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Nonlinear control and filtering for USVs and AUVs

| . Qutline

e Optimized propulsion of USVs and AUVs relies on the solution of
the associated nonlinear control and state estimation problems

e The main approaches followed towards the solution of nonlinear
control problem are as follows: (i) control with global linearization
methods (ii) control with approximate (asymptotic) linearization
methods (iii) control with Lyapunov theory methods (adaptive
control methods) when the dynamic model of the USVs and AUVs is
unknown.

e The main approaches followed towards the solution of the nonlinear
state estimation problems are as follows: (i) state estimation with
methods global linearization (ii) state estimation with methods of
approximate (asymptotic) linearization

e Factors of major importance for the control loop of USVs and
AUVs, in optimized propulsion problems, are as follows (i) global
stability conditions for the related nonlinear control scheme (ii) global
stability conditions for the related nonlinear state estimation scheme
(i)  global asymptotic stability for the joint control and state
estimation scheme
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Il . Nonlinear control and state estimation with global linearization

e To this end the differential flatness control theory is used

e The method can be applied to all nonlinear systems which
are subject to input-output linearization and actually such
systems posses the property of differential flatness

e The state-space description for the propulsion model of the USVs and AUVs is
transformed into a more compact form that is input-output linearized. This is achieved
after defining the system'’s flat outputs

e A system is differentially flat if the following two conditions hold: (i) all state variables and
control inputs of the system can be expressed as differential functions of its flat outputs (ii)
the flat outputs of the system and their time-derivatives are differentially independent,
which means that they are not connected through a relation having the form of an ordinary
differential equation

e With the application of change of variables (diffeomorphisms) that rely «..35. _
on the differential flatness property (i), the state-space description of the e
USVs and AUVs propulsion system is written into the linear canonical
form. For the latter state-space description it is possible to solve both
the control and the state estimation problem for the USVs and UAVs
propulsion system
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Il . Nonlinear control and state estimation with approximate linearization

e To this end the theory of optimal H-infinity control and the theory of
optimal H-infinity state estimation are used

e The nonlinear state-space description of the USVs and AUVs propulsion

undergoes approximate linearization around a temporary operating point
which is updated at each iteration of the control and state estimation algorithm

e The linearization relies on first order Taylor series expansion around the temporary
operating point and makes use of the computation of the associated Jacobian matrices

e The linearization error which is due to the truncation error of higher-order terms in the
Taylor series expansion is considered to be a perturbation that is finally compensated by

the robustness of the control algorithm
e For the linearized description of the state-space model an optimal H-infinity controller

is designed. For the selection of the controller’s feedback gains an algebraic Riccati
equation has to be solved at each time step of the control algorithm

e Through Lyapunov stability analysis, the global stability properties of
the control method are proven

e For the implementation of the optimal control method through the
processing of measurements from a small number of sensors in the
USVs and AUVs propulsion system, the H-infinity Kalman Filter is used

as a robust state estimator
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IV . Nonlinear control and state estimation with Lyapunov methods

e By proving differential flatness properties for the USVs and AUVs
propulsion and by defining flat outputs a transformation of the related
state-space model into an equivalent input-output linearized form is achieved.

e The unknown dynamics of the USVs and AUVs propulsion is incorporated
into the transformed control inputs of the system, which now appear
In its equivalent input-output linearized state-space description

e The control problem for USVs and AUVs of unknown propulsion dynamics in now turned
into a problem of indirect adaptive control. The computation of the control inputs of the
system is performed simultaneously with the identification of the nonlinear functions which
constitute its unknown dynamics.

e The estimation of the unknown propulsion dynamics of the USVs and AUVs is
performed through the adaptation of neurofuzzy approximators. The definition of the
learning parameters takes place through gradient algorithms of proven convergence, as
demonstrated by Lyapunov stability analysis

e The Lyapunov stability method is the tool for selecting both the gains of the stabilizing
feedback controller and the learning rate of the estimator of the unknown system’s
dynamics

e Equivalently through Lyapunov stability analysis the feedback gains of the state
estimators of the USVs and AUVs propulsion system are chosen. Such observers are
included in the control loop so as to enable feedback control through the processing of a
small number of sensor measurements
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Example 1: Nonlinear control and state estimation using global linearization
1. Control of turbocharged ship diesel engines ——

» The development of efficient control for turbocharged ship Diesel
engines, requires elaborated nonlinear control and filtering methods

« To this end, nonlinear control for turbocharged Diesel engines is developed with the use of
Differential flatness theory and the Derivative-free nonlinear Kalman Filter.

