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Nonlinear control and filtering for autonomous robotic vehicles
1. Outline

e The reliable functioning of autonomous robotic vehicles relies on
the solution of the associated nonlinear control and state estimation
problems

e The main approaches followed towards the solution of nonlinear

control problem are as follows: (i) control with global linearization
methods (ii) control with approximate (asymptotic) linearization
methods (iii) control with Lyapunov theory methods (adaptive contrc
methods) when the dynamic or kinematic model of the robotic vehicle | =
is unknown i

e The main approaches followed towards the solution of the nonlinear
state estimation problems are as follows: (i) state estimation with

methods global linearization (ii) state estimation with methods of approximate
(asymptotic) linearization

e Factors of major importance for the control loop of autonomous
robotic vehicles are as follows (i) global stability conditions for the
related nonlinear control scheme (ii) global stability conditions for
the related nonlinear state estimation scheme (iii) global asymptotic
stability for the joint control and state estimation scheme
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2 . Nonlinear control and state estimation with global linearization

e To this end the differential flatness control theory is used = ? &

e The method can be applied to all nonlinear systems which
are subject to an input-output linearization and actually such
systems posses the property of differential flatness

e The state-space description for the dynamic or kinematic model of the robotic vehicle
Is transformed into a more compact form that is input-output linearized. This is achieved
after defining the system'’s flat outputs

e A system is differentially flat if the following two conditions hold: (i) all state variables and
control inputs of the system can be expressed as differential functions of its flat outputs (ii)
the flat outputs of the system and their time-derivatives are differentially independent,
which means that they are not connected through a relying having the form of an ordinary
differential equation

on the differential flatness property (i), the state-space description of the [l
robotic system is written into the linear canonical form. For the latter state-&
space description it is possible to solve both the control and the state 4
estimation problem for the robotic vehicle.
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3. Nonlinear control and state estimation with approximate linearization

e To this end the theory of optimal H-infinity control and the theory of
optimal H-infinity state estimation are used

e The nonlinear state-space description of the system undergoes
approximate linearization around a temporary operating point which
Is updated at each iteration of the control and state estimation algorithm

e The linearization relies on first order Taylor series expansion around the temporary
operating point and makes use of the computation of the associated Jacobian matrices

e The linearization error which is due to the truncation error of higher-order terms in the
Taylor series expansion is considered to be a perturbation that is finally compensated by

the robustness of the control algorithm
e For the linearized description of the state-space model an optimal H-infinity controller

is designed. For the selection of the controller’s feedback gains an algebraic Riccati
equation has to be solved at each time step of the control algorithm S g T |

e Through Lyapunov stability analysis, the global stability properties of
the control method are proven

\.

e For the implementation of the optimal control method through the
processing of measurements from a small number of sensors of the robotic
vehicle, the H-infinity Kalman Filter is used as a robust state estimator
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4 . Nonlinear control and state estimation with Lyapunov methods

e By initially proving the differential flatness properties for the robotic
system and by defining its flat outputs a transformation of Its state-space .
description into an equivalent input-output linearized form is achieved.

e The unknown dynamics of the robotic vehicle is incorporated into
the transformed control inputs of the system, which now appear
In its equivalent input-output linearized state-space description

e The motion control problem for the robotic vehicle of unknown dynamics in now turned
into a problem of indirect adaptive control. The computation of the control inputs of the
system is performed simultaneously with the identification of the nonlinear functions which
constitute its unknown dynamics.

e The estimation of the unknown dynamics of the robotic vehicle is performed through the
adaptation of neurofuzzy approximators. The definition of the learning parameters takes
place through gradient algorithms of proven convergence, as demonstrated by Lyapunov
stability analysis

e The Lyapunov stability method is the tool for selecting both the gains of the stabilizing
feedback controller and the learning rate of the estimator of the unknown system’s
dynamics

e Equivalently through Lyapunov stability analysis the feedback gains of the state
estimators of the robotic system are chosen. Such observers are included in the control
loop so as to enable feedback control through the processing of a small number of sensor
measurements
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5. Example 1. Nonlinear control and state estimation with global linearization
5.1.0verview

» Controller design for autonomous 4-wheeled ground vehicles is
performed with differential flatness theory.

« Using a 3-DOF nonlinear model of the vehicle's dynamics and through |
the application of differential flatness theory an equivalent model in linear canonical
(Brunovksy) form is obtained.

» For the latter model a state feedback controller is developed that enables accurate tracking
of velocity setpoints.

» Moreover, it is shown that with the use of Kalman Filtering it is possible to dynamically
estimate the effects of unknown disturbance forces exerted on the vehicle.

» The processing of velocity measurements (provided by a small number of on-board sensors)
through a Kalman Filter which has been redesigned in the form of a disturbance observer
results in accurate identification of external disturbances affecting the vehicle's dynamic
model.

* By including in the vehicle's controller an additional term that compensates for the
estimated disturbance forces, the vehicle's motion characteristics remain unchanged.

* Numerical simulation confirms the efficiency of both the proposed controller and of the
disturbances estimator.
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5. Example 1. Nonlinear control and state estimation with global linearization

5.2. Dynamic analysis of the four-wheel robotic vehicle

* The dynamic model of the vehicle associates its acceleration to the forces and torques
applied on it, e.g. the force of the engine, friction and lateral forces on the tires, etc.

* The development of elaborated dynamic models of
the vehicle can be particularly useful for the design of
active safety systems. This can help in:

1) Lane keeping and avoidance of road departing when
maneuvers are too demanding

2) Control of both the lateral and the longitudinal behaviour
of the vehicle.

« A dynamic model of a 4-wheel vehicle can be: F,

“_sing cosp 0] MBI ¢ T 5
cosp sing 0 mV =| fy
0 0 1] 1y T, |
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5. Example 1. Nonlinear control and state estimation with global linearization

5.2. Dynamic analysis of the four-wheel robotic vehicle

[ angle between velocity and the OX axis

V : Vvelocity vector of the vehile

. yaw (rotation round z axis)

f, : aggregate force along x axis

f - aggregate force along y axis F,
TZ - torque round z axis 525

o : Steering angle of front wheels

 longitudinal motion

—mV (,B+ g'y)sin(,b’) +mv cos(p) =1, Forces on tires are transformed into forces and
torques along the vehicle’s axes:

| [ =sin(6) 0 |

Ff
f, |=| cos(o) 1 {F}
| Lcos(o) —L, |

* lateral motion
mV (B+y) cos(B)+mV sin(8) = f,

r

* yaw turn T
Ly =T,



Nonlinear control and filtering for autonomous robotic vehicles
5. Example 1. Nonlinear control and state estimation with global linearization

5.3. Dynamic analysis of the vehicle with longitudinal and transversal forces

The previous dynamical model of the vehicle is re-examined considering £ =0

Vv o

i

|

I

1

1

yr :
1

1

o——

<<
~ 7
= |

The vehicle’s dynamics is formulated as:

ma, =mV x—yVy)=F, +F, Fv., 1=12 forces applied on the longitudinal
. o axis of the vehicle

ma, =mVy+yVx)=F, +F : :

y =My V) =Fy +Fy, Fy., i=12 forces applied on the transversal

» axis of the vehicle
Ly =T, +T,,
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5. Example 1. Nonlinear control and state estimation with global linearization

5.3. Dynamic analysis of the vehicle with longitudinal and transversal forces

The forces and torques which are exerted on the vehicle are defined as follows:

Forces along the vehicle’s longitudinal axis:
F, =F, cos(d)—F, sin(5)
FXZ - |:Xr

Forces along the vehicle’s transversal axis:
F, =F, sin(6)+F, cos(d)
FYz - Fyr

Torque’s along the vehicle’s z-axis:

T, =L¢ (Fy, cos(5) + Fy, sin(5))
T2, =—LcFy,

10
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5. Example 1. Nonlinear control and state estimation with global linearization

5.3. Dynamic analysis of the vehicle with longitudinal and transversal forces

About the longitudinal and the lateral forces on the front and rear wheel one has:

1. Longitudinal force on the front wheel:
T,, Mmotor’s torque transferred

1 .
|:Xf — (E)(I Fof+Th _Tbr) to the front wheels
Tp

braking torque

2. Longitudinal force on the rear wheel: r

Fep =Ty, ~ 1y or)

3. Lateral force on the front wheel:

Vy +y L Vy +uL
Fy, =C:(0-f:)=C: (00— y Y ) where the wheel’s sideslip angle is g; = Yy TV
Vi f f f V V,
X and the wheel’s turn angleis ©

4.Lateral force on the rear wheel: Y

) taking that the sideslip angle is g, = Ty7VEr
Vy —wly v,
Fy, =-Cy Y and 0=0
X

C¢,.C;: cornering stiffness coefficients for front and rear wheels 11



Nonlinear control and filtering for autonomous robotic vehicles

5. Example 1. Nonlinear control and state estimation with global linearization

5.3. Dynamic analysis of the vehicle with longitudinal and transversal forces
The vehicle’s dynamics is described by the following set of differential equations:

- . | Vy +y Ly >
mV x :ml//Vy—E(a)r+a)f+E(Tm —Tp, —Tbr)+Cf(V—)5—Cf5

X

y . Vy 4yl Vy-wle 1 I, -
mVy =-myVy ~Ct () ~Cr (T + = (T =T, )6+ (Ct ——L-@1)3
Vv, V, R R

- Vy +wLg Vy-wli Ly |
Iz‘//:_l—fcf(yv—)"'l—rcr( . Vv )+ R (T —Th, )5+Lf(Tm_Er)5

X

The two control inputs to the vehicle’s dynamic model are:

Up =Ty =T — (T, +Tp, )

U2:5

A first form of the state-space equation of vehicle’s dynamic model is:

x=f (X, 1)+ g(x,t)u+ gqusu, + gzu§
12
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5. Example 1. Nonlinear control and state estimation with global linearization

5.3. Dynamic analysis of the vehicle with longitudinal and transversal forces

The nonlinear state-space equation of the vehicle comprises the following elements:

y 2
X = f(xt)+g(X,t)u+gqUsUs + gous where
Ir (a.)r‘|'0.)f) 1 Cy Vy+Lfl/./)
mR mR  m .V,
o1 Vrhy) V-l CiR- I
f(x,t)=|wV, +=(-C, 2 -C g(xt)=| 0 -t
( ) 4 X m( f VX r VX ) mR .
L o L o 0 LfoR—Lf|r(0f
+ —
%(_Lfcf (Vy fl//)_l_l—rcr (Vy fW)) 'R
0 ¢,
- VX
1 m
il 0 '
I,R v

By omitting terms  UqU» and u% the model is simplified into

;<: f(x,t)+g(x,tu
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5. Example 1. Nonlinear control and state estimation with global linearization

5.4. Flatness-based control for the 3-DOF model of the robotic vehicle
5.4.1. Differential flatness theory for dynamical systems
. - itten i S.(W,W,W,.. W), i=12
A dynamical system can be written in the ODE form S;(W,wW,w,..., ), VAT
where w{) stands for the i-th derivative of either a state vector element or of a control input
» The system is said to be differentially flat with respect to the flat output
y. =d(w,w,w,..., W), i=1..m

where  Y=(Y.¥2,-1¥Ym)
if the following two conditions are satisfied

(i) There does not exist any differential relation of the form

R(Y,Y, Yo Y2 =0

which means that the flat output and its derivatives are not coupled

(if) All system variables are functions of the flat output and its derivatives

W(I) :l//(y, y, y,,y(%)) 14
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5. Example 1. Nonlinear control and state estimation with global linearization

5.4. Flatness-based control for the 3-DOF model of the robotic vehicle

5.4.1. Differential flatness theory for dynamical systems

 Thus, differential flatness means that that all system dynamics

can be expressed as a function of a flat output and its derivatives, i.e.

