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1 . Outline

● The reliable functioning of autonomous robotic vehicles relies on

the solution of the associated nonlinear control and state estimation

problems

● The main approaches followed towards the solution of nonlinear

control problem are as follows: (i) control with global linearization

methods (ii) control with approximate (asymptotic) linearization

methods (iii) control with Lyapunov theory methods (adaptive control

methods) when the dynamic or kinematic model of the robotic vehicle

is unknown

● The main approaches followed towards the solution of the nonlinear

state estimation problems are as follows: (i) state estimation with

methods global linearization (ii) state estimation with methods of approximate

(asymptotic) linearization

● Factors of major importance for the control loop of autonomous

robotic vehicles are as follows (i) global stability conditions for the

related nonlinear control scheme (ii) global stability conditions for

the related nonlinear state estimation scheme (iii) global asymptotic

stability for the joint control and state estimation scheme
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2 . Nonlinear control and state estimation with global linearization

● To this end the differential flatness control theory is used

● The method can be applied to all nonlinear systems which

are subject to an input-output linearization and actually such

systems posses the property of differential flatness

● The state-space description for the dynamic or kinematic model of the robotic vehicle

is transformed into a more compact form that is input-output linearized. This is achieved

after defining the system’s flat outputs

● A system is differentially flat if the following two conditions hold: (i) all state variables and

control inputs of the system can be expressed as differential functions of its flat outputs (ii)

the flat outputs of the system and their time-derivatives are differentially independent,

which means that they are not connected through a relying having the form of an ordinary

differential equation

● With the applications of change of variables (diffeomorphisms) that rely

on the differential flatness property (i), the state-space description of the

robotic system is written into the linear canonical form. For the latter state-

space description it is possible to solve both the control and the state

estimation problem for the robotic vehicle.
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3 . Nonlinear control and state estimation with approximate linearization

● To this end the theory of optimal H-infinity control and the theory of

optimal H-infinity state estimation are used

● The nonlinear state-space description of the system undergoes

approximate linearization around a temporary operating point which

is updated at each iteration of the control and state estimation algorithm

● The linearization relies on first order Taylor series expansion around the temporary

operating point and makes use of the computation of the associated Jacobian matrices

● The linearization error which is due to the truncation error of higher-order terms in the

Taylor series expansion is considered to be a perturbation that is finally compensated by

the robustness of the control algorithm

● For the linearized description of the state-space model an optimal H-infinity controller

is designed. For the selection of the controller’s feedback gains an algebraic Riccati

equation has to be solved at each time step of the control algorithm

● Through Lyapunov stability analysis, the global stability properties of

the control method are proven

● For the implementation of the optimal control method through the

processing of measurements from a small number of sensors of the robotic

vehicle, the H-infinity Kalman Filter is used as a robust state estimator
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4 . Nonlinear control and state  estimation with Lyapunov methods

● By initially proving the differential flatness properties for the robotic

system and by defining its flat outputs a transformation of Its state-space

description into an equivalent input-output linearized form is achieved.

● The unknown dynamics of the robotic vehicle is incorporated into

the transformed control inputs of the system, which now appear

in its equivalent input-output linearized state-space description

● The motion control problem for the robotic vehicle of unknown dynamics in now turned

into a problem of indirect adaptive control. The computation of the control inputs of the

system is performed simultaneously with the identification of the nonlinear functions which

constitute its unknown dynamics.

● The estimation of the unknown dynamics of the robotic vehicle is performed through the

adaptation of neurofuzzy approximators. The definition of the learning parameters takes

place through gradient algorithms of proven convergence, as demonstrated by Lyapunov

stability analysis

● The Lyapunov stability method is the tool for selecting both the gains of the stabilizing

feedback controller and the learning rate of the estimator of the unknown system’s

dynamics

● Equivalently through Lyapunov stability analysis the feedback gains of the state

estimators of the robotic system are chosen. Such observers are included in the control

loop so as to enable feedback control through the processing of a small number of sensor

measurements
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5 . Example 1: Nonlinear control and state estimation with global linearization

5.1.Overview

• Controller design for autonomous 4-wheeled ground vehicles is 

performed with differential flatness theory. 

•  Using a 3-DOF nonlinear model of the vehicle's dynamics and through 

the application of differential flatness theory an equivalent model in linear canonical 

(Brunovksy) form is obtained. 

•  For the latter model a state feedback controller is developed that enables accurate tracking 

of velocity setpoints. 

•  Moreover, it is shown that with the use of Kalman Filtering it is possible to dynamically 

estimate the effects of unknown disturbance forces exerted on the vehicle. 

•  The processing of velocity measurements (provided by a small number of on-board sensors) 

through a Kalman Filter which has been redesigned in the form of a disturbance observer  

results in accurate identification of external disturbances affecting the vehicle's dynamic 

model. 

• By including in the vehicle's controller an additional term that compensates for the 

estimated disturbance forces, the vehicle's motion characteristics remain unchanged. 

• Numerical simulation confirms the efficiency of both the proposed controller and of the 

disturbances estimator. 
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5 . Example 1: Nonlinear control and state estimation with global linearization

5.2. Dynamic analysis of the four-wheel robotic vehicle

• The dynamic model of the vehicle associates its acceleration to the forces and torques 

applied on it, e.g. the force of the engine, friction and lateral forces on the tires, etc. 

