that the functions f(X) and 9(X) are
000 . 0 unknown and have to be approximated by neuro-

fuzzy networks
Bl =[0 0 .. 0 1, Ci=[L 0 .. 0 0O} 70
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7.4. Design of an adaptive neurofuzzy controller for the DFRM system

7.4.1. Transformation of MIMO nonlinear systems into the Brunovsky form

Thus, the nonlinear system can be written in state-space form

&= Aw+ B[f(«) + gl )+ d]

".'-'jn' v
which equivalently #= Ae+ Boat+ Bd where p = fle) + gle)w
can be written as y=C" g
The reference setpoints for the system’s outputs Bttt Hp k
are denoted as  Hiw: vt T

and the associated tracking errors are defined as

BT

&1 = &1 — TfHm
Ey = o — o

& = Yp — Ypm
Ei ['91:- :-E?J']T
[5"1'-'“:- T %]T

[Ehw S 71
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7.4. Design of an adaptive neurofuzzy controller for the DFRM system
7.4.2. Control law

The control signal of the MIMO nonlinear system contains the unknown nonlinear functions
f(x) and g(x) which can be approximated by

.I'}{Imf]' = Dr(x)0r,  Ex|8e) = Delx)6;

where (%) = (EL(2), E3(x), - EX(x)),
B0 = (#(0, 07, 07 )

thus giving cj;}l{) ci;*z{x) SO V63
@f{}f}: '[:' ‘i{?;{-’f}' ‘i{?ﬂ'{-ﬂ

¢;1.[x;. fi’”;{-’f}' ()

while the weights vector is defined as  g.7 = (@l 82 ... 61"
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7.4. Design of an adaptive neurofuzzy controller for the DFRM system
7.4.2. Control law

Similarly, it holds ~ ®g(x) = (&2 {;f}}.ég""{x}} . é_;.“ {x})r

ﬁ;{.‘-’[} = [: El {I}}tﬁéﬁ{x}} ' .[E.'ﬁ[lej

thus giving bt (R @t e g ()
o= | W @ - 6

R R e e

: : : . r
while the weights vector is defined as 8, = (8}, 82, ..., 851",

However, here each row of Eg Is vector thus giving

gl g2 .. gF

Eﬁl 351 5%1

A= EZ E2 El
1 2 r

Em Bm TR -

If the state variables of the system are available for measurement then a state-feedback
control law can be formulated as

w =g (x|8.) [~ F{x(67) + ¥ % + Bl o+ 1] 73
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7.4. Design of an adaptive neurofuzzy controller for the DFRM system
7.4.2. Estimation of the state vector

The control of the system described by becomes more complicated when the state vector x

Is not directly measurable and has to be reconstructed through a state observer. The following
definitions are used

g=x—1x.,: Isthe error of the state vector

R o is the error of the estimated state vector

§=¢—&=(X—Xn) — (X—Xn) isthe observation error
When an observer is used to reconstruct the state vector, the control law

u= g (3]6,) [~ FEIBA + 3% — ke 4w,

By applying the previous feedback control law one obtains the closed-loop dynamics

) = fla) + o()F B [-F B+ o) - KTe 4w+ d=
A7) = fle) + [s.a-{m]' - §(8) + 4(#)]57(#) [—f{m} +on’ = KTét u,]+d=
) = [fw) — (&) + [ale) — 58wt o’ — KTé 4 w44

tholds & = & — sy = A7) = 2l g o)

and by substituting 3,1"'":' 1the previous tracking error dynamics gives 74
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7.4. Design of an adaptive neurofuzzy controller for the DFRM system
7.4.2. Estimation of the state vector

the new tracking error dynamics

e+ o) = o) — KTet o+ [#() - F(@)
+lo(#) = (8wt d

or equivalently

¢= Ae— BKTé4 Bu, + B{[f(«) — &)+
+[a(w) — G{& ]2+ d} @

gy =0C7e
1 2 T . : Cou 1_-1 e
where = [E R o "E?}] with &£ = [E'i:- iy By g ]T 1:- Q:-“ vl
and equivalently &=[&, &, ..., &7 with &= [g, & &, ... &', i=1,2...,p

A state observer is designed as:

i BETe4+ K [e1 — C7 8

8= 078
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7.5. Application of adaptive neurofuzzy control to the DFRM system