If the dynamic system is initially written as

X = f(x,u), xeR",ueR"

where x s the state vector, U isthe controlinput,and Yy is the flat output

then one can find functions ¢, W such that

X:¢(y’ )./""1y(r_1)) ¢:(Rm)r —>R"

U=y (Yo Y Dy R SR
* For linear systems the property of differential flatness coincides with that of controllability

» The concept of differential flatness can be also extended to distributed parameter systems
15
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5. Example 1. Nonlinear control and state estimation with global linearization

5.4. Flathess-based control for the 3-DOF model of the robotic vehicle
5.4.2. Classes of differentially-flat systems

R m
1. Affine in the input systems x — f(X)+Zgi(X)ui

i=1
the above state equation can also describe MIMO dynamical systems.

an affine-in-the-input form

.oom
2. Driftless systems y— Z f; (X)u;
i=1 :
For driftless systems with two inputs, i.e. X= f1(X)u; + f2(X)u;

the flatness property holds if and only if.

rank of matrix Ey_ 4 ={Ey,[Ek,Ex]}, k =0 with
Eo ={f;, f,} isequaltok+2 k=0,..,n-2

., h=2
For driftless systems with n-2 inputs, i.e. x= Z fi(x)u; xeR"

1=1
the flatness property holds, if controllability also holds. Furthermore, the system is O-flat,
I.e. the flat output is a function of only the state vector elements x; , if nis even 16
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5. Example 1. Nonlinear control and state estimation with global linearization

5.4. Flatness-based control for the 3-DOF model of the robotic vehicle

5.4.3. Transformation of nonlinear systems into a canonical form

e To define necessary and sufficient conditions for the existence of a diffeomorphism
that transforms the initial nonlinear system into the canonical (Brunovsky) form the following
definitions are used:

(i) Lie derivative
L; (x) stands for the Lie derivative L¢h(x)=(Vh)f

and the repeated Lie derivatives are recursively defined as

LAh=h for i=0, Lih=LLh=vLhf for i=12,...

(i) Lie bracket
adlg stands for a Lie bracket
which is defined recursively as adk g =[f,ad ™ q]

with adfg=gand ad;g=[f,g]=Vyf-Vyg

17
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5. Example 1. Nonlinear control and state estimation with global linearization

5.4. Flatness-based control for the 3-DOF model of the robotic vehicle

5.4.3. Transformation of nonlinear systems into a canonical form

e Necessary and sufficient conditions for transforming MIMO systems into the canonical form
after applying differential flatness theory (S. Bououden, D. Boutat, G. Zheng, J.P. Barbot and
F. Kratz, 2011)

. m
A MIMO system of the following form is considered x = f(x)+Zgi(x)ui @
i=1

If the system of @ can be linearized by a diffeomorphism Z =¢#(X) and a static state feedback
u =a(x)+ B(x)v into the following form

Zi,j =Zjy,j forl<j<m andl<i<v;-1

m
wichvj =n, theny; =2z forl<j<m
j=1

are the O-flat outputs which can be written as functions of only the elements of the state

vector X..
18
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5. Example 1. Nonlinear control and state estimation with global linearization
5.4. Flatness-based control for the 3-DOF model of the robotic vehicle

5.4.3. Transformation of nonlinear systems into a canonical form

To define conditions for transforming the system of @ into the canonical form
described in the following theorem holds

Theorem:

. m
For the nonlinear systems described by X= f(X)"‘Zgi (X)ui  the following variables are defined
i1

()Go = span[gy,--., gm]
(i)Gy = span[dy,...,gm,ad ¢ 9,...,ad t O]

(1) Gy :span[adf;gi for 0< jJ<k1<i<m]

Then the linearization problem for the above class of systems can be solved if
and only if

(1) the dimension of G;,i =1,...,k is constant for xe X R" andforl1<i<n-1
(2) the dimension of G,,_; is of order n

(3) the distribution G, is involutive foreachl<k <n-2

19
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5. Example 1. Nonlinear control and state estimation with global linearization

5.4. Flatness-based control for the 3-DOF model of the robotic vehicle

5.4.3. Transformation of nonlinear systems into a canonical form

It is assumed now that after expressing the system state variables and control inputs as
functions of the flat output and of the associated derivatives, the system can be
transformed in the Brunovskv canonical form:

T = Ty
Ty = T3
ﬁmi_i = Ty

dpy = filo) + 300401, (%) s + dy

By = Ty 42
Lpy42 = Lry43

“L;'p_j_ = Lp
By = fpl2) + 2?21910:5 (=)u; +dp

=5
Yo = Xo

Yo = Trn—r,4+1
Havmg written the initial nonlinear system Into the yw _ . (X)"‘Zgij (U
canonical (Brunovsky) form it holds

) 20
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5. Example 1. Nonlinear control and state estimation with global linearization
5.4. Flatness-based control for the 3-DOF model of the robotic vehicle

5.4.3. Transformation of nonlinear systems into a canonical form
Next the following vectors and matrices can  Tpyg; the initial nonlinear system can be written

be defined in the state-space form
=00 . 0 )
900 =[91(¥), - GnOOT X = AX+B[f (X)+ g(x)u-+d]
with g; (X) =[g5i (X), .. 9pi ()] y =Cx

A=diag[Ay,...,Ap], B=diag[By,...B;]

T T or equivalently in the state space form
C' =diag[Cy,....Cp], d =[dy,....d}]

X=AXx+Bv+Bd
where matrix A has the MIMO canonical form, y =Cx
I.e. with elements
0 1. 0 .. 0] where V= f(X)+g(x)u
O 01 .. 0 ) i
o For the case of the multi-DOF MIMO robotic model
A e K it is assumed that the functions f(X) and 9(X) are
000 .1 known and due to missing sensory information
00 0 .. Of., some of its state vector elements are not measurable

Bl =[0 0 .. 0 I Ci=[L 0 .. 0 0O} 21
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5. Example 1: Nonlinear control and state estimation with global linearization

5.5. Design of a flatness-based controller for the 3-DOF model of the vehicle

To show the differential flatness of the vehicle’s model the following flat outputs are
defined:

y1 =Vy

yo=LimVy —l, v

All elements of the system’s state vector - {\/X Vy 4 can be written as functions of
the flat output and of its derivatives

Vx:yl
vo=Ye (b Limys Yo+ Crlbs +Lr)ys
P oLim LimUC (Ly +L)(1, — Ly L)+ (Lemyy)?

. Limyy Yo +Cr(Ls +Lr)Y2
Cr(Ls +Lp)(1, —LsLm)+(L¢my;)?

22
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5. Example 1: Nonlinear control and state estimation with global linearization

5.5. Design of a flatness-based controller for the 3-DOF model of the vehicle

Expressing the system’s state variables as functions of the flat output and their derivatives
one obtains the following state-space description

S where
y “ | U ' ' A11(Y1, Y2, yz) Ao (Y1, Y2, Y2)
..1 :A(yl’y21y2)|:u :|+(D(y11y21y2) A(yl’yZ’yZ)
RZE 2 Ap1(Y1, Y2, yz) Ao (Y1,Y2, yz)
| . . C; Voil:u
with 1 v f VyTLi Y
A Vo, Vo) = — A1 (Y1, Y2,Y9) =—( )
11(Y1, Y2, Y5) v 12(Y1:¥2:Y2) = — "
Gl +L)Vy — Ly ) - Lymy y?
Ao1(Y1,Y2,Y5) = Al B EA ; L
mRyl

I—rCr(Lf +I—r) (Lfo R_Lf Ir a)r) N
Y1 IzR

Ao (Y1,Y2,Y5) =(=Lsmy; +

Lol + L)V —Lew)-Lymy yf Cr(Vy +Lrw)  CrlLy +Ly) RCy — Iy o1
y? my; y1 mR

23
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5. Example 1: Nonlinear control and state estimation with global linearization

5.5. Design of a flatness-based controller for the 3-DOF model of the vehicle

About matrix  ®(y1,Y2,Y5) it holds

D1(Y1,¥2,Y5)
Dy(y1,Y2,Y5)

D(Yy1,Y2,Y,) =

Wlth . . I . .
D1(y1, Y2, Yo) = WVy _m—k(errwf )

. Cr(Ls +Ly)
Dy (Yy1,Y2,Yo)=—Lsmy; f3(x,t) - y fo (X, 1)+
1
Co(Ls +L )V — Lo ) —Lsmu y2 L.C.(Ls +L
N £ (Lt r)(vy 2r‘//) fMy Y1 (X, 1) — rCr (Lt r) fa(x,1)
Y1 Y1

According to the above the system’s control input can be also expressed as a function of

the flat output and its derivatives
24
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5. Example 1: Nonlinear control and state estimation with global linearization

5.5. Design of a flatness-based controller for the 3-DOF model of the vehicle

Thus one has -

u . ’ .
L= ALY V) (Y 00y, Y0 L))
. Y,

while conditions for the non-singularity of matrix A(y1,Y»,Y,) are also proven to hold

Indeed, the determinant

(I, @f—C; R)(Lfylm ~C,(Ls +L,)L, Lim+C,1,L,)

det(A(yy, Y2, 3./2)) = 2

Y1m
IS non-zero, because it holds
: . . . . - C4R
(i) (Ir@1-C¢R)=0 since for the wheels rotational acceleration one has @f <—
]
(ii) 2,202 I L
(Lfylm Cr(l—f"'Lr)LrLfm"‘Crler)io when Z> fm

25
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5. Example 1: Nonlinear control and state estimation with global linearization

5.5. Design of a flatness-based controller for the 3-DOF model of the vehicle

The differentially flat model can be written in canonical form after defining the control input

Dl} = A(Y1, Y2, g’z){ul}rq)(h’ Y2, 5’2)
2 Uz

Then one obtains the description of the vehicle’s model in the MIMO canonical form

Y1l o o oy, ] [1 O

. Vl
y2=001y2+00V
° 0 0 Ofys| |0 1]-2
Y3

The control law which assures convergence to the desirable velocity setpoints is

, ref
ref
vi=Yy; —Kp(Y1—-y; )
ref ref

Vo=y, —Ka,(¥o=Yp )—Kp,(Ya—y5") ”
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5. Example 1: Nonlinear control and state estimation with global linearization

5.5. Design of a flatness-based controller for the 3-DOF model of the vehicle

Defining the error variables e; = y; — yl're‘c and €, =y, — ygef
the tracking error dynamics for suitable selection of feedback gains becomes

e1+kp & =0= lime (t)=0
t—w

€2+ kd2 €2+ kp292 = O:>t||m ez(t) =0
—>0

The control input that is finally applied to the vehicle is given by

{ul} = Ay, Yo, 5’2)({\/1}—@()/11 Y2, 3./2))

Us )

or equivalently

ref
y f

y - y y. —kp (y1—-y) .
Lj = A (Y1, Y2, ¥, )( _ref 1_ .p&ef . ~D(y1,Y2,Y5))
v, —ka, (V2= V2 )=Kp, (V2= ¥5)]

27
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5. Example 1: Nonlinear control and state estimation with global linearization
5.6. State estimation with the use of differential flatness theory
The continuous-time Kalman Filter

* For mechatronic systems with linear dynamics the Kalman Filter is the optimal state estimator
since it can provide estimates of the state vector elements of maximum accuracy (minimum
variance) through the processing of measurements from a small number of sensors.