* It is shown that the dynamic model of the turbocharged Diesel engine is dlfferentlally flat
and admits dynamic feedback linearization. SIS AP

* It is also shown that the dynamic model can be written in the linear
Brunovsky canonical form for which a state feedback controller
can be easily designed.

» To compensate for modeling errors and external disturbances the Derivative-free nonlinear
Kalman Filter is used and redesigned as a disturbance observer.

* The filter consists of the Kalman Filter recursion on the linearized equivalent model of
the Diesel engine model and of an inverse transformation based on differential flathess
theory which enables to obtain estimates for the state variables of the initial nonlinear model.

* Once the disturbances variables are identified it is possible to compensate them by including

an additional control term in the feedback loop. .
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Example 1: Nonlinear control and state estimation using global linearization

2. Dynamic model of the Diesel enqgine

The basic parameters of the Diesel engine are:

(i) Gas pressure in the intake manifold  P1
(i) Gas pressure in the exhaust manifold P2
(iii) Turbine power Pt

(iv) Compressor power Fe

Additional variables of importance are:

W: which is the compressor’s mass flow rate ~ . /o, e LA B\ /o, e
chred \\\\%\\_ #‘?/\ / ;::;‘ f::mj‘ (\\%\‘\\ /;"‘)ﬂ
T, which is the intake manifold temperature I | btz
B
. . . Compression e} Exhaust piamn O
T, Which s the exhaust manifold temperature e
N, \\ / ™~ /

W, which is the turbine mass-flow rate

o _ _ Four-stroke cycle of an internal
Weer  which is the exhaust gas recirculation flow rate combustion diesel engine 7
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Example 1: Nonlinear control and state estimation using global linearization
2. Dynamic model of the Diesel engine

The basic relations of the Diesel-engine’s dynamics are: - ;!- i

SN x\x\\"
Py =Ka(Kepr — uy —u) RDESD).
B =LmmA-B)

The control inputs to this model are:

() The exhaust-gas recirculation (EGR) flow rate U1 = WeGr

(i) The turbine’s mass flow rate u; = Wy

Moreover, it holds that: . =Pcﬁfj—1 B =K({1—pi*ha

The description of the Diesel engine in state-space form is given by:

x = f(x) +galxlus g (x)u:

where: P
KIK-:E —K1&p Ky 0
flx) = Kk pi galx)=| —%2 | gplz)= —K3
& 0 Kc-(l =2 H:J 8

T
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Example 1: Nonlinear control and state estimation using global linearization
2. Dynamic model of the Diesel engine

The output variables of the Diesel enaine maodel are:

_fry F'lg;
y_(m)_(ﬂp“—l)
1

nooie Vb Gy
Adr
— ] = | — Exhaust Gas
Eduarst
Compnessor Gas

— Bt Manifold (P T)

[

(PaWe ) l I

Cylinders
meroool EGR " I S =% =
: o { | mokr I\_/ \,) (_,/ \»)
s Intake NManidold (P,.T,)‘

Fig.1 : Diagram of the turbocharged Diesel engine 9
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Example 1: Nonlinear control and state estimation using global linearization

3. Lie algebra-based control

Dynamic feedback linearization is applied to the Diesel engine’s model:

The state vector of the system is extended by considering as additional
state variables the control inputs

The transformed control inputs which appear in the linearized equivalent of the system are
functions of not only the initial control variables 1.3  but also of their derivatives 1 ,z32.

The extended state vector of the diesel engine becomes:

&= [Il'ax}.-x}ax-ﬂ]r — Lplﬁpﬂﬁﬁﬂﬁz]r

The control inputs to the linearized model of the Diesel engine become:

Vi=in =, wi=iih
where Uq = Wxrer Uy =W,

The control inputs which are finally applied to the system contain an
integral action:

ulzfvl.:fﬁ,ugzmg 10
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Example 1: Nonlinear control and state estimation using global linearization

3. Lie algebra-based control

The extended state-space description of the Diesel engine becomes:

xo=K 23 o B B e By
1 | 15‘;;?_—1 1K + & 24
X =Kk, x — Kxg— Kqwg
x=—2+ K (1 —x7H)
X4 =
Consequently, in matrix form one has:

x| Klﬂ;;ifi—l— K & + Kz 0 0
2| _ Foa ko m — Eoxy 4 () " 1
| 1+
3 ~8 i, (1—5) 0 0
4 (] 1 i
The system’s outputs are chosen to be:
¥l =& =21
.}?2 ZHPT_I i"ﬂ = Ijx.'i-l-_l

11
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Example 1: Nonlinear control and state estimation using global linearization
3. Lie algebra-based control