7.5.1. Tracking error dynamics under feedback control

By applying differential flatness theory, and in the presence of
disturbances, the dvhamic model of the DFRM comes to the form

(52) = () + () v+ (@)

The following control input is defined:

gz, )\, (i fi(zt) KT\  (ue
:(gi{r-ﬂ) {(ré)‘(flm)‘(fﬁ") +()}

'

where: [u., u,]" is arobust control term that is used for the compensation of the model’s
uncertainties as well as of the external disturbances

and: ﬁff=[5:’1}ﬁéwwk§,_1>k§,]. is the feedback gain

Substituting the control input @ into the system @ one obtains
(11) _ (fl(:r,t)> N <91(' )) (f}l( ))-1_
g fa(z,t) ga2(z,t) ) \ga(z,1)
74 fi(z.t) KT (T di
3 (ié’) (ﬁ(r t>) - (Ké" ) Y ( )“ <d) A

C2
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7.5. Application of adaptive neurofuzzy control to the DFRM system
7.5.1. Tracking error dynamics under feedback control

Moreover, using again Eq. @ one obtains the tracking error dynamics

é1\ _ [(filz.t)— fl(;xr. t) gi(z,t) — g1(z,t)\ KIT 5 ‘(u"i) (dl>
((;;3) - (f.z(g-.t) = fg(.t‘.t)) F (g-z(:r.t) - §72(Jf.t)> 8 (A;) = U, - da
The approximation error is defined = G‘%Eﬁ :jﬁigig) g (igﬂ :;Eﬂ)u

_ _ 01 0 0 0 ' o d ik
Using matricesABK, 41— (o 0 o). B=[1 o] g7_— (A}) K3 A_%>
0 0 0 0 1 Ki K3 Kj

and considering that the estimated state vector is used in the control loop
the following description of the tracking error dynamics is obtained:

N A - G 4 (808G 4 4
o= te-aterms sl (00 TR0 )+ (SR80

When the estimated state vector is used in the loop the approximation error is written as

_ (Alx) - A& g% ) — g1 (%) ’
- (R A+ (=)

while the tracking error dynamics becomes e=Ade—BET6 4L B, 4+ Bw A Bd 77
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7.5.2. Dynamics of the observation error

== .‘.

The observation error is defined as: & = = @ — &,

By subtracting Eq ‘ from Eq@ one obtains:

¢— &= Ale— & + Bu.+ B{[f (=9 - fl&,8)+
+lgle, 1) — gl f)|ut df — K,C(e— g

81—51 ZC(PI{E—E?:I

or equivalently:
= Ae+ Bu.+ B{[f(e.®) — f(#,8)]+ [g{e.t) — §(&.8)]u+ 4} — KL.CTE

2= TG

which can be also written as:

E={4d- K,CT\e+ Bu, + Bw+d)

=Tz

78



Nonlinear control and filtering for electric power systems

Example 3: Nonlinear control and state estimation using Lyapunov methods
7.5. Application of adaptive neurofuzzy control to the DFRM system

7.5.3. Approximation of functions f(x,t) and g(x,t)

Next, the first of the approximators of the unknown system dynamics is defined

ie) = (,fi{ﬁm_f} HeRY fi(8l65) € R“‘“)
fo(#]8s) 4R fo(#l8;) € RV

- : ; [T i, ()
containing kernel functions #%¥{ &% = ¢ i
J f'ﬁf { } E-ﬁiiﬂ?:ij'-‘ﬁlj'::ﬂﬁ‘:'

where #A;é{ﬁj' are fuzzy membership functions

appearing in the antecedent part of the I-th fuzzy rule
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Example 3: Nonlinear control and state estimation using Lyapunov methods
7.5. Application of adaptive neurofuzzy control to the DFRM system
7.5.3. Approximation of functions f(x,t) and g(x,t)

Similarly, the second of the approximators of the unknown system dynamics is defined

sy = (91818 BeR™ §1(2)8,) € RV
G2(818,) BeR¥ §o(8)8,) € R172

Ly Lo

The values of the weights that result in optimal approximation are

§ = arg ming en,, [supscu, (F(e) — £(#(87))]
95 = arg ming eno [SUPser, (9(%) — §(#]9,))]