* For the continuous-time dynamical system

X(t) = AX(t) + Bu(t) + w(t)
y(t) = Cx(t) +v(t)

where E(W(t)w(t+7))=Q(t) and  E(v(t)v(t+7))=Q(t)

the Kalman Filter is a state observer which is given by

)A((t) = A>A<(t) + Bu(t) + K[y — Cx(t)]
K=PC'R™?

P=AP +PA" +Q-PC'R'CP
IS the state vector estimation

N

(Riccati Equation)
where X

P IS the estimation error covariance matrix

28
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5. Example 1: Nonlinear control and state estimation with global linearization
5.6. State estimation with the use of differential flatness theory

The discrete-time Kalman Filter

* The discrete-time Kalman Filter is an optimal state estimator for linear dynamical systems
of the form:

x(k +1) = d(K)x(k) + L(K)u(k) + w(k)
y(k) = Cx(k) + v(K)

W(K) : process noise v(k): measurement noise

* The process and measurement noises are uncorrelated Gaussian
zero-mean signals and their covariance matrices are:

Q= E[w(i)w' (j)] R=E[Vv(i)v' (j)]

* The initial values for the state vector estimation and for the
covariance matrix of the estimation error are taken to be:

X(0)=aguessof E[x(0)]
E’(0) =a guess of e.g 5(0) —Al  with A>0

29
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5. Example 1: Nonlinear control and state estimation with global linearization
5.6. State estimation with the use of differential flatness theory

The discrete-time Kalman Filter

e The Kalman filter can be decomposed into two parts:
i) measurement update: the set of measurements Y ={y(1),...,y(k-1),y(k)} available

The estimation of x(k) IS >A<(k)
K(k)=P (k)C'[CP-(k)CT +R]™*

x(K) = X (K)+KK)y(K)-Cx (K]
P(k) =P-(k)-K(k)CP-(k)

i) Time update: while measurement y(k+1) has not been obtained yet

The a-priori estimation of x(k) IS x_(k)

P-(k +1) = d(K)P(K)D" (k) +Q(k)

X (K+1) = ® >A<(k) + Lu(k) 30
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5. Example 1. Nonlinear control and state estimation with global linearization

5.7. Disturbance estimation on the vehicle with the use of the Kalman Filter

5.7.1. State estimation with the Derivative-Free nonlinear Kalman Filter

It was shown that the vehicle’s model can be written in the MIMO canonical form

Y1 o o oy, | [1 0

° Vl
y2:001y2+00V
' 0 0 Ofys| |0 2172
Y3

Thus one has a MIMO linear model of the form

Vi =Asys +Bsv
2t =Ctyg

where Yi =[Y1. Y2, )’2]T

and matrices A¢,B¢,Cs are defined as

As = Bf =

o O O
o O O
o +— O

o o K
~, O O
@)

——

Il
o O K
o L O

31
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5. Example 1. Nonlinear control and state estimation with global linearization

5.7. Disturbance estimation on the vehicle with the use of the Kalman Filter

5.7.1. State estimation with the Derivative-Free nonlinear Kalman Filter

The measurable variables are assumedtobe y; =V, and y,=L¢mV, -1,y

which in turn are associated with the measurement of linear and angular velocities Vi Vy

For the model of@ and and after discretization of matrices A ,Bj,Cj

which results into A? , B? ,C?

one can estimate the state vector of the nonlinear vehicle’s model by applying the Kalman
Filter recursion to its equivalent linear canonical form.

This is the Derivative-free nonlinear Kalman Filtering

KF measurement update KF time update

K(K)=P~(k)cd [cfP-(k)ct +R]™? - ad dT
P~ (k+1) = Af (K)P(K)AF (k) +Q(K)

N

x(k) =x (k)+ K )[y(K)-Cx (k)]

X (k+1) = AY x(k)+ BYu(k
P(k) = P~ (k) - K(K)C{P™ (k) (k+1) = At x(k)+Bru(k)

32
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5. Example 1. Nonlinear control and state estimation with global linearization

5.7. Disturbance estimation on the vehicle with the use of the Kalman Filter

5.7.2. Modelling and estimation of disturbances in real-time

It is assumed that disturbances forces affect the vehicle along its longitudinal and transversal
axis and that disturbance torques appear along its z-axis.

The disturbances dynamics

are represented as

dx = fdx(\/x’vy1‘//)
dy = fdy(Vx’Vy"//)

dl// :Td,/, (VX1Vy1W)

The i-th order derivatives of the
disturbances are denoted as

~ (i) ) . 7
dx = fdx (Vx’Vy’W) 5

Considering the effect of disturbance functions on the initial nonlinear state equation of the
vehicle and the linear relation between state variables [V,,V,] and the state variables of the
flat system description one has the appearance of the disturbance terms in the canonical

form model

33
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5. Example 1. Nonlinear control and state estimation with global linearization

5.7. Disturbance estimation on the vehicle with the use of the Kalman Filter

5.7.2. Modelling and estimation of disturbances in real-time

Canonical form representation of the vehicle’s model including dlsturbance

terms [, T L -
Y11 To 0 ofy,] [1 0O —dx
. vy m
Yo 0 0 1|y,|+|0 O{V}+ 0
° 0 0 0fysg| [0 1|72 ol
Y3 Lidy—dy

To obtain simultaneous estimation of the system’s state vector of the disturbance terms
the state vector of the system is extended to include also disturbances:

Next, the state vector of the model is extended to include as additional state variables

the disturbances 1~

m 9 and Ly dy—dy

The new state-space description comprises the state-space variables:

1=Y1,.2p =Y, 13 =Y, g =T, =—dx

=fa' Z6=%b=Lfay—dw,Z7=%b 34
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5. Example 1. Nonlinear control and state estimation with global linearization

5.7. Disturbance estimation on the vehicle with the use of the Kalman Filter

5.7.2. Modelling and estimation of disturbances in real-time

With the definition of the extended state vector the state-space equation of the vehicle
takes the form:

~ o~

2:A2+Bv

where:

0 001 0 0 O] (1 0 0 O] 1 0]
0010000 0 00O 0 1
/0000010 0100 1 |00
A=|0 0 0 01 00 B=|0 0 0 O C =(0 0
000O0O0OTUO0O 0010 00
000O0O0OTU 01 0000 00
0 00000 O 0 0 0 1] 0 0]

where the measurable state variables are Z1 and Z2.
Since the dynamics of the disturbance terms fa and Tb are taken to be
unknown in the design of the associated disturbances' estimator one has the

following dynamics 35
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5. Example 1. Nonlinear control and state estimation with global linearization

5.7. Disturbance estimation on the vehicle with the use of the Kalman Filter

5.7.2. Modelling and estimation of disturbances in real-time
Dynamics of the disturbances estimator:

N

Zo=AoZ+BoVv+K(Cyz-C,2)

where KeR™ s the state estimator’s gain and
0 00100 O (1 0 0 O] (1 0]
0 01 00O0O 0 00O 01
~ 0 00O0OT1O _ 0100 7 (00
Ao=/0 0 0 01 0O Bo=/0 0 0 O Co=(0 O
0 0O0O0OOTG 0 00O 0 0
0 00 0O O01 0 00O 0 0
0 00000 O] 0 0 0 0 0 0]

Definingas Ad,Bd,Cd the discrete-time equivalents of matrices Ao,Bo,Co
a Derivative-free nonlinear Kalman Filter can be used for simultaneous estimation

of the vehicle’s state vector and of the unknown disturbances
36
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5. Example 1. Nonlinear control and state estimation with global linearization

5.7. Disturbance estimation on the vehicle with the use of the Kalman Filter

5.7.2. Modelling and estimation of disturbances in real-time

The Derivative-free nonlinear Kalman Filter for simultaneous state &
estimation and disturbances estimation is given by:

KF measurement update KF time update

T _ _T N T
K(k)=P~(k)Cd[Cd P~ (k)Cq+R]™ P~ (k+1) = Ad (K)P(k) Ad (k) + Q(K)
2() =2 (K)+K(QK)~Ca z (K)] 2 (k+1) = Ag 2(K) + Ba v(K)

P(k) = P~ (k) ~K(K)Cd P~ (K)

To compensate for the effects of the disturbance forces the control input applied to the
vehicle becomes

- N
Vl_fa —
V= a V= Vi /2\4
d 7 _
V2——fb V2 —126
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5. Example 1. Nonlinear control and state estimation with global linearization

5.8. Simulation results
d

dyd |
Vy ,Vy W
+ Flatness-based
—P@_P nonlinear
controller +
- A
>
. +
—P Disturbances :
compensator AGV
fo.fy Kalman Filter-based
Disturbances
Estimator
Vy ,Vy W

The control loop comprises (i) a flatness-based nonlinear controller
(i) a Kalman Filter-based disturbances estimator
(iii) a disturbances compensator 38
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5.8. Simulation results

Disturbances profile 1:

1

IS ST SO NN SO SO S S

20 0
tme

Control of rotational velocity Disturbances estimation 39
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5. Example 1. Nonlinear control and state estimation with global linearization

5.8. Simulation results

Disturbances profile 2:

1

f : : : : : ; o
17| E— st R fioscen et L 4 o
; : : : : : : -

dtbfdt — dfb, fdt

1] L 0 1o

o 10 a
time

Control of rotational velocity Disturbances estimation 40
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5. Example 1. Nonlinear control and state estimation with global linearization

5.8. Simulation results

Disturbances profile 3:

-1

i i i i i i i
o ) 10 B a il 1] *H L]
ime

Control of x-axis velocity

Control of rotational velocity

dtbédt - dfb,, fdt

Disturbances estimation 41
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5. Example 1. Nonlinear control and state estimation with global linearization
5.8. Simulation results

Disturbances profile 4:

1

dftvdt - dfb,, fdt

Control of rotational velocity Disturbances estimation 42
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5. Example 1. Nonlinear control and state estimation with global linearization
5.9. Conclusions A
» Two AGV design problems have been treated (i) nonlinear control for

autonomous navigation (ii) real time estimation of disturbances due ;.
to forces or torques affecting the vehicle's motion.