Linearization of the system’s dynamics is performed using the following state variables:

2t =k (x) and equivalently: 7 =k (x)
= Lk (x) z% = Lk (x)
23 = Loy (x) + L Loy (x)usy + Lg Ly (2 78 = Lsha (x) + L Ly ko (x)ut + Lgy Lk (x)u

After intermediate computations one obtains:

i i
Liby(e) = Lyal=sLihy( ) — g G g dug

Hag

L2k (o) = {E%ﬂfﬂ K+ 0+ (B8 e+ Kt
L;h1 Kiffa_—mgéﬁt Kif‘fz;irfﬁ Hiffem1+ff1$4)+{%%%}{—;&+ffo(1—%T#}}
and also

3 a Az
Lo Lsba(0) = Lo,y =Ly, Lyba(o) = ENMEK s PR - PSR PRIEN

Lo, Liha(e) = {Kiffz"““"’f_ — K1 K go, + 0gay + (B52) 00, + Kirgay=
Ly, Lyha(w) = Ky

and

zi zi zi zi
LgLibile) = Lg#j=Lg Leha(z) = gﬁﬁ'bi + g:.:_ii?bn 25 g:c_ii?bz + g:.:_ii?h:”
Lg-;-,L,fh"l{m:l — {KIKEﬂ K‘lE }Q‘bi + ngg + {Hi Hg}ﬁbg o Kii?h
12
Ly Lpha(e) =
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Example 1: Nonlinear control and state estimation using global linearization

3. Lie algebra-based control

In a similar manner one obtains:

Bz o | B, | B2y, | Oz
{m} ﬂmifi—l_ ﬂmgfz-l_i-ﬁ':cng—l_ -5':-:4{4:r
H.: o o — =K wh — o it
Lgh-g{m:l = [u; (— Ko pp—1at™ 2y (nt— ﬂ:.: 51 g o — 1pe '[Ef*_ifﬁffﬁ:timm&:“"

_K.g..'.ul:l:i‘. {HiHe—mgy_mf’ H_l}‘:-ﬂ]l_l_

s wl—1

_|_P:§4;f“';4:_{ 22 4 Kol —a" N} H‘j_H_f,'s_ KiKewi+ Kiza)+
+—?J—Ha#m THE Key — Kyegt

Hoo B+ R DI R H K - e T

s 3;:"":_ v

{ﬁg—f%#_—_lig—}fi}ﬂ

and also

i i

LﬁmLIhi{ﬁj ai.;,hi?ﬁ:i k= amﬁﬁ:n = 5::.;35"&3 =+ 5::.;45"&4:*
Lo, Liha(w) = $21= L, Lehy(a) = mg#ﬂij—m

and
Q

Ly thi{ﬁj = gm& Q’bi & amﬂﬂbn " amgﬁbg =+ 5.:,;&%4:}
Lo Lha() = 221 = L Lyha(a) = gag Koproy

g

13
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Example 1: Nonlinear control and state estimation using global linearization

3. Lie algebra-based control

Thus, after the change of coordinates the following description of the system is obtained

11 1
& = &

.321 = Lfr h--ﬂ[mjl -+ Lgerf.r?--l I[ﬂjl'il-l + Lgaﬂth{ﬂjl Tl
Bi=1zs

= Lihole) + Ly, Lphole)oy + L, I b ) v,

which is also written in the state-space form

P R e i ey

or also in the more compact form

2= 1.+ M.

14
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Example 1: Nonlinear control and state estimation using global linearization
3. Lie algebra-based control

Moreover, by defining the control inputs

1
Vaw —
2

Likal#) + Dg, Lybale) v + Lo, Db (#)vs
Likalw) + Do, Ly hal{w) v + Lg, Lyha{e) v

‘2-?1-

the system’s description comes to the following canonical form:

41 001 0 0y e 0 0
l_o oo o], [t o/
42 000 0 1] 0 0] Lol
42 000 0 0/ \a2 0 1

The selection of the state feedback control law, which assures elimination of the tracking

error is:
?’;':-1:5;'@_}{3{'[331 _'E:‘ldjl Ei{ﬁi— ﬁ1.55-'
wé%-z:'éid_}fi{'éi _ﬂic.!:' Hz{ﬂi_ E16':'

The control input that is finally applied to the system is:

Ho = o+ M 0=0 = M _-Ya,, — £

15



Nonlinear control and filtering for USVs and AUVs

Example 1: Nonlinear control and state estimation using global linearization
4. Nonlinear control of the diesel engine using differential flathess theory