•  A dynamic model of a 4-wheel vehicle can be:

• The development of elaborated dynamic models of

the vehicle can be particularly useful for the design of

active safety systems. This can help in:

1) Lane keeping  and avoidance of road departing when 

maneuvers are too demanding 

2) Control of both the lateral and the longitudinal behaviour

of the vehicle.
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:

:V

:

:xf

:yf

angle between velocity and the ΟΧ axis

velocity vector of the vehile

yaw (rotation round z axis)

aggregate force along x axis

aggregate force along y axis

:zT torque round z axis

: steering angle of front wheels
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• yaw turn
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5 . Example 1: Nonlinear control and state estimation with global linearization

5.2. Dynamic analysis of the four-wheel robotic vehicle
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5 . Example 1: Nonlinear control and state estimation with global linearization

5.3. Dynamic analysis of the vehicle with longitudinal and transversal forces
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5 . Example 1: Nonlinear control and state estimation with global linearization

The forces and torques which are exerted on the vehicle are defined as follows:

Forces along the vehicle’s longitudinal axis:

Forces along the vehicle’s transversal axis:

Torque’s along the vehicle’s z-axis:
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5.3. Dynamic analysis of the vehicle with longitudinal and transversal forces
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About the longitudinal and the lateral forces on the front and rear wheel one has:

1. Longitudinal force on the front wheel:

2. Longitudinal force on the rear wheel:

3. Lateral force on the front wheel:

4.Lateral force on the rear wheel:
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5 . Example 1: Nonlinear control and state estimation with global linearization

5.3. Dynamic analysis of the vehicle with longitudinal and transversal forces
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The vehicle’s dynamics is described by the following set of differential equations:
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5 . Example 1: Nonlinear control and state estimation with global linearization

5.3. Dynamic analysis of the vehicle with longitudinal and transversal forces
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The nonlinear state-space equation of the vehicle comprises the following elements:
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5 . Example 1: Nonlinear control and state estimation with global linearization

5.3. Dynamic analysis of the vehicle with longitudinal and transversal forces
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5.4. Flatness-based control for the 3-DOF model of the robotic vehicle

• A dynamical system can be written in the ODE form q,...,,i),w,...,w,w,w(S )i(

i 21   =
•••

• The system is said to be differentially flat with respect to the flat output  

),...,,( 21 myyyy =where                                        

m,...,i),w,...,w,w,w(y )a(

i 1  ==
•••



if the following two conditions are satisfied 

(i) There does not exist any differential relation of the form 

0),...,,,( )( =
•••

yyyyR

which means that the flat output and its derivatives are not coupled

(ii) All system variables are functions of the flat output and its derivatives
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)()( iyyyyw i 

•••
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)(iwwhere        stands for the i-th derivative of either a state vector element or of a control input                              

5.4.1. Differential flatness theory for dynamical systems

5 . Example 1: Nonlinear control and state estimation with global linearization
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• Thus, differential flatness means that that all system dynamics

can be expressed as a function of a flat output and its derivatives, i.e.

),...,,( )1( −
•

= ryyyx 

),,...,,( )()1( rr yyyyu −
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where yis the state vector,  x is the control input, and u

• For linear systems the property of differential flatness coincides with that of  controllability

If the dynamic system is initially written as 

mn RuRxuxfx =
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 ,  ),,(

is the flat output

then one can find functions  , such that 

• The concept of differential flatness can be also extended to distributed parameter systems
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5.4. Flatness-based control for the 3-DOF model of the robotic vehicle

5.4.1. Differential flatness theory for dynamical systems

5 . Example 1: Nonlinear control and state estimation with global linearization
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5.4.2. Classes of differentially-flat systems

1. Affine in the input systems

2. Driftless  systems

the above state equation can also describe MIMO dynamical systems.

For driftless systems with two inputs, i.e. 

the flatness property holds if and only if. 

For driftless systems with n-2 inputs, i.e. 

the flatness property holds, if controllability also holds. Furthermore, the system is 0-flat, 

i.e. the flat output is a function of only the state vector  elements       , if n is even

The generic class of systems can be also  transformed into 
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5.4. Flatness-based control for the 3-DOF model of the robotic vehicle

5 . Example 1: Nonlinear control and state estimation with global linearization
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5.4.3. Transformation of nonlinear systems into a canonical form

● To define necessary and sufficient conditions for the existence of a diffeomorphism

that transforms the initial nonlinear system into the canonical (Brunovsky) form the following

definitions are used:

(i) Lie derivative

(ii) Lie bracket

  )(xL f
stands for the Lie derivative fhxhL f )()( =

and the repeated Lie derivatives are recursively defined as
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5.4. Flatness-based control for the 3-DOF model of the robotic vehicle

5 . Example 1: Nonlinear control and state estimation with global linearization
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● Necessary and sufficient conditions for transforming MIMO systems into the canonical form

after applying differential flatness theory (S. Bououden, D. Boutat, G. Zheng, J.P. Barbot and

F. Kratz, 2011)

A MIMO system of the following form is considered 
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5.4.3. Transformation of nonlinear systems into a canonical form

5.4. Flatness-based control for the 3-DOF model of the robotic vehicle

5 . Example 1: Nonlinear control and state estimation with global linearization
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Theorem:

For the nonlinear systems described by                                  the following variables are defined
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To define conditions for transforming the system of          into the canonical form 

described in         the following theorem holds
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5.4.3. Transformation of nonlinear systems into a canonical form

5.4. Flatness-based control for the 3-DOF model of the robotic vehicle

5 . Example 1: Nonlinear control and state estimation with global linearization
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It is assumed now that after expressing the system state variables and control inputs as 

functions of the flat output and of the associated derivatives, the system can be 

transformed in the Brunovsky canonical form:

Having written the initial nonlinear system into the 

canonical (Brunovsky) form it holds
jj
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5.4.3. Transformation of nonlinear systems into a canonical form

5.4. Flatness-based control for the 3-DOF model of the robotic vehicle

5 . Example 1: Nonlinear control and state estimation with global linearization
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Next the following vectors and matrices can 

be defined
Thus, the initial nonlinear system can be written

in the  state-space form 

or equivalently in the state space form

where uxgxfv )()( +=

For the case of the multi-DOF MIMO robotic model

it is assumed that the functions         and         are

known and due to missing sensory information
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5.4.3. Transformation of nonlinear systems into a canonical form

5.4. Flatness-based control for the 3-DOF model of the robotic vehicle

5 . Example 1: Nonlinear control and state estimation with global linearization
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To show the differential flatness of the vehicle’s model the following flat outputs are 

defined:
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5 . Example 1: Nonlinear control and state estimation with global linearization

5.5. Design of a flatness-based controller for the 3-DOF model of the vehicle
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Expressing the system’s state variables as functions of the flat output and their derivatives 

one obtains the following state-space description
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About matrix                            it holds




