The variation ranges for the weights are given by

My, = {8;eR™: ||8s||<ms, }
ME'EI Z{SQERh: ||S§||£m£"g}

The value of the approximation error that corresponds to the optimal values of the
weights vectors is

w = {#(e,8) = f(#187) ) + (ale¥) - 5(2167)) = 80
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Example 3: Nonlinear control and state estimation using Lyapunov methods

7.5. Application of adaptive neurofuzzy control to the DFRM system
7.5.3. Approximation of functions f(x,t) and g(x,t)

which is next written as

w = f(o8) — F(818) + F(6185) — Flalep)) +
+ (o t) — 6(818,) + 5(&18,) — §(8189) w

which can be also written in the following form

with w= (wetw)

w, = {[f{e.8) - £(818;)] + la(e.t) — §(816,) ]} v

and

wy = {[F(#[87) — F(E89)] + [6(8, 82) — (&187)]} =

Moreover, the following weights error vectors are defined
8y = 85 — 8}
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Example 3: Nonlinear control and state estimation using Lyapunov methods
7.6. Lyapunov stability analysis

The following Lyapunov function is considered

V = 18P+ 1T P+ -8By + 7 tr (876, ] '

The selection of the Lyapunov function is based on the following principle
of indirect adaptive control

= "

g limy e ﬁ[ﬂ = md{ﬂ this results

s #0) =wgld)
g = into
g vlimiesssalt =ralt).

By deriving the Lyapunov function with respect to time one obtains
V= —“TFi.e—l— ETP1_E—|— ETPQE-|— 2l P, E—I—
+T—i&§*ef + %w[ag 8] =

= (4 - EKT"}eJrH CUE) P&+ 48 Pi{(4 — BKT)é+ K.CTa}+
+1 14 - KCT}E+BE¢+Bd+EW}TPEE+
1‘Tp2{.[A }fc’l‘)e+5uﬂ+5d+5w}+

T
+2078; + Ltr[8, 8] =
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Example 3: Nonlinear control and state estimation using Lyapunov methods
7.6. Lyapunov stability analysis

The equation is rewritten as:

V=21 T{A BET)T 4 TCKT\P1e+ 36T P {{A - BEKT) e+ KO0V + wam
Sl {e (AT Ly ET+wTET+dT.ET}Pgé+

187Py{{A — K.CT)e+ Bua+ Bu + By + L 676, + 1zf*-r*['fi' By] =

which finally takes the form:

‘L"'_—*T{A EKTVTP e+22 el CKT P&+
*TP (A—BET e+ L& PR, CT et
+1 T{A K,CT TP+ iliuTer +dT) BT Pyay:
41T P (A - K CT}.9-|— 1Ty Blos 4w + d)+
P e
+?1'5'?'5' £+ gtr (6, 8]

Assumption 1: For given positive definite matrices Q1 and Q2 there exist positive definite
matrices P1 and P2, which are the solution of the following Riccati equations

(A—BEOVTP 4+ B(A-BEKTY+ @1 =0

i o BBy B P Pl SO0
—FB(E - BB P4 Q=0
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Example 3: Nonlinear control and state estimation using Lyapunov methods

7.6. Lyapunov stability analysis

By substituting the conditions from the previous Riccati equations into the derivative of the
Lyapunov function one gets:

V= {(4- BETYTE 4 Py{d - BET) 64 eTCKT Pié4

+2&7 (A - K0T R -|-P2{A K, cﬂ‘%}a}p
+ETPEE{%+ z a,} R 5“‘5‘; + Tir[f, 8]

h:i||—|-

or: Vo= _%ATQ1§+ ETCHTP B— lET{QE PQE{_ i —EE'BTPE}E'F
-|—ETPQEI[‘?.¢Q+ a4 ._qg get E'Tﬂ_f g ﬁ’.r*[ﬂ Eg]

e The supervisory control term 4, consists of two terms:u, and .

1.
ua. — TPQB -+ Aua,
=
where assuming that the measurable elements of vector © € are {€1,€3.- - . €k},

the term AU, Is given by

P11€1 + P13€3 + - - - + P1r€r
. P13€1 + P33€3 + - - - + P3k€p
—%TPQB+Aua:—1 P13€1 T P33€3 P3k€k

P1k€1 + P3r€3 + - - - + Prk€r
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Example 3: Nonlinear control and state estimation using Lyapunov methods
7.6. Lyapunov stability analysis

e The control terl up. |s given by

Up — — [(pr)T(Pz B)]_l (PzB)TCIX.Zplé

Ua s an H-infinity control used for the compensation of the approximation error w and

the additive disturbance d.