The results about dynamic state feedback system linearization can be obtained with the
computation of time derivatives and differential flatness theory. The following differentially
flat system outputs are considered

J"IKTF'I = &1 Z
YIS T

The dynamics of the extended system are:

4 EiHa;fﬁT—EiHeﬂi-l-Him 0 0
iﬂ — HgHeﬂ-l 2 Kgﬂ.:l U 1
s =3 4 FO — o) tlo|®t|o]®
g 0] 1 0]
It holds that »1 ==x1 therefore:
x1 =41 ) .

xT =1 -1

y2= 173 ifflérxa—y—l—jiﬂ :'#-x3=‘y—1—mﬂ )

which means that variable x; is also a function of the flat output and its derivatives. 16
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Example 1: Nonlinear control and state estimation using global linearization
4. Nonlinear control of the diesel engine using differential flatness theory

Moreover, from the first row of the state-space equations one obtains:
=f§1ﬁ’cf_—1—f~.’.’1ﬂx1 + K xa=>

P1—E K —;3—+K1Kexl
_ .311 -1 i E
xq = T =4 = galy.y)

which means that variable x, is also a function of the flat output and its derivatives.

Additionally, from the fourth row of the state-space equations one
obtains:

He = W1=FY1 = g5l &)
This means that the control input v, is also a function of the flat output and its derivatives.

Similarly, from the third row of the state-space equations one has:

%3 %jf@(l—xz :'=§'3
Igﬁ*f:— T s = (CHE W

17
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Example 1: Nonlinear control and state estimation using global linearization

4. Nonlinear control of the diesel engine using differential flathess theory

while, from the second row of the state-space equations one obtains:

x =0 — B tws
va =x3 — K&m +Kn=
va =gs ()
Therefore, all state variables of the system and the control inputs can be written as functions
of the flat output and its derivatives. Therefore, the system of the diesel engine is differentially
flat and can be subjected to dynamic feedback linearization.

Next, by considering the flat outputs and by differentiating with respect to time one obtains:

¥ =x
¥1=x1= :KIK-:;FE;—I — K Eox + Kyxg

By differentiating once more with respect to time one gets:

i
R H—_ﬁf*:i;‘_ - KKK Koy — K1 Koo+ Kioa)+

—I—I[Hﬂ'qfi_—i}{—%ﬂ + Eo(1 —wy")) + Ko
18
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Example 1: Nonlinear control and state estimation using global linearization

4. Nonlinear control of the diesel enqgine using differential flatness theory

In a similar manner one has:

H
B2 = ¥ mf—i
i
oo waKepatT Bt
¥ = T €1+ Fpiy®s=

i
' ool : I :
o = mfﬁiig_ ©1+ gEigts=

while by differentiating once more with respect to time one obtains:

) ek, —1)w® & et =118 E px =4 o — o 1 .
"y i ={ oF g — 1 ™ (wf Eif__f;* pef T 2w = 1T (K-lHe;fi—i - H‘lKemi‘l‘ K1$4:|-|—
+_(:-:E"'}i3:_j” (=20 H (1~ mﬁ)}}(ﬁri}feﬁi—i — K1 Kewr + Kynd) + ;%_T(Haﬁﬂ’;_i){ffﬂfemi — Kywa+ o)+
bt . . ¥
Hgp o (Ko — Koo+ Kiou g (- DH-2 4+ Kot - o)+

i
+—’*—§l”3fii_f g } h

Thus one arrives at a representation of the system’s dynamics that is
analogous to the one obtained by applying the Lie algebra-based
approach:
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Example 1: Nonlinear control and state estimation using global linearization
4. Nonlinear control of the diesel engine using differential flatness theory

_:1:%1 = LEAEH (x) 4+ Lg Lkt (x et + Lg, Lkt (x)un
3 =£.j~fﬂg f::-'f;I —I-Lgﬂ.-f.fﬁzg [:xjul _l_"I'EE:"I'f’;gE (I;lug

where:
Lgh-‘l Eiffz_—ﬁgit e }{Eiffz—fz'g— KK, m1_—|—}:-’.'1_m4}—|—{—,-i—3j{ —3+K {1—$ 3'3'
Lo Lybale) = Ky and Lga.thd{mj' =
and also:

woll, — et et 1 g K, paef  of a1 pa = : )
Lﬂhz{}'={3 g —1 3™ " (al E:?:f’—‘l?ir‘* ey ™" 2 — 1 e’ {Kif': 2 —K1Km1—|—}f1m4:l—|—