=

•

•

•

),,(

),,(
),,(

2212

2211
221

yyy

yyy
yyy

with

)(),,( 2211 fr
r

y
mR

I
Vyyy

••••

+−= 

),(
)(

),(
))((

),(
)(

),(),,(

3
1

12
1

2
1

2
1

312212

txf
y

LLCL
txf

y

ymLLVLLC

txf
y

LLC
txfmyLyyy

rfrrfryrff

rfr
f

+
−

−−+
+

+
+

−−=

••

•



According to the above the system’s control input can be also expressed as a function of 

the flat output and its derivatives
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Thus one has
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The differentially flat model can be written in canonical form after defining the control input

),,(),,( 221
2

1
221

2

1
••

+







=








yyy

u

u
yyy

v

v

Then one obtains the description of the vehicle’s model in the MIMO canonical form
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The control law which assures convergence to the desirable velocity setpoints is 
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Defining the error variables

the tracking error dynamics for  suitable selection of feedback gains becomes
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The control input that is finally applied to the vehicle is given by 
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• For the continuous-time dynamical system
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The continuous-time Kalman Filter

the Kalman Filter is a state observer which is given by
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where
^

x is the state vector estimation

P is the estimation error covariance matrix

(Riccati Equation)

• For mechatronic systems with linear dynamics the Kalman Filter is the optimal state estimator

since it can provide estimates of the state vector elements of maximum accuracy (minimum 

variance) through the processing of measurements from a small number of sensors.
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• The discrete-time Kalman Filter is an optimal state estimator for linear dynamical systems 

of the form: 
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• The process and measurement noises are uncorrelated Gaussian 

zero-mean signals and their covariance matrices are: 
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• The initial values for the state vector estimation and for the 

covariance matrix of the estimation error are taken to be: 
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The discrete-time Kalman Filter
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● The Kalman filter can be decomposed into two parts:

i) measurement update: the set of measurements  )}(),1(),...,1({ kykyyY −= available
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5.7.1. State estimation with the Derivative-Free nonlinear Kalman Filter

5.7. Disturbance estimation on the vehicle with the use of the Kalman Filter

It was shown that the vehicle’s model can be written in the MIMO canonical form
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Thus one has a MIMO linear model of the form
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The measurable variables are assumed to be                   and xVy =1

•

−= zyf ImVLy2

which in turn are associated with the measurement of linear and angular velocities

•

,, yx VV

A BFor the model of           and              and after discretization of matrices fff CBA ,,

one can estimate the state vector of the nonlinear vehicle’s model by applying the Kalman 

Filter recursion to its equivalent linear canonical form. 

This is the Derivative-free nonlinear  Kalman Filtering
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It is assumed that disturbances forces affect the vehicle along  its longitudinal and transversal 

axis and that disturbance torques appear along its z-axis. 

The disturbances dynamics 

are represented as
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The i-th order derivatives of the 

disturbances are denoted as
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Considering the effect of disturbance functions on the initial nonlinear state equation of the 

vehicle and the linear relation between state variables                and the state variables of the 

flat  system description one has the appearance of the disturbance terms in the canonical 

form model  

],[ yx VV

5.7.2. Modelling and estimation of disturbances in real-time
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Canonical form representation of the vehicle’s model including disturbance 

terms

To obtain simultaneous estimation of the system’s state vector of the disturbance terms

the state vector of the system is extended to include also disturbances: 

Next, the state vector of the model is extended to include as additional state variables 
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With the definition of the extended state vector the state-space equation of the vehicle

takes the form:
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where the measurable state variables are and .

Since the dynamics of the disturbance terms and are taken to be

unknown in the design of the associated disturbances' estimator one has the

following dynamics
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Dynamics of the disturbances estimator:
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where                  is the state estimator’s gain and          27RK
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Defining as                          the discrete-time equivalents of matrices                            

a Derivative-free nonlinear Kalman Filter can be used for simultaneous estimation 

of the vehicle’s state vector and of the unknown disturbances
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The Derivative-free nonlinear Kalman Filter for simultaneous state 

estimation and disturbances estimation is given by:
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To compensate for the effects of the disturbance forces the control input applied to the 

vehicle becomes
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5.8. Simulation results
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The control loop comprises (i)    a flatness-based nonlinear controller 

(ii)   a Kalman Filter-based disturbances estimator

(iii)  a disturbances compensator
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Disturbances profile 1:

Control of x-axis velocity Control of y-axis velocity

Control of rotational velocity Disturbances estimation

5.8. Simulation results
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Disturbances profile 2:

Control of x-axis velocity Control of y-axis velocity

Control of rotational velocity Disturbances estimation

5.8. Simulation results
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Disturbances profile 3:

Control of x-axis velocity Control of y-axis velocity

Control of rotational velocity Disturbances estimation

5.8. Simulation results
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Disturbances profile 4:

Control of x-axis velocity Control of y-axis velocity

Control of rotational velocity Disturbances estimation

5.8. Simulation results
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• Two AGV design problems have been treated (i) nonlinear control for

autonomous navigation (ii) real time estimation of disturbances due

to forces or torques affecting the vehicle's motion.

• Once such disturbances have been identified with the use of a nonlinear filtering algorithm,

that is redesigned in the form of a disturbance observer, it is possible to include an additional

element in the vehicle's controller that compensates for the disturbances’ effects.

• The proposed nonlinear controller is based on differential flatness theory. It is shown that

the vehicle's model is a differentially flat one, which means that all its state variables and control

inputs can be written as functions of the flat output and its derivatives.

• The transformation into the linear canonical (Brunovsky) form is also used to obtain an

estimator of the vehicle's state vector through the processing of measurements from on-board

sensors. To this end the Derivative-free nonlinear Kalman Filter is used.

• By redesigning the Kalman Filter algorithm in the form of a disturbance observer it is also

possible to estimate in real-time the effects of disturbance forces and torques that

are exerted on the vehicle's model and of terms representing unknown system dynamics.

• The performance of the nonlinear AGV controller and of the Kalman Filter-based

disturbances estimator has been evaluated through simulation experiments.