Its first component —1:7P,B  has been chosen so as to compensate for the term

lng,—é-[-};;;.,.a which appears in the previously computed function about "V .

By including also the second component Au, onehasthat s is computed

based on the feedback only the measurable variables {(;,1‘@3'. o .} out of the
complete vector {é;.é4.--- .6} c |

1 E . . T ol C e
Eq. u,=——& PyB+ Au, finally rewritten as  ug = —1é' PoB + Au,.

7

e b s a control used for the compensation of the observation error (the control term
has been chosen so as to satisfy the condition
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Example 3: Nonlinear control and state estimation using Lyapunov methods
7.6. Lyapunov stability analysis

The control scheme is depicted in the following diagram

Controlier | P Spp— |
i o WO . ERX
1 M =g ,ﬂ.trll.hﬁﬁ"éj * = iTxeh 'H_E__.-'
: * L‘_—:.I:llr.llil-‘—

|t —||.|'-‘£|:|!|r|.|'ﬂl|"|.|'-‘2ﬂr.\?,‘:.l'1|"
I I'{E-H"I_‘ [}
T
| AE el e - e
I

&

L J
S . J -
: //— N

A
—.-__,_

By substituting the supervisory control term in the derivative of the Lyapunov function
one obtains

V= —1TQé+ TCKTPie— 1T Qo+ 1‘TPEEETP28—%ETPEEETPEH
+&TF, B, + &7 Py Buy 4 &7 By B(w 4 d) + 2 E“TE';+ t’-f*[ﬁ'

g F] 86
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Example 3: Nonlinear control and state estimation using Lyapunov methods
7.6. Lyapunov stability analysis

or equivalently e —4 16T 0,8 — _éTQEE_ JEETPQEETPQH
+&T Py Blw + ) o E'TS °F —w[.ﬁ' ag]

Besides, about the adaptatlon of the weights of the neurofuzzy network
it holds
Sf_&f—.f};:&f 6, = 8,—6r =16,
and also :
By = —m®(#)T BT Rz
8, = — o B(&)TBT PyeeT

By substituting the above relations in the derivative of the Lyapunov function one obtains

V=187,

h:-I-l-

oa —;EETPEEETPEE+ ETBalw + d)+
+3r (-2 P BO(&)(8; — 81+
+ { ot [t Po BO(&)(8, — 4]

or
V= 2878 — 287 Q02 - —;EETPEEBTP e+ BT Bya(w + d)+
(= }'T;PEE‘I’{ &)(6s — 85 )+
o tr[ue’ FaB(§(2]0,) — &(2[87)] 87
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Example 3: Nonlinear control and state estimation using Lyapunov methods
7.6. Lyapunov stability analysis

Taking into account that = € B**' and " PB(§(=|8,) — &(=|8)) € B2

Onegels o 1sTgus - 387Qu8 - a8 P,BBTPyet BT Ry At
+ 1 (—70)ET B BO(2)(85 — 63)+
+a(— “yo)tr ¥ PaB{a(216,) — §(2162)) s
Since e By B{§(#165) — 5(#]0%))ne BT
't holds tr(e7 BB (6(w18,) — b(al85)) =

= el Py B{§{»|8s) — w|02))w

Therefore, one finally obtains

V= —187Q8 - 187QqE - v e e P, BETPye+ BT Byl + di+
oo (—r)et Pa BO(8)(6y — 810+
-I—,%ﬂ —TE}ETPEB{ﬁ{ﬁ|Hg} - é{%lﬁ'ﬁ}w

Next, the following approximation error is defined

wa = [f(2]83) — F(218,)] + [5(2187) — §(8184)]=
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Example 3: Nonlinear control and state estimation using Lyapunov methods
7.6. Lyapunov stability analysis .