-I—%—{——-I—H '[1 — e KK e_Fl-_ KiKoe+ Kz -I-—.m—{f'fa#ﬂ# Y E Hem — Kamd)+
+{¢—}mi—r{}f1}fﬂ;f,—_31—:l K‘lKem‘l_'_ K-lﬂ.;—'— ;ﬁ‘? T:l}{— = —|— Kﬂ,{l — m;“]]

el ot
Lg,Lyhalw) = ?::-:;“}—{1?; £y and Ly Dyhale) = —fr‘—{ Kopet ™)

The design of the state feedback controller proceeds as in case of linearization
with the use of Lie algebra-based computations 20
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Example 1: Nonlinear control and state estimation using global linearization

5. Disturbances compensation using the Derivative-free nonlinear Kalman Filter

It is assumed that model uncertainty effects and external perturbation terms are described

in the model of the diesel engine as additive disturbance inputs which appear in the linearized
equivalent. Thus, one has the dynamics

T I 1(x:l + Lg i1 (x:lm + Lg, Lsha [:I:Ivg —I—.:f:1
¥a = Lpha(x) +Lghaxvt +Lg, Leka(x vy +da

and after defining
1 —Lff’ll —I—.Eg f‘Il :I‘Lfl —I—I,gbﬂffIg[:I:IFg

19 —thg —|—Lg fig )1?1 —|—L§bﬂfhglix:l‘|”g

one gets = ﬂéﬂ +d1  while the disturbances are considered

i = w2 + d- to be described by the associated 2"
order derivative

In the latter case, the system’s dynamics can be extended by considering

as additional state variables the disturbance terms and their derivatives.
Thus one obtains

=

21
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Example 1: Nonlinear control and state estimation using global linearization
5. Disturbances compensation using the Derivative-free nonlinear Kalman Filter

where z= [31}22}‘ 5% }EE]T:- Vin = [Flywhfdlyﬁz]r

and matrices A,B,C are defined as follows:

0 1 000 0 0 0y 0 0 0 0 1 0\
00001000 1 00 0 01
00010000 00 0 0 00
0 0::0 0::0 0 1 0 01 0 0 » |o o
A=lo o0o0o0o0100|] E=lo oo ol “ =0 o
000000 D00 00 1 0 0 0
0 00 T 0 0o 00 0 0 0 0
\0 00 00000 \0 0 0 1 \0 0

In the design of the Kalman Filter-based disturbances estimator it is assumed that the
disturbances’ dynamics is completely unknown. Thus, the considered dynamics now is

5= Aus + By + K[z — 5™
5= Aod + Bovs + K[Cx — O3]

where Hin = [ﬂi}UE]T] -‘4--:' — -‘4-] O-:' — G -and

01 0
A,
Bﬂ_(o 0 0

(] o 0 0
1 00 0 0 22

0
0
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Example 1: Nonlinear control and state estimation using global linearization
5. Disturbances compensation using the Derivative-free nonlinear Kalman Filter

For the above definition of dynamics of the disturbances estimator, the selection of the observer’s
gain K can be performed using the standard Kalman Filter recursion. Prior to this, matrices

A, B, and ', are brought to the discrete-time form A4,, 5;andC; using common discretization
methods. The discrete-time Kalman Filter recursion is

measurement update: time update:
K(k) = P~(R)CT[CaP~ (W) CT + B~ -
B(k) = (1) 1 K(Bm(8) — (b s e s

P(k) = P~ (K) — K(K)CaP~ (k)

From the previous estimation procedure one can reconstruct the state vector of the initial
nonlinear model of the diesel engine

“ el .""- “ II'J:I 1

Ty =i = 4z @ 1 j
) b, i‘ri—Hiﬁe—ﬁ—ﬂf_iJrHiHE:h
o = _(;LHG :I T4 = Ki

The control signal that enables the disturbances compensation is

L _ 2

¥
) n

1.+
3

Ty
'“'m
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Example 1: Nonlinear control and state estimation using global linearization
6. Simulation tests

Through simulation experiments it has been confirmed that the proposed control and Kalman
Filter-based estimation scheme can (i) succeed convergence of the elements of the state vector
of the turbocharged diesel engine to the desirable setpoints, (ii) estimate non-measurable
elements of the state vector as well as disturbance terms that affect the engine’s dynamics.

o A fo= — 3 :F | .'1|...
5 i g 05 I‘,
Fig, 2(a) Convergence of the state variables Fig, 2(b) Estimation (blue line) of
to the associated setpoints 1 (red line: setpoint, perturbation terms (red line) affecting
blue line: real value, green line: estimated value) the diesel engine