* Once such disturbances have been identified with the use of a nonlinear filtering algorithm,
that is redesigned in the form of a disturbance observer, it is possible to include an additional
element in the vehicle's controller that compensates for the disturbances’ effects.

* The proposed nonlinear controller is based on differential flatness theory. It is shown that
the vehicle's model is a differentially flat one, which means that all its state variables and contro
inputs can be written as functions of the flat output and its derivatives.

» The transformation into the linear canonical (Brunovsky) form is also used to obtain an
estimator of the vehicle's state vector through the processing of measurements from on-board
sensors. To this end the Derivative-free nonlinear Kalman Filter is used.

* By redesigning the Kalman Filter algorithm in the form of a disturbance observer it is also
possible to estimate in real-time the effects of disturbance forces and torques that
are exerted on the vehicle's model and of terms representing unknown system dynamics.

» The performance of the nonlinear AGV controller and of the Kalman Filter-based
disturbances estimator has been evaluated through simulation experiments. 43



‘6.1. Overview

Nonlinear control and filtering for autonomous robotic vehicles

6 . Example 2: Control and state estimation with approximate linearization

e The article proposes a nonlinear optimal control approach
for the UAV and suspended load system.

e The dynamic model of the UAV and payload system undergoes approximate
linearization with the use of Taylor series expansion around a temporary operating point
which recomputed at each iteration of the control method.

e For the approximately linearized model an H-infinity feedback controller is designed.
The linearization procedure relies on the computation of the Jacobian matrices of the
state-space model of the system.

e The control method is the solution of the optimal control problem for the nonlinear and
multivariable dynamics of the UAV, under model uncertainties and external perturbations.

e For the computation of the controller’s feedback gains an algebraic Riccati equation is
solved at each time-step of the control method.

e The nonlinear optimal control approach achieves fast and accurate tracking for all state
variables of the UAV and payload system, under moderate variations of the control inputs.

e The stability properties of the control scheme are proven through Lyapunov analysis.
Finally to implement state estimation-based control the H-infinity Kalman Filter is used ag,
a robust state estimator




Nonlinear control and filtering for autonomous robotic vehicles

6 . Example 2: Control and state estimation with approximate linearization
6.2. Dynamic model of the UAV and suspended payload system

The main variables of the dynamic model of this aerial robotic system are defined as follows: :

e ¢: is the roll angle of the UAV with respect to the horizontal axis of the inertial reference
frame system,

e O: is the rotation angle of the payload wit respect to the vertical axis of the inertial
reference frame,

e | is the length of the string connecting the payload with the center of gravity of the UAV.

The mass of the UAV is denoted
as M whereas the mass of the
load is denoted as m.

Fig. 1. Reference frames for
the robotic system of the UAV
and suspended payload

Zy

45
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6.2. Dynamic model of the UAV and suspended payload system

e After applying the Euler-Lagrange method, the dynamic model of the UAV
and of the suspended to it payload is given by the following set of differential
equations

(M + m)i + mi(fcos(8) — 62sin(8)) = —Fsin(¢)
(M + m)(Z4+ ¢) + mi(@sin(d) + 82cos(8)) = feos(¢)
miycos(d) + mlzsin(d) + ml?(8) + mglsin(d) =0
=

e The control inputs to the model are the aggregate lift force f and the torque that is
generated when the motors of the UAV function at different turn speed and provide
uneven power to the UAV

e The dynamic model of the UAV and of the suspended to it payload is given by the
following two sets of differential equations

(M +m) 0 mlcas(8)y /¥ —m-ﬂiézsin(ﬁj —fsin(g)
0 (M 4+ m) misin(d) ; + | mid2os(8) | = | feos($) —U(M—I— ™m)g @

micos(8) mlsin(8) —ml mglsin(d)

jéf}:«r @ 46
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6 . Example 2: Control and state estimation with approximate linearization
6.2. Dynamic model of the UAV and suspended payload system

e Bydenoting wuy = —fsin(¢), and vz = foos(¢) — (M + m)g
onehas f = {v} + [w + (M + m)g]?} 2.

e This allows also to write the state-space model as:

(M +m) 0 micos(8)y (¥ —mﬂdézsin{ﬂj
0 (M +m) misin(@)| | 2]+ | mit%eos(8) | =
micos(d)  mlsin(8) —ml d mglsin(d)
and using the state vector X, = [¢, 2,8]7, one has also the concise form:: @

M{X ) K + B X, X)) = G e @

where the inertia and Coriolis matrices are defined as :

(M + m) 0 micos(d) ‘ —m-ﬁdégsin(é] 1
MiX. )= 0 (M 4+ m) misin(d) hlz, X)= | mid%cos(8) Gr= |0
micos(d) mlsin(d) —iml mglsin(f) U
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6 . Example 2: Control and state estimation with approximate linearization

6.2. Dynamic model of the UAV and suspended payload system @
e The inverse of the inertia matrix M is given by

—(M + m)ml — (m)%sin?(8) (ml)?sin(8)cos(8) —ml(M 4+ m)cos(d)
M~t= 1 —(mi)2sin(8)cos(8) —ml(M 4+ m) — (mD%cos®(8) —mi(M + m)sin(8)
—ml(M + mcos(d) —ml(M + m)sin(d) (M +m)?

where the determinant det(M) is given by det (M) = —mi{M + m)[M + m + mi].

e Thus, the state-space description of the UAV with the suspended payload on it is given by

X = =M (X, X)) + M 16 0
$= 3T

Next, one computes the product — M1 {X] h (Xm:. ijl

&1
M o) =i (1) ()

a5

where a1 = [—(M 4+ m)ml — (ml2sin?(8)][-mif2sin(8)] + [(ml)2sin(@)cos(d)][mib2cos(8)] — [mi(M +
mjeos(§)]|[melsin(8)],

ay = [—(mi)2sin(@)cos(0)][—midZsin(0)]+](ml)2 sin(F)cos(8)] [ml2cos(8)]+[—mi (M 4+m)cos(8)][mid2cos(8)]

s = [—mi(M + m)ecos(d)] [—mi? sin(@)] + [—ml(M + m)sin(8)][mitcos(8)] + (M + m)?[mglsin(d)] a8
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6.2. Dynamic model of the UAV and suspended payload system
as well as the product A ~1(X.)G..
—(M + m)ml — (mi)?sin?(8) (ml)?sin(d)cos(d)
~M71G,, = —7r —(ml)2sin(Hcos(8) — (M + m)ml — (ml)?cos?(8)
—ml( M 4+ mlcos(d) —mi(M + m)sin(8)

By defining the complete state vector as X = [y, %, 2, £, 8, E}} b, a;é]T

one obtains the state-space description: ;{" - F[X} s Q(mju @

where F:[Fi:-FQ}FE}Fﬂ}FE}FG}F?}FE]T @ Wm :;‘:.w
A e
/": /

Fy = 20 Hy =ty by = 24 by = xg il v ¢ a

B = —m{[—(fﬂ' + m)ml — (ml)2sin?(9)][—mldZsin(0)] + [(mD) 2sin(0)cos(8)] [mid2cos(8)] — [mi(M +

m)cos(8)][mglsin(8)]}

Fy = _MIHI‘ {[~(mD)2sin(B)cos(8)]-[—mit2sin(d)] + [(mi)2sin(@)cos(@)]-[mif2cos(8)] + [—mi(M +

m)cos(8)]-[mibcos(8)]}

Fg = —Mlﬁj{[—mi(M—l—m)ms({-}')][—mﬂégsin(ﬂj]+[—m£(M+m)sin(€)][miézr:@s(é')]—l—(M—I— m 2 [mglsin(8)]}
49
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6.2. Dynamic model of the UAV and suspended payload system

and

where

P O
g1 = mﬁiﬁj[—(ﬂ{—l—m}]mﬂ—(mﬂjgsw% T =MD oy = mﬁm[_{mﬂjgsin{ﬂjms(ﬂﬂ

/0
311
[

921
[

931
[

\ O

0

g1z
[

gao
[

g3z
[

0

0
913
[

923
[

933
[

1)

()

G31 = deﬁiM [—mI(M + m)cos(d)]

912 = gam (i) sin(@)cos(8)]

goo = mﬁﬁj[—mﬂ(M—l—mj—{mﬂjgmsg(ﬂj]
_ 1

948 = Jeind)

g1z =0, gz =10

Igi = [U:- 911, D} go1, D> 431, U:- U]T

Ga = [0, 912, 0, g22,0, 932, 0, 0]

QE — [[:I:- 413, D:- 423, [:I:- 933, [:I:- 1

]T

932 = gapzs [—ml (M + m)sin(9)

50
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6.3. Approximate linearization of the UAV and suspended payload system

X = F(X)+ Gl2)u

takes place around a time-varying equilibrium which is re-computed at each time instant.

This consists of the present value of system’s state vector x and of the last value of the
control inputs vector u that was applied on it.

This results into a linearized state-space description of the form:

= Az + Bu+d @

where d isthe modelling error due to approximate linearization and truncation of
higher-order terms in the Taylor series expansion, while matrices A and B are given by

A=V F(2) | @ ey TVaG1(2) | ) 81+ VaGol) [or wn) o + Vo Gale) [on uey us

Next, the elements of the model’s Jacobian matrices are computed: 51
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6.3. Approximate linearization of the UAV and suspended payload system

Jacobian matrix

oR, 6P, OF
ok oH . SR
va(m:‘ |(m* }u*] _ ey Huwa g
oFy  OF | OF
5&:1 5’:::2 . Eh:;q

About the first row of the Jacobian matrix Vo F(x) | (e
o7 T o < R - O <

Dy sy By oo BE _aopy BF o —[ 224
Hawy [:]] Hwa 1] Swa [:I] Hwg [:I] g ' Bwg Y B ' B

About the second row of the Jacobian matrix "?mF{m} | (a2

gy arkry
om0 @m-0@m-0 £-0L-0
% = —dgtim {[—(mD)*2sin(zs)cos(zs )] [— (m) xisin(zs)]

+[—(M 4+ mIml — (m)?sin?(zg)]-[—mlzicos(zg)]
+H(ml)(cos?(xg) — sin?(2g))]- [mizdeos(zs)] + [(ml)?sin(zs)cos(zs)|[—mlzdsin(zg)]
—[—(ml)(M + m)sin(xg)] [mglsin(zg)] — [—(mI(M + m)cos(xg)]-[mglcos(ze)]}.

g—i‘z = _detiM I[=(M +mi(ml) — (mi}gsing(mﬂ][—mﬂm%sin(mﬂ]
+[(ml)?sinxg)cos(xs )| [mi2egtscos(zs)] ). 52