5.9. Conclusions

5 . Example 1: Nonlinear control and state estimation with global linearization
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6 . Example 2: Control and state estimation with approximate linearization

΄6.1. Overview

● The article proposes a nonlinear optimal control approach

for the UAV and suspended load system.

● The dynamic model of the UAV and payload system undergoes approximate

linearization with the use of Taylor series expansion around a temporary operating point

which recomputed at each iteration of the control method.

● For the approximately linearized model an H-infinity feedback controller is designed.

The linearization procedure relies on the computation of the Jacobian matrices of the

state-space model of the system.

● The control method is the solution of the optimal control problem for the nonlinear and

multivariable dynamics of the UAV, under model uncertainties and external perturbations.

● For the computation of the controller’s feedback gains an algebraic Riccati equation is

solved at each time-step of the control method.

● The nonlinear optimal control approach achieves fast and accurate tracking for all state

variables of the UAV and payload system, under moderate variations of the control inputs.

● The stability properties of the control scheme are proven through Lyapunov analysis.

Finally to implement state estimation-based control the H-infinity Kalman Filter is used as

a robust state estimator
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6 . Example 2: Control and state estimation with approximate linearization

6.2. Dynamic model of the UAV and suspended payload system

The main variables of the dynamic model of this aerial robotic system are defined as follows: :

● φ: is the roll angle of the UAV with respect to the horizontal axis of the inertial reference

frame system,

● θ: is the rotation angle of the payload wit respect to the vertical axis of the inertial

reference frame,

● l: is the length of the string connecting the payload with the center of gravity of the UAV.

Fig. 1: Reference frames for

the robotic system of the UAV

and suspended payload

The mass of the UAV is denoted

as M whereas the mass of the

load is denoted as m.
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● After applying the Euler-Lagrange method, the dynamic model of the UAV

and of the suspended to it payload is given by the following set of differential

equations

● The control inputs to the model are the aggregate lift force f and the torque that is

generated when the motors of the UAV function at different turn speed and provide

uneven power to the UAV

1

● The dynamic model of the UAV and of the suspended to it payload is given by the

following two sets of differential equations

2

3

6 . Example 2: Control and state estimation with approximate linearization

6.2. Dynamic model of the UAV and suspended payload system
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● By denoting and

one has

● This allows also to write the state-space model as:

and  using the state vector                                    one has also the concise form::

where the inertia and Coriolis matrices are defined as :

4

5

6

6 . Example 2: Control and state estimation with approximate linearization

6.2. Dynamic model of the UAV and suspended payload system
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● The inverse of the inertia matrix M is given by

7

where the determinant det(M) is given by

● Thus, the state-space description of the UAV with the suspended payload on it is given by

8

Next, one computes the product

9

6 . Example 2: Control and state estimation with approximate linearization

6.2. Dynamic model of the UAV and suspended payload system



Nonlinear control and filtering for autonomous robotic vehicles

49

as well as the product

10

By defining the complete state vector as

one obtains the state-space description: 11

where 12

6 . Example 2: Control and state estimation with approximate linearization

6.2. Dynamic model of the UAV and suspended payload system
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and

13

where

6 . Example 2: Control and state estimation with approximate linearization

6.2. Dynamic model of the UAV and suspended payload system
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takes place around a time-varying equilibrium which is re-computed at each time instant.

This consists of the present value of system’s state vector x and of the last value of the

control inputs vector u that was applied on it.

This results into a linearized state-space description of the form:

15

where is the modelling error due to approximate linearization and truncation of

higher-order terms in the Taylor series expansion, while matrices A and B are given by

16

Next, the elements of the model’s Jacobian matrices  are computed:

14

6 . Example 2: Control and state estimation with approximate linearization

6.3. Approximate linearization of the UAV and suspended payload system
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Jacobian matrix

About the first row of the Jacobian matrix

About the second row of the Jacobian matrix

17

6 . Example 2: Control and state estimation with approximate linearization

6.3. Approximate linearization of the UAV and suspended payload system
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About the third row of the Jacobian matrix

About the fourth row of the Jacobian matrix

About the fifth row of the Jacobian matrix

6 . Example 2: Control and state estimation with approximate linearization

6.3. Approximate linearization of the UAV and suspended payload system
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About the sixth row of the Jacobian matrix

About the seventh row of the Jacobian matrix

About the eight row of the Jacobian matrix

6 . Example 2: Control and state estimation with approximate linearization

6.3. Approximate linearization of the UAV and suspended payload system
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The Jacobian matrix of the robotic system is computed as follows:

where

The Jacobian matrix of the robotic system is computed as follows:

where

The Jacobian matrix of the robotic system is computed as follows:

18

19

20

6 . Example 2: Control and state estimation with approximate linearization

6.3. Approximate linearization of the UAV and suspended payload system
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After linearization round its current operating point the system’s model

is written as

Parameter d1 stands for the linearization error in the system’s state-space model

24

At every time instant the control input is assumed to differ from the control input

appearing in by an amount equal to , that is
21

25

As explained, the system’s dynamic model undergoes linearization round its present operating

point (x*,u*), where x* is the present value of the UAV and payload’s state vector and u* is the

last value of the control input vector that was applied on it. Thus one arrives at the

approximately linearized description of the system:

where d1 is the linearization error due to truncation of higher-order terms in the Taylor

series expansion and

In a similar manner, one has that

21

22

23

6 . Example 2: Control and state estimation with approximate linearization

6.4. Design of an H-infinity controller for the UAV and suspended payload system
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The initial model of the UAV and suspended payload is assumed to be in the form

The linearized equivalent of the system is described by

where matrices 𝐴 and 𝐵 are obtained from the computation of the Jacobians

and vector 𝑑 denotes disturbance terms due to linearization errors.

where the linearization point (temporary equilibrium) is defined by the present

value of the system’s state vector and the last value of the control inputs vector

exerted on it

26

6 . Example 2: Control and state estimation with approximate linearization

6.4. Design of an H-infinity controller for the UAV and suspended payload system
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By subtracting Eq. from Eq. one has25 28

29

30

The dynamics of the system of Eq. can be also written in the form

and by denoting as an aggregate disturbance term one obtains

27

28

24

By denoting the tracking error as and the aggregate disturbance term as

the tracking error dynamics becomes

6 . Example 2: Control and state estimation with approximate linearization

6.4. Design of an H-infinity controller for the UAV and suspended payload system
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The problem of disturbance rejection for the linearized model that is

described by

where cannot be handled efficiently if the classical LQR

control scheme is applied. This is because of the existence of the perturbation term 𝑑.