24



6. Simulation tests

Nonlinear control and filtering for USVs and AUVs

XEn = X!%

A H H '
} 2o
N H

X!‘-I!d‘

-0t -
0 10
me
[0 Y
ADpE T I ’
100 - .: e
0 '
0 0
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Fig 2(a): Convergence of the state variables
to the associated setpoints 2 (red line: setpoint,
blue line: real value, green line: estimated value),

dsdtd, - didtd, - est
)

Fig. 2(b) estimation (blue line) of
perturbation terms (red line) affecting
the diesel engine

Example 1: Nonlinear control and state estimation using global linearization
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Example 1: Nonlinear control and state estimation using global linearization
/. Conclusions

* The Diesel engine’s model does not admit static feedback linearization
and this increases the degree of difficulty of the associated nonlinear control
problem.

« To handle this, it has been proposed to apply dynamic feedback linearization which is
based on extending the state-space description of the engine with the inclusion of additional
state variables representing the derivatives of the control inputs.

 The extended state-space model of the turbocharged diesel engine satisfies differential
flatness properties and can be finally transformed into MIMO canonical (Brunovsky) form.

» The latter description facilitates the design of a state feedback controller and assures that
the elements of the state vector of the engine will converge asymptotically to the desirable
setpoints.

« To compensate for modeling errors and external disturbances the Derivative-free
nonlinear Kalman Filter has been used and redesigned as a disturbance observer.

« The filter consists of the Kalman Filter recursion on the linearized equivalent model of the
Diesel engine model and of an inverse transformation based on differential flatness theory

which enables to obtain estimates for the state variables of the initial nonlinear model.
26
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Example 2: Nonlinear control and state estimation using approximate linearization

1 . Control of turbocharged ship diesel engines

e Anonlinear optimal (H-infinity) control approach is proposed
for turbocharged diesel engines with potential use in ship propulsion.

e The dynamic model of the diesel engine undergoes approximate
linearization round a temporary operating point.

e This is defined at each time instant by the present value of the system’s state vector and
the last sampled value of the control inputs vector.

e The linearization is based on Taylor series expansion and on the associated
Jacobians. For the linearized model an H-infinity feedback controller is computed.

e The controller’s gain is calculated by solving an algebraic Riccati equation at each
iteration of the control method.

e The asymptotic stability of the control approach is proven
through Lyapunov analysis.

e This assures that the state variables of the diesel engine
will finally converge to the designated reference values.

e Optimal functioning of the diesel engine signifies improved power, reduced

polluting emissions and reduced fuel consumption 27
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xample 2: Nonlinear control and state estimation using approximate linearization

2 . Dynamic model of the turbo-charged diesel engine

A. Nonlinear dynamics of the diesel engine
The basic parameters of the Diesel engine are:
(i) Gas pressure in the intake manifold p,,

(i) Gas pressure in the exhaust manifold p,,
(i) Turbine power P, (iv) Compressor power P,

A Viriable Geonmary
Ireoming bochana:
Air _] ‘ | 3
Edunst
Compressor s
Fae) |
= RdautMenifold (P, T3)
Clirnders
iearans EGHR Y G
AR RE 5 | il - KPP DR KGR
S— et |rgake Manifold (F,T})

Fig. 1. Diagram of the turbocharged Diesel engine

28
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Example 2: Nonlinear control and state estimation using approximate linearization
2 . Dynamic model of the turbo-charged diesel engine

2.1. Nonlinear dynamics of the diesel engine

Additional variables of importance are

W, which is the compressor mass flow rate, T, the intake manifold temperature,
T, is the exhaust manifold temperature, W, is the turbine mass flow rate
WgR IS the exhaust gas recirculation flow rate

The basic relations of the diesel engine’s dynamics are:

B1 = Kl Wo+w — Kopq) + %‘j‘ji
Pa = HEI{HEF‘l — wp — ) + %ﬁz
Fo=2{tmFi — P

The control inputs to this model are the exhaust gas recirculation (EGR) flow rate
U; = Wegg and the turbine’s mass flow rate u, = W,. Moreover, it holds that

b I
S O

Py = Kl — py ")

29



Nonlinear control and filtering for USVs and AUVs

Example 2: Nonlinear control and state estimation using approximate linearization
2. Dynamic model of the turbo-charged diesel engine

2.1. Nonlinear dynamics of the diesel engine

The model is simplified by setting. T3 = 0 and T% = 0. In such
a case the associated state-space equations are given by

B = Kq({W, + 2 — Kopq)
po = Kol Kepr — w1 — 2 @
Pe:%'[';'}mpt_Pej'

The description of the diesel engine in state-space form is given by

2= f{a) + gale) e + g ) e
where
K-l}f —.ﬁ' K‘lKﬂ'ﬁ'l H‘l
f'iml'=( Hszem ) galw) = | —K2 | @le) =
2 0
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2. Dynamic model of the turbo-charged diesel engine

2.2. Dynamic extension of the diesel engine’s state-space description

Dynamic extension is performed which means that the state vector of the diesel enaine is
extended by considerina as additional state variables specific control inputs #;, % = 1,2
and their derivatives 7z, i = 1,2

The purpose of dynamic extension is to select feasible
reference setpoints for the system’s nonlinear optimal controller.