Thus, one obtains

V=108 - 187Qe - LT R, BBT R+
+ETPya(aw + d) + 27 Pa B,

Denoting the aggregate approximation error and disturbances vector as
g = + r:g—l— T
the derivative of the Lyapunov function becomes
V = —387Q16 — 327 Que— 7@ P,BET Pye+ & Py Bu

which in turn is written as

V=-16T¢ 86— 1872 — 2T P, BETPyet
—|—%éTPE'EU1 + %'Eﬂ-l ETPE'E

Lemma: The following inequality holds

L=

ETPEE'EU-_I_ -+ %W?ETPQé == ﬁETPEBETPQE

1.2 T
55,#911111“1 89
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Example 3: Nonlinear control and state estimation using Lyapunov methods
7.6. Lyapunov stability analysis

Proof:
The binomial  {ga— 28>0  Is considered. Expanding the left part of the above
inequality one gets

p2m2+ L _Dah = 0=
18t b2 —ab>=0
T RT Bl e
ab — sigb? = 1p%a* =
2ab+ Tab— ﬁg’bg < 1l

By substituting & = and b = &' FuE  one gets

i BT e+ 38T PyBun — 028 P, BBTPyE
< 1otwiwy

Moreover, by substituting the above inequality into the derivative of the Lyapunov

function one gets

g | 1 -
V< - 58 Q- Qi+ el
J‘v
which is also written as =" QF’ 1 Hh

M o

&) [ ]
with &= ( ):— Q = ( Di QE) — dmg[[;;?'h[;}'g]
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Example 3: Nonlinear control and state estimation using Lyapunov methods
7.6. Lyapunov stability analysis

Hence, the .. performance criterion is derived. For sufficiently small 2 the inequality will
be true and the &_. tracking criterion will be satisfied. In that case, the integration of "V from O
to T gives

Ve < ~fTIEIPd + 3o ol ek =
2VT) = 2V(0) < - [TIBI b + 2 ol Pk = |
2V(T) + ST B o < 2V(0) + ] o120 i

It is assumed that there exists a positive constant ,, >0 suchthat =~ %+ —

o Nl || = D,

Therefore for the integral J'fHEH%dﬁ one gets

[ 111 < 270 + 4
Q
Thus, the integral g || E||% 9 is bounded and according to Barbalat's Lemma

limyyeaelt)=10
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Example 3: Nonlinear control and state estimation using Lyapunov methods
7.7. Simulation tests

The efficiency of the proposed flathess-based control method for doubly-fed reluctance
machines has been confirmed with the use of simulation experiments.

The dynamic model of the DFRM was taken to be completely unknown. The system’s
dynamics were identified with the used of the previously analyzed neurofuzzy approximators.
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Tracking of setpoint 1 for the doubly-fed Tracking of setpoint 2 for the doubly-fed
reluctance machine reluctance machine

Fast and accurate tracking of the setpoints was achieved. The transients of the state
variables did not exhibit abrupt changes and the variations of the control input were smooth 2
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Example 3: Nonlinear control and state estimation using Lyapunov methods
7.8. Conclusions

e A solution to the problem of model-free adaptive control for brushless
doubly-fed synchronous reluctance machines has been proposed

e |t was proven that the dynamic model of the DFRM is a differentially
flat one. The flat outputs of the model were taken to be the rotor’s turn
speed and the currents of the secondary (control) winding of the stator.

e By proving differential flatness properties for the machine,
the transformation of its model to the linear canonical form was achieved. i

e In this new linearized description the control inputs comprised
nonlinear terms which were related to the system’s unknown dynamics.

e These terms were dynamically identified with the use of neurofuzzy
approximators. These estimates of the unknown dynamics were used in turn in the
computation of a feedback control input, thus establishing an indirect adaptive
control scheme.

e |t was also assumed that only the output of the DFRM could be directly measured
and that the rest of the state vector elements of the machine had to be computed
with the use of a state-observer.

93

e The stability of the control loop was proven with the use of Lyapunov analysis.



Nonlinear control and filtering for electric power systems

8. Final Conclusions

e Methods for nonlinear control and state estimation in electric

power systems have been developed

e The main approaches for nonlinear control have been: (i) control with global linearization
method (ii) control with approximate (asymptotic) linearization methods (iii) control with
Lyapunov theory methods (adaptive control) in case that the dynamic model of the

electric power system is unknown

e The main approaches for nonlinear state estimation are: (i) nonlinear state estimation with
methods of global linearization (ii) nonlinear state estimation with methods of approximate

(asymptotic) linearization
P
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