In the 𝐻∞ control approach, a feedback control scheme is designed for trajectory

tracking by the system’s state vector and simultaneous disturbance rejection, considering

that the disturbance affects the system in the worst possible manner

The disturbances’ effect are incorporated in the following quadratic cost function

The coefficient 𝑟 determines the penalization of the control input and the weight

coefficient 𝜌 determines the reward of the disturbances’ effects.

31

6 . Example 2: Control and state estimation with approximate linearization

6.4. Design of an H-infinity controller for the UAV and suspended payload system
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Then, the optimal feedback control law is given by

with

where 𝑃 is a positive semi-definite symmetric matrix which is obtained from the solution

of the Riccati equation

where Q is also a positive definite symmetric matrix.

The parameter ρ in Eq. is an indication of the closed-loop system robustness.

If the values of ρ> 0 are excessively decreased with respect to r, then the solution of

the Riccati equation is no longer a positive definite matrix. Consequently, there is a

lower bound ρmin of for which the H-infinity control problem has a solution.

32

33

33

6 . Example 2: Control and state estimation with approximate linearization

6.4. Design of an H-infinity controller for the UAV and suspended payload system
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The tracking error dynamics for the UAV and suspended payload system is written in the

form

where in the case of the considered rotary pendulum with I being the

identity matrix. The following Lyapunov function is considered

T

34

35

where Is the state vector’s tracking error

8L I R= 

6 . Example 2: Control and state estimation with approximate linearization

6.5. Stability analysis for the UAV and suspended payload system
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The previous equation is rewritten as

By substituting Eq. and Eq. one obtains

36

37

37 36

Assumption: For given positive definite matrix Q and coefficients r and ρ there exists a

positive definite matrix P, which is the solution of the following matrix equation

Moreover, the following feedback control law is applied to the PEM fuel cells model

6 . Example 2: Control and state estimation with approximate linearization

6.5. Stability analysis for the UAV and suspended payload system
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Continuing with computations one obtains

which next gives

or equivalently

Lemma: The following inequality holds

38

6 . Example 2: Control and state estimation with approximate linearization
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Proof : The binomial is considered. Expanding the left part of the above inequality

one gets

The following substitutions are carried out:

and the previous relation becomes

Eq. is substituted in Eq. and the inequality is enforced, thus giving

39

39 38

Eq. shows that the H-infinity tracking performance criterion is satisfied.

The integration of from 0 to T gives

40

40

•

V

6 . Example 2: Control and state estimation with approximate linearization
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Moreover, if there exists a positive constant                    such that

then one gets

Thus, the integral is bounded.

41

Moreover, V(T) is bounded and from the definition of the Lyapunov

function V it becomes clear that e(t) will be also bounded since

According to the above and with the use of Barbalat’s Lemma one obtains:

6 . Example 2: Control and state estimation with approximate linearization

6.5. Stability analysis for the UAV and suspended payload system
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● The control loop has to be implemented with the use of information provided by a small

number of measurements of the state variables of UAV and suspended payload system

● To reconstruct the missing information about the state vector of the pendulum’s model it is

proposed to use a filter and based on it to apply state estimation-based control .

● The recursion of the H-infinity Kalman Filter, for the UAV and suspended payload system,

can be formulated in terms of a measurement update and a time update part

where it is assumed that parameter θ is sufficiently small to assure that the covariance matrix

Measurement

update

Time

update

Is positive definite

42

43

-1

6 . Example 2: Control and state estimation with approximate linearization

6.6. Stability analysis for the UAV and suspended payload system
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With the use of the proposed H-infinity control method, fast and accurate tracking of the 

reference setpoints of the UAV and suspended payload system was achieved

Fig. 2 Diagram of the nonlinear optimal control for the UAV and suspended payload

6 . Example 2: Control and state estimation with approximate linearization

6.7. Simulation results
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Fig. 3(a) convergence of state variables

x1 (y-axis position of the UAV), x2 (y-axis

velocity of the UAV), x3 (z-axis position of

the UAV) and x4 (z-axis velocity of the

UAV) to their reference setpoints (red line:

setpoint, blue line: real value, green line:

estimated value)

Fig 3(b) convergence of state variables x5

(rotation angle of the payload), x6 (rotational

speed of the payload), x7 (roll angle of the

UAV) and x8 (roll angular speed of the UAV) to

their reference setpoints

Setpoint 1

6 . Example 2: Control and state estimation with approximate linearization

6.7. Simulation results



Nonlinear control and filtering for autonomous robotic vehicles

69

Setpoint 1

Fig. 4(a) control inputs to the

UAV ui i=1,2,3 computed

through the solution of the

nonlinear optimal control

problem

Fig, 4(b) control inputs f (lift force

of the UAV’s motors) and (torque

generated in aggregate by the

motors of the UAV)

6 . Example 2: Control and state estimation with approximate linearization

6.7. Simulation results



Nonlinear control and filtering for autonomous robotic vehicles

70

Setpoint 2

Fig. 5(a) convergence of state variables

x1 (y-axis position of the UAV), x2 (y-axis

velocity of the UAV), x3 (z-axis position of

the UAV) and x4 (z-axis velocity of the

UAV) to their reference setpoints (red line:

setpoint, blue line: real value, green line:

estimated value)

Fig 5(b) convergence of state variables x5

(rotation angle of the payload), x6 (rotational

speed of the payload), x7 (roll angle of the

UAV) and x8 (roll angular speed of the UAV) to

their reference setpoints

6 . Example 2: Control and state estimation with approximate linearization

6.7. Simulation results
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Setpoint 2

Fig. 6(a) control inputs to the

UAV ui i=1,2,3 computed

through the solution of the

nonlinear optimal control

problem

Fig, 6(b) control inputs f (lift force

of the UAV’s motors) and (torque

generated in aggregate by the

motors of the UAV)