- Nonlinear control and filtering for autonomous robotic vehicles
6 . Example 2: Control and state estimation with approximate linearization

6.3. Approximate linearization of the UAV and suspended payload system
About the third row of the Jacobian matrix IVmF(m) | (o )

BF: A OF: A 8F: _ n 8F: 8Fz __ 88 __ Bz g
F2=0,32=0,32=0,38=1, gmo=U052=0,72=05F:=0

About the fourth row of the Jacobian matrix "?mF{m} | %)

85y _ D] 85y _ [:]] 85y _ [:]] 85y 5= [j &y _s D] g_z‘: sy % g -

5m4 &m*

OB _ b ([ (ml)(00s? (ns) — sin(ss))||~miasin(ss)] + [~ (md)?sin(vs)o0s (s )] [ mizoos(ss)
+[(ml)?(cos?(zg) — sin?(xg))|[mizdcos(xg)] + [(mi)2sin(zg)cos(zg )] [— (ml)edsin(zg)]

+[mi(M + m)sin(mﬂ][mim%ms(mg)] + [—mi(M + m)cos(m)][—mim%sin(m)]}

gi: = —detiMj{[—(mﬂjz(casz(mgj — sin?(zs))|[-mlzdsin(zs)] + [—(m)Zsin(zs)cos (s )] [-mizicos(zs)]
+[(ml)?(cos?(zg) — sin?(xg))|[mizdcos(xg)] + [(mi)2sin(zg)cos(zg )] [— (ml)edsin(zg)]

+[mi(M + m)sin(mﬂ][mim%ms(mg)] + [—mi(M + m)cos(m)][—mim%sin(m)]}

About the fifth row of the Jacobian matrix ?mF{m} | (o %)

8F _n 8F _n 28 _n 8K _ OB o) 50 § (0] RS
&y _[:]3 o _[:]3 g 2 _[:]3 gy _[:]3 Hwg _U’ g _13‘ E‘i'm:r_[:]’ g =0 53
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6.3. Approximate linearization of the UAV and suspended payload system

About the sixth row of the Jacobian matrix "FmF(m) | (o %)

8Fs s 8Fs s
5’&31_[:'] -ﬁ'mg_[:l] 5&:3_[:'] 5&:4_[:] %: ]%ZU

g—iﬁ = —mim{[mi{ﬂ&’ + m)sin(zg )] —mizdsin(zg)]

[—mi(M + m)cos(zs)] [-mizicos(zs)] + [—ml(M + m)cos(zs)] [mizicos(zs)]+
[—ml(M + m)sin(xg)][—mizdsin(ze)] + (M + m)2[mglcos(zg)]}

g_f:g _ _mtiﬁj{[_m.i{ﬁff—k m Jcos(ze )| [—mi2eete sin(ze )]

+[—ml(M + m)sin(zs)| [mi2egtecos(zg)] }

F

, 14
%
£
£
“

About the seventh row of the Jacobian matrix Vo, F'(2) | (x

8. [ B8 _ ) 28 . (] 88 0000 0008 G S0 o S8R 1

ey T Bwe TV fwmg Y Bwg ) Bwg ) Bwg Y S ! dwg

About the eight row of the Jacobian matrix ?mF(m] | (o %)

L

8Fg &g &g 8Fg fFz a8Fy 8Fy GFy
0,220,220 0, 8B —0 2% 0, 28 g 2% 1

Feeq & » & ) Bwe ) D ) Fwe | ) Dwy Bz ' 54
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6.3. Approximate linearization of the UAV and suspended payload system

The Jacobian matrix VaG1(z) |(m*,u*j of the robotic system is computed as follows:

/0000 0O 0 0 0y 5
0000 % 000 where  Z = —(ml)*2sin(xg)cos(xg),
0000 O O0O0OD
0000 %2 000
%ﬁ?i(mﬂtm*,ﬂ*)— 00 0 0 BU 0 0 0 %ﬂ_;;: —(mi]g(casz[mg—Sing(%))
0000 % 000
0000 O 000 . ;
\0 000 0 000 = mi(M + m)sin(zs).
The Jacobian matrix Wmf_’?g{m}“m*}u*] of the robotic system is computed as follows:
/00000 0 00 0y 5 . -,
000 0 %@ 00 0 where —5%52 = mi(cos*(zg) — sin®(zg)),
0000 O 000
000 0 2= g0 B ,
V@@ =0 0 0 0 %% 0 0 o a2 _ (ml)%2cos(zg)sin(zs)
0 000 %2 000
0000 0 000 5
Ygsz _
\0 000 0 00 0 By = —M + m)cos(zs).

The Jacobian matrix :V,Ga(z) |+ .y Of the robotic system is computed as follows:

?’mﬁ?g(m} |I:a:*}u*:|= [:]3},{3. 55
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6.4. Design of an H-infinity controller for the UAV and suspended payload system

As explained, the system’s dynamic model undergoes linearization round its present operating
point (x*,u*), where x* is the present value of the UAV and payload’s state vector and u* is the
last value of the control input vector that was applied on it. Thus one arrives at the
approximately linearized description of the system:

X=Ax+Bu+d @

where d, is the linearization error due to truncation of higher-order terms in the Taylor
series expansion and

A=V, (@) + 9(2)u] ey FA = Va[f(@) | o) +Valg@)t |iaee)] (22)

In a similar manner, one has that

B = V,[f(@) + 9@)u] |ia ury =B = 9(2) |(aur) 23)

After linearization round its current operating point the system’s model

is written as B e T

Parameter d, stands for the linearization error in the system’s state-space model

At every time instant the control input #* is assumed to differ from the control input #:
appearing in @ by an amount equal to A« thatis g% = 44 As

wg = Awg+ BEur 4+ dy

56
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6.4. Design of an H-infinity controller for the UAV and suspended payload system
The initial model of the UAV and suspended payload is assumed to be in the form

= (e )y BeERE mER™

where the linearization point (temporary equilibrium) is defined by the present
value of the system’s state vector and the last value of the control inputs vector

exerted on it (2% u*) = (2(t), ult — T})).

The linearized equivalent of the system is described by

¢ = Ax + Bu+ Ld xcR" ucR™, deh*

where matrices A and B are obtained from the computation of the Jacobians

8h 84 . 85 8y 8fH . 8f4
o %R .. 6B oh o . OB
HE | 0 ol e ol | ] B= |5 B e B (e
I Bl wne O Bfn  Bfa ... Bfn
&y Huwa iy, g Ha s LT

and vector d denotes disturbance terms due to linearization errors.

i =l Paypea k. o *

y=Cn 57
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6.4. Design of an H-infinity controller for the UAV and suspended payload system

The dynamics of the system of Eq. can be also written in the form

2= Ae4 But Bu* — Bu* 4 dy @

and by denoting d; = —Ewx*4d; as an aggregate disturbance term one obtains

b= s By By
By subtracting EqQ. @ from Eq. one has

#— g = Ale — 2g) + But d — da

By denoting the tracking error as € = #— 4 and the aggregate disturbance term as
d_ = dy e the tracking error dynamics becomes ; '

6= Ae+ Bu+d
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6.4. Design of an H-infinity controller for the UAV and suspended payload system

N
The problem of disturbance rejection for the linearized model that is 1

described by 1‘#
¥ =Ar+ Bu+ Ld g l
yr=

where 2€£”, we ™, de B* and ye ¥ cannot be handled efficiently if the classical LQR
control scheme is applied. This is because of the existence of the perturbation term 4.

§34

In the He~ control approach, a feedback control scheme is designed for trajectory
tracking by the system’s state vector and simultaneous disturbance rejection, considering
that the disturbance affects the system in the worst possible manner

The disturbances’ effect are incorporated in the following quadratic cost function

Jt) = (27 )y )+
+qu@)$@% E?&T(t}é{ti&i ro >0 (3)

The coefficient r determines the penalization of the control input and the weight
coefficient p determines the reward of the disturbances’ effects.
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6.4. Design of an H-infinity controller for the UAV and suspended payload system

Then, the optimal feedback control law is given by

wit) = —Ka(t) @

K=1pTp

with

where P is a positive semi-definite symmetric matrix which is obtained from the solution
of the Riccati equation

ATP 4 PA+Q—P(ABBT - LT\ P =0

where Q is also a positive definite symmetric matrix.

The parameter p in Eq.@is an indication of the closed-loop system robustness.
If the values of p> 0 areexcessively decreased with respect to r, then the solution of
the Riccati equation is no longer a positive definite matrix. Consequently, there is a
lower bound p,,, of for which the H-infinity control problem has a solution.
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6.5. Stability analysis for the UAV and suspended payload system

The tracking error dynamics for the UAV and suspended payload system is written in the

form
6=Ae+ Bu+ILd

where in the case of the considered rotary pendulum | =] ¢ R8 with | being the
identity matrix. The following Lyapunov function is considered

V==1elPe
where & =% —x  Isthe state vector’s tracking error

V = %éTPE HE %ETPE',:‘;:-
V =1lde+ Bu+ LdTP + 1eTPlde + Bu + Ldj=

V =37 AT + T BT 4+ dT LT Pe+
+1eTPlAe + Bu+ Ld]=

Vo— %ETATPE el %HTBTPE 4 %GETLTPE—I—
%ETPAE + %ETPBH + %ETPLGT
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6.5. Stability analysis for the UAV and suspended payload system

The previous equation is rewritten as

V =1T(4TP + PA)e + (2uTBTPe + LeTPBu)+
—|—[%dTLTPe 4 %ETPL{f}

P

Assumption: For given positive definite matrix Q and coefficients r and p there exists a
positive definite matrix P, which is the solution of the following matrix equation

ATP + PA=-Q+ P(2BBT - S LLT)P

Moreover, the following feedback control law is applied to the PEM fuel cells model

P —%E"TPE

By substituting Eq. @ and Eq. one obtains

V=3e"[-Q+ P(3BBT — 52 LLT) Ple+ R il
T

+eTPB(—1BTPe+ eT PLd=
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6.5. Stability analysis for the UAV and suspended payload system
Continuing with computations one obtains

V=—1eTQe+ (1PBBTP:z— seze’ PLLT) Pe

—1TPBBTPe+ T PLd 'S
which next gives L] S Y
g
V=—4eTQe— 5tseT" PLLT Pe+ eTPLd ‘l

or equivalently
V — —%ETQE — ﬁgETPLLTPE—F
+1eTPLd+ LdTLT Pe

Lemma: The following inequality holds

$eTLd + $dIT Pe — 5L:eT PLLT Pe<ip®d"d
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6.5. Stability analysis for the UAV and suspended payload system

Proof : The binomial l:pr:tf L E?:IE is considered. Expanding the left part of the above inequality
one gets "
pal+ S8 —2ab > 0= épzaz—k L —ab>0=

{lb—ﬁg‘bgi%lﬂ a? = Tab+ tab— Z2b* < 1p%a%

The following substitutions are carried out: & = dand b = TPL
and the previous relation becomes

$dTLTPe + $eTPLd — LpeT PLLT Pe<tp?dTd
Eq. IS substituted in Eq. and the inequality is enforced, thus giving

V-::i — —ETQE —|— chrr;*f

Eq. shows that the H-infinity tracking performance criterion is satisfied.