In the state-space description that is obtained after dynamic
extension, one has that the transformed control inputs

o = f1le, %4) gy = folu, ) @

are applied to the diesel engine’s model. Equivalently, this means that the control inputs
¥1, M2 which are finally applied to the real system depend on %4, %2 hrough
an integration relation, that is

Ty = ;l"widt, Tty = g @
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2. Dynamic model of the turbo-charged diesel engine
2.2. Dynamic extension of the diesel engine’s state-space description

The dynamical system of the diesel engine is written in an extended form
using the variables

= W = & Ua = Ua
which means

Ty = ]"ﬂir:i!’.ﬁ, Ty = Wy

Thus, using the previous state-space description of the system and by substituting

oy = &1 and &2 = o4

as intermediate state variable it holds

=K K. F.pl -1 - KiK. + K2
Plzl = Hszeﬁi — Koz — Ko
P, = =2+ Ko{l —pa™)

& = %4

therefore, by defining the state vector @ = [iq, g, &3, 24|T = [p1, pa, P, 2|*
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2 . Dynamic model of the turbo-charged diesel enqgine

2.2. Dynamic extension of the diesel engine’s state-space description

therefore, by defining the state vector © = [w1, 2, 3, 24| = [p1, P2, Fu, 2]*

i = Hiffa;fff—i — Ko + Ky
ﬂlg = HQHE$1 — Hg$4 == HQ‘EJQ
By = —%14-}‘:&{1 — g )

$I4='EJ1

Consequently, in matrix form one has

23] Hiffa;ff-i—i—ffiffeﬁi-l-ffimq ! 0

oy | KoK o — Koy 0 1 @
i | T _E2 4 K01 — 2y T lo]l2t|o]™

4 0 i 0
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3. Approximate linearization of the turbo-charged diesel engine

After dynamic extension, the state-space model of the diesel engine was brought to the

form of where the state variables of the model are

By = Pq, W = P, B3 = O, @y =y

while the control inputs are. ¥1 = wy and Wy = .

The above state-space model of the diesel engine undergoes approximate linearization
around the temporary equilibrium{z*, =*),

ax* s the present value of the system’s state vector

w* = [o¥, o¥| is the last value of the control input that was exerted on the system.
The state-space model of the diesel engine can be also written in the matrix form

i=Ax+ Bu+d @

where matrices A and B are described by the system’s Jacobians

A = Vo #(2) + o1&}, ga(@)o} = A = Vo (&)
B = V.4 (o) + [1(e), 92(e) 0} =B = [a1(e), ()] &

34
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Example 2: Nonlinear control and state estimation using approximate linearization

3. Approximate linearization of the turbo-charged diesel enqgine

The initial nonlinear system of the diesel engine is in the form

= e ) BERT wER™

Linearization of the system is performed at each iteration of the
control algorithm around its present operating point

(e, et Y= (a(t]), uld =T, )

The linearized equivalent of the system is described by

©=Axr + Bu+ Ld zeR", ueK™, dek”

& afr . 8f gf1 8f
Sy S i, g Hrio
dfs  8fa 8fa 3fs 8fo
AR 2 e - | bwd B0 R
Bfn  Bfn .. Bfn 8fn  Bfn
&y Huwa iy, g Hria

and vector d denotes disturbance terms due to linearization errors.
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3. Approximate linearization of the turbo-charged diesel engine

a1 a1 11 11

Ay S o S Hag

Jfa Jfa Jfa Jfa
_ Ay S g Han o g S
A= Jfa Jfa Jfa Jfa B
oy Sara Hara Hang
14 Jfa Jfa 14

Aoy S g Ao g o

o s I s B
— o -

For the Jacobian matrix %, f it holds

lst row of the Jacobian matnz YV, f: %:-% —

—aauatl
EIEE_;?E%F — KK, % = 0, %% = Eif‘fe;fﬂi_—,
%Li:}fi
pLEE:

2nd row of the Jacohian matnz Ve f gﬂf—f — gi—i =
afo. 7 9fa e fih

Toz = % Fay

td row of the Jacohian matnz VS %:{—f =2 [,
Af: _ —p—1 8f: 1 df: _

oo Eﬂlu'ﬁﬂ * Fea T T Awa 0.