6 . Example 2: Control and state estimation with approximate linearization

6.7. Simulation results



Nonlinear control and filtering for autonomous robotic vehicles

72

Setpoint 3

Fig. 7a) convergence of state variables x1

(y-axis position of the UAV), x2 (y-axis

velocity of the UAV), x3 (z-axis position of

the UAV) and x4 (z-axis velocity of the

UAV) to their reference setpoints (red line:

setpoint, blue line: real value, green line:

estimated value)

Fig 7(b) convergence of state variables x5

(rotation angle of the payload), x6 (rotational

speed of the payload), x7 (roll angle of the

UAV) and x8 (roll angular speed of the UAV) to

their reference setpoints

6 . Example 2: Control and state estimation with approximate linearization

6.7. Simulation results
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Setpoint 3

Fig. 8(a) control inputs to the

UAV ui i=1,2,3 computed

through the solution of the

nonlinear optimal control

problem

Fig, 8(b) control inputs f (lift force

of the UAV’s motors) and (torque

generated in aggregate by the

motors of the UAV)

6 . Example 2: Control and state estimation with approximate linearization

6.7. Simulation results
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Setpoint 4

Fig. 9(a) convergence of state variables

x1 (y-axis position of the UAV), x2 (y-axis

velocity of the UAV), x3 (z-axis position of

the UAV) and x4 (z-axis velocity of the

UAV) to their reference setpoints (red line:

setpoint, blue line: real value, green line:

estimated value)

Fig 9(b) convergence of state variables x5

(rotation angle of the payload), x6 (rotational

speed of the payload), x7 (roll angle of the

UAV) and x8 (roll angular speed of the UAV) to

their reference setpoints

6 . Example 2: Control and state estimation with approximate linearization

6.7. Simulation results
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Setpoint 4

Fig. 10(a) control inputs to the

UAV ui i=1,2,3 computed

through the solution of the

nonlinear optimal control

problem

Fig, 10(b) control inputs f (lift force

of the UAV’s motors) and (torque

generated in aggregate by the

motors of the UAV)

6 . Example 2: Control and state estimation with approximate linearization

6.7. Simulation results
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Setpoint 5

Fig. 11(a) convergence of state variables

x1 (y-axis position of the UAV), x2 (y-axis

velocity of the UAV), x3 (z-axis position of

the UAV) and x4 (z-axis velocity of the

UAV) to their reference setpoints (red line:

setpoint, blue line: real value, green line:

estimated value)

Fig 11(b) convergence of state variables x5

(rotation angle of the payload), x6 (rotational

speed of the payload), x7 (roll angle of the

UAV) and x8 (roll angular speed of the UAV) to

their reference setpoints

6 . Example 2: Control and state estimation with approximate linearization

6.7. Simulation results
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Setpoint 5

Fig. 12(a) control inputs to the

UAV ui i=1,2,3 computed

through the solution of the

nonlinear optimal control

problem

Fig, 12(b) control inputs f (lift force

of the UAV’s motors) and (torque

generated in aggregate by the

motors of the UAV)

6 . Example 2: Control and state estimation with approximate linearization

6.7. Simulation results
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Setpoint 6

Fig. 13(a) convergence of state variables

x1 (y-axis position of the UAV), x2 (y-axis

velocity of the UAV), x3 (z-axis position of

the UAV) and x4 (z-axis velocity of the

UAV) to their reference setpoints (red line:

setpoint, blue line: real value, green line:

estimated value)

Fig 13(b) convergence of state variables x5

(rotation angle of the payload), x6 (rotational

speed of the payload), x7 (roll angle of the

UAV) and x8 (roll angular speed of the UAV) to

their reference setpoints

6 . Example 2: Control and state estimation with approximate linearization

6.7. Simulation results
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Setpoint 6

Fig. 14(a) control inputs to the

UAV ui i=1,2,3 computed

through the solution of the

nonlinear optimal control

problem

Fig, 14(b) control inputs f (lift force

of the UAV’s motors) and (torque

generated in aggregate by the

motors of the UAV)

6 . Example 2: Control and state estimation with approximate linearization

6.7. Simulation results
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● The use of UAVs in products transport and in ammunition tasks has necessitated

the development of elaborated controllers for such robotic systems.

● In this article a novel nonlinear optimal controller has been applied to the dynamic

model of a quadrotor UAV and suspended payload system.

● First, the dynamic model of the aerial robotic system has undergone approximate

linearization around a temporary operating point (equilibrium) which was updated at

each iteration of the control method.

● The linearization procedure relied on first- order Taylor series expansion of the

state-space model of the robotic system and on the computation of the associated

Jacobian matrices.

● For the approximately linearized model of the aerial robotic

system an H-infinity feedback controller was designed.

● The global stability properties of the control scheme were

proven through Lyapunov analysis.

● Finally, to implement state estimation-based control for the aerial robotic system,

the H-infinity Kalman Filter has been used as a robust state estimator

6 . Example 2: Control and state estimation with approximate linearization

6.8. Conclusions
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7 . Example 3: Control and estimation with Lyapunov methods

7.1. Overview

 Adaptive fuzzy control based on differential flatness

theory for multivariable control (dive-plane control) of

autonomous submarines.

 It is proven that the dynamic model of the submarine, having as state variables the

vessel’s depth and its pitch angle, is a differentially flat one. This means that all its state

variables and its control inputs can be written as differential functions of the flat output

and its derivatives.

 By exploiting differential flatness properties the system’s dynamic model is written in the

multivariable linear canonical (Brunovsky) form, for which the design of a state

feedback controller becomes possible.

 After this transformation, the new control inputs of the system contain unknown

nonlinear parts, which are identified with the use of neurofuzzy approximators.

The learning procedure for these estimators is determined by the requirement the first

derivative of the closed-loop’s Lyapunov function to be a negative one.

 Moreover, the Lyapunov stability analysis shows that H-infinity tracking

performance is succeeded for the feedback control loop and this assures improved

robustness to the aforementioned model uncertainty as well as to external perturbations.