The integration of V from O to T gives

Jru ?{ﬁ}.ﬁ{ 1-Jrnzu ”E”Qﬁ‘F ."S'EJI:J ||d||2tﬁ=="
o T}+fn ||e||5dt =2V (0} + o° fn ||| 2 64
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6.5. Stability analysis for the UAV and suspended payload system

Moreover, if there exists a positive constant Jf; = 0  such that

£ 114)1%dt < 4

then one gets

Jo llelfgdt < 2V(0) + o* My

Thus, the integral f;ﬂ||e||%r:£ﬁ is bounded.

Moreover, V(T) is bounded and from the definition of the Lyapunov
function V it becomes clear that e(t) will be also bounded since

e(t) € (U = {e|e? Pe<OV(0) + o2 M4}

According to the above and with the use of Barbalat’s Lemma one obtains:

I ene(t) = 0.
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6.6. Stability analysis for the UAV and suspended payload system

e The control loop has to be implemented with the use of information provided by a small
number of measurements of the state variables of UAV and suspended payload system

e To reconstruct the missing information about the state vector of the pendulum’s model it is
proposed to use a filter and based on it to apply state estimation-based control .

e The recursion of the H-infinity Kalman Filter, for the UAV and suspended payload system,
can be formulated in terms of a measurement update and a time update part

update K (_k‘} = P~ (k)D(k)CT (k)R(k) ™!

Measurement D(k) = [I — 6W (k)P (k) + CT(k)R(k)"'C(k)P~ (k)| *
(k) = & (k) + K(k)[y(k) — Cz~ (k)]

Time i (k +1) = A(k)z(k) + B(k)u(k) L. X
update P~ (k+1) = A(k)P~(k)D(k)AT (k) + Q(k) =
where it is assumed that parameter 8 is sufficiently small to assure that the covariance matrix

1 )
P~ (k) — W (k) + CT(k)R(k)~'C(k)
s positive definite 66
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6.7. Simulation results

Linearization ofthe UAV and suspended
payload system

x=4x = Bu -Ld

PSS P

A.B:L

Solution of the algebraic
Riccati equation

AT Ba+0-2EEET — IL1T P =0
r Y s Bl
| »
Yd 5 S . irinl e of (::ﬂr&%ﬂ@::}:tlfded :
.y ——» control gain ‘ > >
'(._\5 ~ 19 M payload system -3
= 16 = s heny 3 P X P %
r = J L& H)

Fig. 2 Diagram of the nonlinear optimal control for the UAV and suspended payload

With the use of the proposed H-infinity control method, fast and accurate tracking of the

reference setpoints of the UAV and suspended payload system was achieved
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6.7. Simulation results

Fig. 3(a) convergence of state variables
x1 (y-axis position of the UAV), x2 (y-axis
velocity of the UAV), x3 (z-axis position of
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Fig 3(b) convergence of state variables x5
(rotation angle of the payload), x6 (rotational
speed of the payload), x7 (roll angle of the
UAV) and x8 (roll angular speed of the UAV) to
their reference setpoints

setpoint, blue line: real value, green line:
estimated value)
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6.7. Simulation results

Setpoint 1
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Fig. 4(a) control inputs to the Fig, 4(b) control inputs f (lift force
UAV u;, i=1,2,3 computed of the UAV’s motors) and (torque
through the solution of the generated in aggregate by the
nonlinear  optimal  control motors of the UAV)
problem
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6.7. Simulation results
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Fig. 5(a) convergence of state variables g 5(h) convergence of state variables x5
x1 (y-axis position of the UAV), X2 (y-axis (rotation angle of the payload), x6 (rotational
velocity of the UAV), x3 (z-axis position of speed of the payload), x7 (roll angle of the

the UAV) and x4 (z-axis velocity of the  yav) and x8 (roll angular speed of the UAV) to
UAV) to their reference setpoints (red line:  iheir reference setpoints

setpoint, blue line: real value, green line:

estimated value)
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6.7. Simulation results

4 T T T
2] _Iﬁ‘- .............. L LTI L R R TRETE PR EPP PP PPV PPEPEPE
I U'[Iﬁ*f“'ﬂ"—!,%’_
G| O RN < O SR
40 I I 1
1] b 10 15 a0
irne [sac)
I T T T
1" :
5 DL !'\5\:_',—*---'5—
- . ; ;
0 & 10 15 20
imne (s
Il T T T
L A
- i
0 b 10 15 20
irne [sac)

Fig. 6(a) control inputs to the
UAV u, i=1,2,3 computed
through the solution of the
nonlinear  optimal  control
problem
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Fig, 6(b) control inputs f (lift force
of the UAV’s motors) and (torque
generated in aggregate by the
motors of the UAV)
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Fig. 7a) convergence of state variables X1 gig 7(p) convergence of state variables x5
(y-axis position of the UAV), x2 (y-axis  (yotation angle of the payload), x6 (rotational
velocity of the UAV), x3 (z-axis position of speed of the payload), x7 (roll angle of the

the UAV) and x4 (z-axis velocity of the  yav) and x8 (roll angular speed of the UAV) to
UAV) to their reference setpoints (red line:  ihair reference setpoints

setpoint, blue line: real value, green line:

estim

ated value)
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Fig. 8(a) control inputs to the

UAV u;, i=1,2,3 computed
through the solution of the
nonlinear  optimal  control
problem

Setpoint 3
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Fig, 8(b) control inputs f (lift force
of the UAV’s motors) and (torque

generated

in aggregate by the

motors of the UAV)
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Fig. 9(a) convergence of state variables  rjg g(p) convergence of state variables x5
x1 (y-axis position of the UAV), X2 (y-axis (rotation angle of the payload), x6 (rotational
velocity of the UAV), x3 (z-axis position of speed of the payload), x7 (roll angle of the

the UAV) and x4 (z-axis velocity of the  yav) and x8 (roll angular speed of the UAV) to
UAV) to their reference setpoints (red line:  ihair reference setpoints

setpoint, blue line: real value, green line:

estimated value) 74
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6.7. Simulation results
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Fig. 10(a) control inputs to the Fig, 10(b) control inputs f (lift force
UAV u; i=1,2,3 computed of the UAV’s motors) and (torque
through the solution of the generated in aggregate by the
nonlinear  optimal  control motors of the UAV)
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6.7. Simulation results
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Fig. 11(a) convergence of state variables  rjg 11(h) convergence of state variables x5

x1 (y-axis position of the UAV), X2 (y-axis  (rotation angle of the payload), x6 (rotational
velocity of the UAV), x3 (z-axis position of speed of the payload), x7 (roll angle of the

the UAV) and x4 (z-axis velocity of the  yav) and x8 (roll angular speed of the UAV) to
UAV) to their reference setpoints (red line:  ihair reference setpoints

setpoint, blue line: real value, green line:
estimated value) 76
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6.7. Simulation results
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Fig. 13(a) convergence of state variables iy 13(h) convergence of state variables x5
x1 (y-axis position of the UAV), X2 (y-axis  (rotation angle of the payload), x6 (rotational
velocity of the UAV), x3 (z-axis position of speed of the payload), x7 (roll angle of the

the UAV) and x4 (z-axis velocity of the  yav) and x8 (roll angular speed of the UAV) to
UAV) to their reference setpoints (red line:  inair reference setpoints

setpoint, blue line: real value, green line:
estimated value) 78
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of the UAV’s motors) and (torque
generated in aggregate by the
motors of the UAV)
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6.8. Conclusions

e The use of UAVs in products transport and in ammunition tasks has necessitated
the development of elaborated controllers for such robotic systems.

e In this article a novel nonlinear optimal controller has been applied to the dynamic
model of a quadrotor UAV and suspended payload system.

e First, the dynamic model of the aerial robotic system has undergone approximate
linearization around a temporary operating point (equilibrium) which was updated at
each iteration of the control method.

e The linearization procedure relied on first- order Taylor series expansion of the
state-space model of the robotic system and on the computation of the associated
Jacobian matrices.

e For the approximately linearized model of the aerial robotic
system an H-infinity feedback controller was designed.

e The global stability properties of the control scheme were
proven through Lyapunov analysis.

e Finally, to implement state estimation-based control for the aerial robotic system,
the H-infinity Kalman Filter has been used as a robust state estimator 80
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7.1. Overview

e Adaptive fuzzy control based on differential flatness
theory for multivariable control (dive-plane control) of
autonomous submarines.

e It is proven that the dynamic model of the submarine, having as state variables the
vessel’'s depth and its pitch angle, is a differentially flat one. This means that all its state
variables and its control inputs can be written as differential functions of the flat output
and its derivatives.

e By exploiting differential flatness properties the system’s dynamic model is written in the
multivariable linear canonical (Brunovsky) form, for which the design of a state
feedback controller becomes possible.

e After this transformation, the new control inputs of the system contain unknown
nonlinear parts, which are identified with the use of neurofuzzy approximators.

e The learning procedure for these estimators is determined by the requirement the first
derivative of the closed-loop’s Lyapunov function to be a negative one.

e Moreover, the Lyapunov stability analysis shows that H-infinity tracking
performance is succeeded for the feedback control loop and this assures improved
robustness to the aforementioned model uncertainty as well as to external perturbations.
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7.2. Dynamic model of the autonomous underwater vessel

The multivariable model of the submarine’s dynamics has as outputs

the depth of the submarine h
The pitch angle of the submarine @

and as inputs

the deflection angle of the hydroplanes at the front part of vessel 5B
the deflection angle of the hydroplanes located at the rear part of the vessel §S

0 X

Fig.1l Diagram of the autonomous underwater vessel 82
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7.2. Dynamic model of the autonomous underwater vessel
The dvnamic model of the submarine is written as:

o) = BTy + 22+ m)Ud) + 2L
T e B+ iij” 9(0) + -+ Zofw, o)

0.8pL %
Q) = T(E) + T w {}+—*'-r$'{}
+ el 5B5) 4 J&MLF 550+ B e O Ry~ SR AT

w 15 the velocity along the z-axis, of the body-fixed frame

fo 15 the depth of the wessel measured in the inertial coordinates gystem,

15 the pltch angle
= 8 iz the rate of change of the pitch angle.

dF 12 the hydroplane deflection in the bow 1::13,11‘-5j
g 13 the h}rdrc:-plane deflection in the stern
Z'd, M4 are bounded dlsturbance 1111::111;5 due b 2ea currents

Zalaw, q), M, tﬂ are  disturbance 1nputs repreaentmg the vesseal’s crose-flow drag

U7 = U, denotes the w-axis (forward) velocity of the vessel,

& ©
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Tahle I [1]

Parameters of the Submanne’s dynamic model

FParameter Walue

Parameter Value

FParameter Value

Z,, = —0.0110 7, = —0.007% Ty = —0.0045
Zy = —0,0002 Zep =—00025 | Z4=—0.0050
M, = 0.0030 M, =—00002 | M,=—00025
M, = —0.0004 M;p = 00005 || M, =—0.0025
I, = 56867 104 L = 236ft m = 152-10slug
Zy— Zp = —1.H5t 7 = 8.45fKs o = 2.0slug /ft3

I, =1I,— My

m = 2mf(pL*))

!

fnézm#—zw

These can be obtained directly from the design characteristics of the vessel or indirectly

through an identification procedure in the sense of nonlinear least squares or nonlinear
Kalman Filtering

However, since adaptive control is a model-free control method, there is no need about
prior knowledge of these parameters’ values..