.
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The multivariable model of the submarine’s dynamics has as outputs

the depth of the submarine

The pitch angle of the submarine

and as inputs

the deflection angle of the hydroplanes at the front part of vessel

the deflection angle of the hydroplanes located at the rear part of the vessel

h


B
S

7.2. Dynamic model of the autonomous underwater vessel

7 . Example 3: Control and estimation with Lyapunov methods

Fig.1 Diagram of the autonomous underwater vessel
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The dynamic model of the submarine is written as:

1

2

of the body-fixed frame

currents

7.2. Dynamic model of the autonomous underwater vessel

7 . Example 3: Control and estimation with Lyapunov methods
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Indicative values of the parameters of the submarine.s dynamic  model are:

These can be obtained directly from the design characteristics of the vessel or indirectly

through an identification procedure in the sense of nonlinear least squares or nonlinear

Kalman Filtering

However, since adaptive control is a model-free control method, there is no need about

prior knowledge of these parameters’ values..

Adaptive control assures stability of the control loop under unknown dynamic model

parameters and unknown external perturbations and disturbances ..

K.Lee and S,Singh,Journal

of Systems and Control

Engineering, vol. 328, no. 3,

2014

[1]

[1]

7.2. Dynamic model of the autonomous underwater vessel

7 . Example 3: Control and estimation with Lyapunov methods
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The dynamic model of the submarine can be written in matrix form:

where the control input vector is:

In this description:

3

and is generated by electric actuators that rotate the hydroplanes. Therefore the control

input describes actually voltage or current signals that define the turn angle of the rotor

of these electric actuators.

This indicates clearly the significance of electric actuators in the submarine’s propulsion.

7.2. Dynamic model of the autonomous underwater vessel

7 . Example 3: Control and estimation with Lyapunov methods



Nonlinear control and filtering for autonomous robotic vehicles

86

It holds that the depth of the vessel measured in the inertial reference frame and the

velocity w of the submarine along the z-axis of the body-fixed frame are related as follows:

From the above relation one can compute about the diving speed of the vessel:

Moreover, from Eq one has:3

4

5

6

Substituting Eq. and the first row of Eq. : into Eq. one gets5 6 4

7

7.2. Dynamic model of the autonomous underwater vessel

7 . Example 3: Control and estimation with Lyapunov methods
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Next, by denoting:

And by substituting this relation in Eq. , together with one obtains:7 
•

=Q

Then, by defining the state vector

8

From Eq. one finally arrives at the MIMO state-space description of the submarine8

9

7.2. Dynamic model of the autonomous underwater vessel

7 . Example 3: Control and estimation with Lyapunov methods
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7.3. Differential flatness properties of the autonomous underwater vessel

7 . Example 3: Control and estimation with Lyapunov methods

• A dynamical system can be written in the ODE form q,...,,i),w,...,w,w,w(S )i(

i 21   =
•••

• The system is said to be differentially flat with respect to the flat output  

),...,,( 21 myyyy =where                                        m,...,i),w,...,w,w,w(y )a(

i 1  ==
•••



if the following two conditions are satisfied 

(i) There does not exist any differential relation of the form 

0),...,,,( )( =
•••

yyyyR

which means that the flat output and its derivatives are linearly independent

(ii) All system variables are functions of the flat output and its derivatives

),...,,,(
)()(

iyyyyw i 
•••

=

)(iwwhere        stands for the i-th derivative of either a state vector element or of a control input                                      

• Differential flatness theory has been developed as a global linearization control

method by M. Fliess (Ecole Polytechnique, France) and co-researchers (Lévine, Rouchon,

Mounier, Rudolph, Petit, Martin, Zhu, Sira-Ramirez et. al)
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7.3. Differential flatness properties of the autonomous underwater vessel

7 . Example 3: Control and estimation with Lyapunov methods

The proposed adaptive control method is based on the transformation of the vessel’s

model into the linear canonical form, and this transformation is succeeded by exploiting

the system’s differential flatness properties

• All single input vessel models are differentially flat and

can be transformed into the linear canonical form

One has to define also which are the MIMO vessel models which are differentially flat.

• Differential flatness holds for MIMO vessel models that admit static feedback

linearization and which can be transformed into the linear canonical form through a change

of variables (diffeomorphism) and feedback of the state vector. This is the case of the

submarine's model

• Differential flatness holds for MIMO vessel models that admit dynamic feedback

linearization, This is the case of underactuated vessel models (e.g. hovercraft)

In the latter case the state vector of the system is extended by considering as additional

flat outputs some of the control inputs and their derivatives

• Finally, a more rare case is the so-called Liouvillian systems. These are systems for which

differential flatness properties hold for part of their state vector (constituting a flat subsystem)

while the non-flat state variables can be obtained by integration of the elements of the

flat subsystem.
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Next, by denoting the flat output of the submarine as:

it can be proven that the submarine’s dynamic model is a differentially flat one

This means that all its state variables and its control inputs can be expressed as differential

functions of the flat output

From Eq. one gets9 which means

Again, from Eq. one gets9

which means

Eq. and Eq. confirm that the submarine’s model is a differentially flat one.

10

11

10 11

7.3. Differential flatness properties of the autonomous underwater vessel

7 . Example 3: Control and estimation with Lyapunov methods
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The differential flatness property of the submarine’s model is important because it means that

the vessel’s model can be transformed into the MIMO linear canonical (Brunovsky) form

through a change of its state variables (diffeomorphism)

By defining the new state variables of the vessel

1 1 2 3 2 41 3, , ,      y x y y y x y y
• •

= = = =

and by defining the transformed control inputs of the vessel

one obtains the linearized and decoupled state-space model of the submarine

for which the design of a state-feedback controller is possible

12

13

7.3. Differential flatness properties of the autonomous underwater vessel

7 . Example 3: Control and estimation with Lyapunov methods
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For the transformed state-space model of the vessel

13

It is considered that the complete state vector is measurable

Then, to succeed tracking of the reference setpoint

1 21 2 3 4 1 2[ , , , ] [ , , , ]

d d
d d d d d T d d Ty y y y y x x x x

• •

= =

the feedback control inputs should be chosen as

1 1
1 1 11 1 1

2 2
2 3 33 3 3

( ) ( )

( ) ( )

d d
d

d p

d d
d

d p

v y k y y k y y

v y k y y k y y

•• • •

•• • •

= − − − −

= − − − −

14

7.4. Design of a state-feedback controller for the autonomous underwater vessel
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By substituting Eq. Into Eq.14 13 one obtains the

tracking error dynamics for the submarine

1 1 2 2
1 1 2 21 20 0         d p d pe k e k e e k e k e

•• • •• •

+ + = + + = 15

where the tracking error is defined as 1 1 1 2 3 3,   d de y y e y y= − = −

By selecting the feedback control gains , 1,2   i i
p dk k i = so as the characteristic polynomials

2 1 1 2 2 2
1 2( ) ( )          d p d pp s s k s k p s s k s k= + + = + + 16

to have roots explicitly in the left complex semiplane, it is assured that

lim ( ) 0 1,2    i
t

e t i
→

= =

Finally, the feedback control input that is actually exerted on the submarine is .

1

1 11 12 1 1

2 21 22 2 2

( , ) ( , ) ( , )
[ ]

( , ) ( , ) ( , )

u g x t g x t v f x t

u g x t g x t v f x t

−
       

= −       
       
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For the differentially flat MIMO model of

the submarine one has the dynamics

The following control input is considered

This results in tracking error dynamics of the form

where matrices A,B,K are defined as
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where and stand for estimates of the unknown nonlinear terms and
^

f
^

g f g

These estimates are provided by neurofuzzy approximators or other nonlinear regressors
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The nonlinear regressors (neurofuzzy approximators) consist of the kernel functions

and weights functions. Unlike SISO systems, in the case of MIMO dynamics the kernel 

and weights functions are not represented as vectors but take the form of matrices. 

Thus one has:  

Kernel and weights functions for the approximation of the nonlinear dynamics f:

Kernel and weights functions for the approximation of the nonlinear dynamics g:
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The following quadratic Lyapunov function is defined: 

Differentiating one obtains:

The associated tracking error dynamics is: 

The effect of modelling errors is denoted by:
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The weight functions of the neurofuzzy approximators are learned through an adaptation

procedure that is determined by Lyapunov stability analysis for the submarine’s model.

:e state vector tracking error
~

* :f f f  = − Difference of the weights from the value that succeeds exact estimation of f
~

* :g g g  = − Difference of the weights from the value that succeeds exact estimation of g
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Thus one obtains the following tracking error dynamics: 

The first derivative of the Lyapunov function becomes: 

and after intermediate terms substitution one obtains: 

Assumption 1: the positive definite and symmetric matrix P is chosen as solution of the 

Riccati equation: 
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Using as supervisory control input                              one obtains: 

which can be written in the form: 

Next, substituting: 

i.e: 

the following form of the derivative of the Lyapunov function is obtained: 
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Taking into account that                   and 

the following form is obtained for the Lyapunov function derivative : 

and since 
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one has: 

or: 

Next the following inequality is used: 
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Proof: 

The binomial is considered. Expanding the left part of the above

inequality one gets

By substituting one gets

Lemma:   It holds that 19

and denoting the disturbances and modelling error terms as: 
awdww ++=

~
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By substituting Eq.           into the relation of the derivative of the Lyapunov 

function gives:
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This is the H-infinity tracking performance criterion which means that for bounded disturbance 

and modelling error the control law results in very small bounded tracking error: 
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It is noted that, by choosing the attenuation coefficient ρ to be sufficiently small, the right

part of Eq. can be always made to be upper bounded by zero.

In such a case the asymptotic stability condition is clear to hold..

The minimum value of ρ for which a solution of the Riccati Eq. exists, is the one that

provides the control loop with maximum robustness.

20

18

Moreover, if

and from Barbalat’s Lemma one has that

lim ( ) 0
t

e t
→

= which confirms again that the tracking error vanishes
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• In the simulation tests, the dynamic model of the submarine was considered to be

completely unknown and was identified in real-time by the previously analyzed

nonlinear regressors

• The estimated unknown dynamics of the system was used in the computation of

the control inputs (generated by the electric actuators of the hydroplanes) which were

finally exerted on the submarine’s model.

depth

pitch 

angle

7.6. Simulation results
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depth

pitch 

angle

depth

pitch 

angle

setpoint change

+ disturbance

7.6. Simulation results
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• By exploiting the differential flatness properties of the MIMO nonlinear model of

the submarine the system was transformed into the linear canonical (Brunovsky)

form. For the latter description the design of a feedback controller was possible.

• Moreover, to cope with unknown nonlinear terms appearing in the new control inputs

of the transformed state-space description of the submarine, the use of nonlinear

regressors (neurofuzzy approximators) has been proposed..

• These estimators were online trained to identify the unknown

dynamics and the learning procedure was determined by the

requirement the derivative of the Lyapunov function to be negative

• Through Lyapunov stability analysis it was proven that the closed loop satisfies the

H-infinity tracking performance criterion, and this assures improved robustness

against model uncertainties and external perturbations.

• The computation of the control input required the solution of an algebraic Riccati

equation. Suitable selection of the attenuation coefficient ρ in this equation assures

asymptotic stability and provides maximum robustness.

• The proposed flatness-based adaptive fuzzy control method is generic and can be

applied to a wide class of vessels, such as surface vessels or AUVs and

submersibles,inIcluding also the case of underactuated vessels.

7.7. Conclusions
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8. Final conclusions

grigat@ieee.org

● Methods for nonlinear control and state estimation in autonomous

robotic vehicles have been developed

● The main approaches for nonlinear control have been: (i) control with global linearization

method (ii) control with approximate (asymptotic) linearization methods (iii) control with

Lyapunov theory methods (adaptive control) in case that the robotic or kinematic model of

the vehicle is unknown

● The main approaches for nonlinear state estimation are: (i) nonlinear state estimation with

methods of global linearization (ii) nonlinear state estimation with methods of approximate

(asymptotic) linearization