Nonlinear control and filtering for autonomous robotic vehicles
7 . Example 3: Control and estimation with Lyapunov methods

7.2. Dynamic model of the autonomous underwater vessel
Indicative values of the parameters of the submarine.s dynamic model are:

[1] K.Lee and S,Singh,Journal
of Systems and Control

Engineering, vol. 328, no. 3,
2014

Adaptive control assures stability of the control loop under unknown dynamic model
parameters and unknown external perturbations and disturbances ..
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7.2. Dynamic model of the autonomous underwater vessel

The dynamic model of the submarine can be written in matrix form:

(0)-(g0) o @

Q fﬁ'{w:-'g:-g:-ﬁ:'

where the control input vector is w = [§B(#) §5(#)]T

and is generated by electric actuators that rotate the hydroplanes. Therefore the control
input describes actually voltage or current signals that define the turn angle of the rotor
of these electric actuators.

This indicates clearly the significance of electric actuators in the submarine’s propulsion.

In this description:

( Fuolaw, 6, @, &) ) g %’:ﬁw[t} + m—igﬁ'; +m ) U8(E) + %Q{t} + 2 7, g)
)=

050 L¥vny
w, 8, G, # :u ' L M magles— & hf
Falfw(w, 8,Q P (1) + Papru(t) + Fo6(s) + Talen o) 4 D 4 M, (w, )

while for matrices M and E, 1t holds

: z’igtﬂ 3’5§U9
2 ! _E'::'Lxm@ i gL vy L
T\ M(LLTH 1 * T ) mlspyr sl

T % 85
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7.2. Dynamic model of the autonomous underwater vessel

It holds that the depth of the vessel measured in the inertial reference frame and the
velocity w of the submarine along the z-axis of the body-fixed frame are related as follows:

b= weos(8) — Ussin(f)=
h = weos(8) — wsin( 88 — U,c0s(8)6= @
h = teos(8) — w@Qsin(8) — UQeos(8)

From the above relation one can compute about the diving speed of the vessel.

w = (cos(8)1)(h + Ubsin(d) ®

Moreover, from Eq @ one has:

ﬂ‘-‘" = fu I:’U_J} &, Q}t:l + Boy U1 + Bopatio @
Q — f,g(’b'_l}lg} Q:- t:l + Bﬂgiufi + Baggﬂz

Substituting Eq. @and the first row of Eq. @ into Eq@ one gets

b= [fu(,8,@,8) + Boy,ts + Boysuslcos(8) — L2852 Qsin (9) — UyQeos(8) (7)

LL
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7.2. Dynamic model of the autonomous underwater vessel

Next, by d ting- : ¢
o Y EERY fw I:t"-'l:- SI:- Q:--"-L’:I = ghl:h:- Il1b2':- EI:- 5'}?_':}

fgl:’b'_l} E} Q}t:l = Q‘,gl:h-} II1L:-":- E} E} t:l
And by substituting this relation in Eq. @ together with Q =& one obtains:

h=gnlhh, 6, 8 t)eos(d) — ':thiDS‘T:E{Eﬂ 8sin(d) — Updeos(8)+
+Boy cosi @) s + Bo,,cos(8) uz

6 = go(h, h,8,8,t) + Boy s + Bogtiz

Then, by defining the state vector o = [k, &, 8, 8]7

(mi) _ (ga(m}tjms(xg] — Mtg:f;:f“}m sin{eg) — Ugm4r:as(mg}) 4 (ggu gﬂm) (Hi)
. Oay Qan o

g8 (2, t)

From Eq. one finally arrives at the MIMO state-space description of the submarine

(2) = (o) 4 (fpd atat) () (9)
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7.3. Differential flatness properties of the autonomous underwater vessel

» Differential flatness theory has been developed as a global linearization control
method by M. Fliess (Ecole Polytechnique, France) and co-researchers (Lévine, Rouchon,
Mounier, Rudolph, Petit, Martin, Zhu, Sira-Ramirez et. al)

« A dynamical system can be written in the ODE form Si(W,V.V,\./;/,---,W(i) ), 1=12,..,9
where,, (1) stands for the i-th derivative of either a state vector element or of a control input
» The system is said to be differentially flat with respect to the flat output
Vi = p(W, W, W, WD), i =1..m  where Y =(¥2, V2. Yim)
if the following two conditions are satisfied
() There does not exist any differential relation of the form

R(Y, Y, Yo YP)) =0

which means that the flat output and its derivatives are linearly independent

(if) All system variables are functions of the flat output and its derivatives

W(I) :l//(y1 Y y""’y(yi)) 88
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7.3. Differential flatness properties of the autonomous underwater vessel

The proposed adaptive control method is based on the transformation of the vessel’s
model into the linear canonical form, and this transformation is succeeded by exploiting
the system’s differential flatness properties =

* All single input vessel models are differentially flat and
can be transformed into the linear canonical form

One has to define also which are the MIMO vessel models which are differentially flat.

« Differential flatness holds for MIMO vessel models that admit static feedback
linearization and which can be transformed into the linear canonical form through a change
of variables (diffeomorphism) and feedback of the state vector. This is the case of the
submarine's model

« Differential flatness holds for MIMO vessel models that admit dynamic feedback
linearization, This is the case of underactuated vessel models (e.g. hovercraft)
In the latter case the state vector of the system is extended by considering as additional
flat outputs some of the control inputs and their derivatives

* Finally, a more rare case is the so-called Liouvillian systems. These are systems for which
differential flatness properties hold for part of their state vector (constituting a flat subsystem)
while the non-flat state variables can be obtained by integration of the elements of the

89
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7.3. Differential flatness properties of the autonomous underwater vessel

Next, by denoting the flat output of the submarine as:
y = [24, EB]T = [h, 'Q]T
it can be proven that the submarine’s dynamic model is a differentially flat one

This means that all its state variables and its control inputs can be expressed as differential
functions of the flat output

' r o SFF
T

From Eq. @ one gets o =, and .= 'i‘gj which means .;g ’
o 1
Again, from Eq.@ one gets 4 =0
(Hi) _ (5?11'@:' Qiz(mj)_ii(%) _ (fi(fﬂ:')}
g gz1(z)  g22(z) Tz Fa(z)
Ul = fﬂl:y:-gﬂr:- y:l @
Uy = fﬁl:y:- y}y:l

Eq. and Eq. @ confirm that the submarine’s model is a differentially flat one.

which means

20
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7.3. Differential flatness properties of the autonomous underwater vessel

The differential flatness property of the submarine’s model is important because it means that
the vessel’'s model can be transformed into the MIMO linear canonical (Brunovsky) form
through a change of its state variables (diffeomorphism)

By defining the new state variables of the vessel
Yi=X, Y2= Y1 Y3=X2 Ya=Y3

and by defining the transformed control inputs of the vessel

vy = File,t) + g1ty + 1otz @
vy = falo,t) + gorthy + gtz

one obtains the linearized and decoupled state-space model of the submarine

i 001 0 0y /w 0 0

G| |0 0 0 0| 1 0] {2 @
g;rg_ooolyg“LDU(:ug)

7y 00 0 0/ \p 0 1

for which the design of a state-feedback controller is possible
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7.4. Design of a state-feedback controller for the autonomous underwater vessel

For the transformed state-space model of the vessel

i 001 0 0\ /m 0 0
yg_UUUU Ao 1 0O ty
g;rg_moolng“UU(wz)
s 000 0 0/ \u, 0 1

It is considered that the complete state vector is measurable
4= [h:- h:- .5'} .5']

Then, to succeed tracking of the reference setpoint

od od
v =Iyf ye, v ya T =D xa, x9, x2 1"

the feedback control inputs should be chosen as

d d
. L . .
V=Y —kg (Y=Y ) —Kp(Ya— Y1)
; ;

Vo = Y3 —k§ (V3= Y3) — K5 (¥5— ¥§)
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7.4. Design of a state-feedback controller for the autonomous underwater vessel

By substituting Eq. Into Eq. @ one obtains the

tracking error dynamics for the submarine

. L L . 5" )
e1+ kg er+kpe; =0 e2+kgez2+kye, =0 @
where the tracking error is definedas €, = Y; — yld , € =Y53— yg

By selecting the feedback control gains k:o,k(i]I I =1,2 so as the characteristic polynomials

py(s) =s° +kgs +kg P,(S) =s° +k§s+k;

to have roots explicitly in the left complex semiplane, it is assured that

lime(t)=0 1=12

t—o0
Finally, the feedback control input that is actually exerted on the submarine is .

Up ) (G11(X1)  gpa(X1) - (Vlj_[fl(xi)j
(Uzj_(gm(x,t) 922(X,t)] [Vz fz(X,t)] @ 93
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7.5. Design of an adaptive controller for the autonomous underwater vessel s e

For the differentially flat MIMO model of X1 = fi(X,t)+g;(x,tju+d1
the submarine one has the dynamics

X3 = f,(X,t)+ g, (X,H)u+d2

— __1 d _

fo(xt !

The following control input is considered y = ?1(X’t) {Xz — Al(x’) {KlT]eJ{
- K
| 9,(X,t) X3 | | Fo(x ) 2

A A

where f and ¢ stand for estimates of the unknown nonlinear terms f  and g

These estimates are provided by neurofuzzy approximators or other nonlinear regressors

This results in tracking error dynamics of the form

fOO= 1060 || D -0106t) | 9100 | gy
f060 - (00 ] [ 826D-g,(60) | 9, (x0)

: T
e=(A-BK )e+Bu.+B

where matrices A, B,K are definedas [g 1 0 0 00
A_|000 00 10 KT_Kll Ki ki ki
000 1/ |0 0f K KZ K3 K?
0 0 0 0] 0 1] 94
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7.5. Design of an adaptive controller for the autonomous underwater vessel

The nonlinear regressors (neurofuzzy approximators) consist of the kernel functions
and weights functions. Unlike SISO systems, in the case of MIMO dynamics the kernel

and weights functions are not represented as vectors but take the form of matrices.
Thus one has:

f(x|8f):q)f(x)€f and g(X|99)=CDg(X)Hg

Kernel and weights functions for the approximation of the nonlinear dynamics f:

A0 20 . N
P GOl I T N N N 7

S0 4TI #PN (0]

Kernel and weights functions for the approximation of the nonlinear dynamics g:

R0 00 - N 0y 0% . Oh
2,1 2,2 2,N
q)g(X)Z ¢g (X) ¢g (X) ¢g (X) 9g= 032 9922 Qgpz
45700 45700 - g, By O . 08 o5
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7.5. Design of an adaptive controller for the autonomous underwater vessel

The weight functions of the neurofuzzy approximators are learned through an adaptation
procedure that is determined by Lyapunov stability analysis for the submarine’s model.

The following quadratic Lyapunov function is defined:
T T

V=2eTpest g0 +itr[6rg g1
2 2y, 2y,
@. state vector tracking error

6+ =0, —0; : Difference of the weights from the value that succeeds exact estimation of f
0g =0, —49; : Difference of the weights from the value that succeeds exact estimation of g

T T
o R U R T T
Differentiating one obtains: y —Z¢ pet+=e' Pe+—0+ 0+ +—tr[q O4]
2 2 7 72
The associated tracking error dynamics is:
A -1

e = (A—BKT e+ Bug +B fl(X,t)—/f\l(X’t) N gl(X,t)—gl(X’t) 91(X’t) 0+d}
fo(6)—To(x1) | | 920%1)—g5(x1) | 95(X,1)
The effect of modelling errors is denoted by:
x)-1,(x1) | | 91(xt)=09,(x1) | g, (%) |

fa( )=o) | [ 92(x1)=g,(X1) | 95 (x1) 96

-1
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7.5. Design of an adaptive controller for the autonomous underwater vessel

Thus one obtains the following tracking error dynamics:
e=(A-—BK")e+Bu, +B(w+d)

The first derivative of the Lyapunov function becomes:

v :%{eT (A-BKT)T +ul BT +(w+d)T BT}Pe+%eT P{(A-BK ' )e+Bug + B(w+d)}
OT 'T
+i(9f «9f+itr[99 99]

71 V2
and after intermediate terms substitution one obtains:

= %eT{(A— BK") P+P(A- BKT)}e+%2eT PBu, +%ZBT Pe(w+d)

.T .T

+i9f O f +itr[09 99]
71 72

Assumption 1: the positive definite and symmetric matrix P is chosen as solution of the
Riccati equation:

2 1
(A—BKT)TP+P(A—BKT)—PB(?—?)BTP+Q:O .
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7.5. Design of an adaptive controller for the autonomous underwater vessel

Using as supervisory control input u, = 1 B' Pe one obtains:
r

1
2

v=leT{QiPBE-
2 r p

)BT PYe+e' PB{—E B'Pe}+ BT P(w+d)+
r

IT L] T

+i9f hi +itr[eg Og]

71 V2
which can be written in the form: T T
y 1 1 - 1~ - 1 PO
\Y :——eTQe——ZeT PBB' Pe+e' PB(W+d)+—8f 6¢+—tr[0g Og]
2 2p 71 72
Next, substituting: 0 f :éf_éf :éf and Oy :ég_ég :ég
l.e: éf :—ych)(x)T B'Pe and ég =—]/2CD(X)T B Peu’

the following form of the derivative of the Lyapunov function is obtained:

V= —%eTQe—ieT PBBT Pe+e' PB(W+d)+

2,02

+7il(—n)eT PBO(X)(0; — 6} ) +%<—mtr[ueT PBD(X)(0 — 05 )]
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7.5. Design of an adaptive controller for the autonomous underwater vessel

Taking into account that yeR?? and e PB(g(x|6y)-9(x]6;)) € R™?

the following form is obtained for the Lyapunov function derivative :

Vo-teToe-—1 cTPBBT Pe+e PB(W+d)+
2 2p2
1 . 1 A A .
+7/_(_7,1)eT PBO(x)(0f — ¢ )+7—(—72)tr[eT PB(g(x|68q)—9(x|6g))ul
1 A Al 2
: T * 1x1
and since e PB(g(x|6g)—g(x|dy)u eR it holds that
Vo-teTge——L ¢TpBBTPe+e  PB(W+d)+
2 2p°

+yi(_7 Ve’ PBO(X)(0r ~05) +%(—7/2)6T PB(g(x|84) - g(x|6g))u
1

Using the following description for the model approximation error:

N N

Wy =[f(x]607)~ f(x]05)1+[9(x|67) - g(x] 65)Iu
the equation of the Lyapunov function derivative becomes:
1

Y :——eTQe—ZizeT PBB' Pe+e' PB(w+d)+e' PBw, 99
Jo,
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7.5. Design of an adaptive controller for the autonomous underwater vessel

and denoting the disturbances and modelling error terms as: Wy = W+ d+ Wy
y 1
one has: V =—£eTQe— e'PBBTe+el PBw;
2 2 0%
or: \}z—leTQe— 1 eTPBBTe+leTPBW1+£W1TBTPe
2 2 p? 2 2

Next the following inequality is used:

Lemma: It holds that T Pw, +~w] BT Pe———e" PBBT Pe <= p2w w,
2 2 2,2 2
Proof:

The binomial {pa— 16 = U is considered. Expanding the left part of the above

: : £
inequality one gets
pla? + b —2ab> 0= 1pa’ 4 550 —ab > 0=
ab— =202 < 1p%a% = lab4 Lab— LR <122 B
T Y 2 2 2077 =2P % §

By substituting & = and b =3 B, E  one gets

i BT e+ 38T PyBun — 028 P, BBTPyE
AR R &
= oFpuly uh
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7.5. Design of an adaptive controller for the autonomous underwater vessel

By substituting Eq. @ into the relation of the derivative of the Lyapunov

function gives: .
Vg—%eTQeJr%pzwfwl

This is the H-infinity tracking performance criterion which means that for bounded disturbance
and modelling error the control law results in very small bounded tracking error:

It is noted that, by choosing the attenuation coefficient p to be sufficiently small, the right
part of Eq. can be always made to be upper bounded by zero.

In such a case the asymptotic stability condition is clear to hold..

The minimum value of p for which a solution of the Riccati Eq exists, is the one that
provides the control loop with maximum robustness.
2

o0
Moreover, if .[0” wy || dt<M,, one has the following integral:

T T T T T
- 1 1
jv (t)dt < _EI” e(t) ||2dt+§p2J.|| wy || dt = 2V (T)+j|| e(t) 3 dt <2v (0)+p2I|| w ||2 dt
0 0 0 0 0

which means that: I|| e ||(23 dt <2V (O)+,02MW and from Barbalat’s Lemma one has that
0

lim e(t) = 0 which confirms again that the tracking error vanishes 101
t—o0
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7.6. Simulation results

* In the simulation tests, the dynamic model of the submarine was considered to be

completely unknown and was identified in real-time by the previously analyzed
nonlinear regressors

* The estimated unknown dynamics of the system was used in the computation of

the control inputs (generated by the electric actuators of the hydroplanes) which were
finally exerted on the submarine’s model.

¥ N 500 H &
= : i o : :
£ - O AOD feee e At A—
o : ; @ ; .
z : _ = : :
[ % 3 3 i #
% B g QDD ............... ....... e
= 3 = I3 X
. ! : 2 L : d
iz : : = 0 : -
w 3 : o i .
200 ; : 20 5 ;
0 10 220 3 40 10 20 30 40
t (sec) t (sec)
2 7 it 20 J
o : f -
= I, ¥ =
% (0 G ........ R PRI % G P e e e e
i : > [
o 3 H m
£l pich : L
3 Y 23
& angle &
-4 : -10 : i ;
0 10 20 30 40 o 10 20 30 40
t (sec) t (sec)
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?
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200
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control input u2
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102




Nonlinear control and filtering for autonomous robotic vehicles

7 . Example 3: Control and estimation with Lyapunov methods

7.6.

] B0 :
- o :
= 0 =400 :
] ] i
& e :
% _AD ..................... I % QDD .............. AU (e
= 3 = ¥
£ depth | & .| |
% : % _
80 . -200 s
o 10 20 a0 40 0
t(sec)
ns 10
Doghei : E
= : = 5 :
£ 05 it = :
s pitch | &
= : 2 0 :
1__:: B s it angle ‘E
15 : 5 :
0 2 30 40 o 10 20 a0 40
t (gec) 1 (sec)
state variables x;, ¢ = 1
80 . 500 _
= : o ?
= 100 : = ;
= i G 0 ;
= 3 .= :
= : @ g
g : g :
B < E _SDD ............... R RE SRR
5l 3 o L
m : a :
250 : 1000 :
0 10 20 30 40 o 1m0 30 40
t (sec) t (sec)
1 _ 10 :
e 5 : = 25 . e
% n] ...... P % L
= : ; i I
2 pitch: s ;
2,1 SRl 2
S : . BB e
5 | angle 5 ° ;
2 i i ' 10 '
o 10 20 30 40 o 1 20 30 40

Simulation results

Setpoint 2:

Setpoint. 3:

contral input w1l

contral input U2

200

setpoint change
+ disturbance

0 5 10 18 20 25 30 35 40

Variations of the control 1Inputs

control input ul

control input u2

200

-100

=200

200

100

-100

-200

ey MER—— ........... ........... ..........

— — e —

Variations of the control 1Inputs

35 40

103




Nonlinear control and filtering for autonomous robotic vehicles

7 . Example 3: Control and estimation with Lyapunov methods
7.7. Conclusions

* By exploiting the differential flatness properties of the MIMO nonlinear model of
the submarine the system was transformed into the linear canonical (Brunovsky)
form. For the latter description the design of a feedback controller was possible.

* Moreover, to cope with unknown nonlinear terms appearing in the new control inputs
of the transformed state-space description of the submarine, the use of nonlinear
regressors (neurofuzzy approximators) has been proposed..

* These estimators were online trained to identify the unknown
dynamics and the learning procedure was determined by the
requirement the derivative of the Lyapunov function to be negative

* Through Lyapunov stability analysis it was proven that the closed loop satisfies the
H-infinity tracking performance criterion, and this assures improved robustness
against model uncertainties and external perturbations.

* The computation of the control input required the solution of an algebraic Riccati
equation. Suitable selection of the attenuation coefficient p in this equation assures
asymptotic stability and provides maximum robustness.

» The proposed flatness-based adaptive fuzzy control method is generic and can be
applied to a wide class of vessels, such as surface vessels or AUVs and
submersibles,inlcluding also the case of underactuated vessels.
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8. Final conclusions

e Methods for nonlinear control and state estimation in autonomous
robotic vehicles have been developed

e The main approaches for nonlinear control have been: (i) control with global linearization
method (ii) control with approximate (asymptotic) linearization methods (iii) control with
Lyapunov theory methods (adaptive control) in case that the robotic or kinematic model of
the vehicle is unknown

e The main approaches for nonlinear state estimation are: (i) nonlinear state estimation with
methods of global linearization (ii) nonlinear state estimation with methods of approximate
(asymptotic) linearization
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