4th row of the Jacobian matnz V. f: 81+ — g 2 —

Sy * dwo
St =0 32=0
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4. Design of an H-infinity nonlinear feedback controller

The state vector of the turbocharged diesel engine is denoted as « = [mh o, V3, m4]T

The input vector of the turbocharged diesel engine is denoted as v = [vy, vz]T

After linearization round its current position, the diesel engine’s dynamic model
IS written as

p=Arp+ Bud dy

dynamic model

The reference setpoint of the turbocharged diesel engine is denoted |

— [wd od d .diT
Xq = [x1,%x3,x3,%q]

Tracking of this reference setpoint is achieved after applying the control input ™

At every timenstant the control input #* is assumed to differ from the control input &
appearing in @ by an amount equal to A« thatis g% = 44 As

g = g+ Bur 4+ dy @
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4. Design of an H-infinity nonlinear feedback controller

The dynamic model of the system of Eq. can be also written

in the form
# = Ae 4+ Fut Bu* — Bu* 4 o

and by denoting d; = —F=*+4d; as an aggregate disturbance term one obtains

b e By Bob s
By subtracting Eq. from Eq. one has

m'—m'd=ﬂ{m—md}—|—ﬁu—|—d@—ﬂ]g

By denoting the tracking error as € = #— 4 and the aggregate disturbance term as
d_ Sl the tracking error dynamics becomes

Svem Hoed Bopdld @
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4. Design of an H-infinity nonlinear feedback controller

The problem of disturbance rejection for the linearized model that is

described by »— Av+ Bu 4+ Ld
S [
y=Cur

where 2€£”, we ™, de B* and ye ¥ cannot be handled efficiently if the classical LQR
control scheme is applied. This because of the existence of the perturbation term 4.

In the He~ control approach, a feedback control scheme is designed for trajectory
tracking by the system’s state vector and simultaneous disturbance rejection, considering
that the disturbance affects the system in the worst possible manner

The disturbances’ effect are incorporated in the following quadratic
cost function |

—I—fruT{t}u{t} EdT(tjd{t}]dt} Pl

Coefficient r determines the penalization of the control input and the weight coefficient p
determines the reward of the disturbances’ effects. It is assumed that
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4. Design of an H-infinity nonlinear feedback controller

Then, the optimal feedback control law is given by S

u(t) = —Ka(t) @

K=1BTP

with

where P is a positive semi-definite symmetric matrix which is obtained from the solution
of a Riccati equation of the form

ATP+ PA+Q—-P(1BBT - LLIT)P =0

o A

where Q is also a positive definite symmetric matrix.

The parameter p in Eqg. (15), is an indication of the closed-loop system
robustness. If the values of p> 0 are excessively decreased with respect to r, then
the solution of the Riccati equation is no longer a positive definite matrix.
Consequently, there is a lower bound p,,, of for which the H-infinity control problem
has a solution.
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4. Design of an H-infinity nonlinear feedback controller

Lineanzation of the diesel engine’s
dynamic model

.\z-{xoBu‘LJ

- “o'_s = VIU I;]. . .

X iy

e

Solution of the algebraic
Riccati equation
TP+ PL+Q-P—BBT -——T)p =0
r

v -

P

P

. ¢ H-infintty = Ke | Nonlinear dynamics X
hY —» control gain = N of the dieselengine

¥
= | x=-157p -
y x= f{x.u)

Fig. 2. Diagram of the control scheme for the turbocharged ship’s diesel engine
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5. Lyapunov stability analysis

The tracking error dynamics for the diesel engine is written in the form

6= de+ Bu+Ld

where for the three-phase voltage source converter example L € R*  with | being the
identity matrix. The following Lyapunov function is considered

V= %ETPE @

with g =2 —%7 to be the tracking error

-{;r — %E‘:TPE -+ %EPE:}
V =1lde+ Bu+ LdTP + 1eTPlde + Bu + Ldj=

V =37 AT + T BT 4+ dT LT Pe+
+1eTPlAe + Bu+ Ld]=

Vo— %ETATPE el %HTBTPE 4 %GETLTPE—I—
%ETPAE 2l %ETPBH Je %ETPLGT
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5. Lyapunov stability analysis

The previous equation is rewritten as

V =1cT(4TP + PA)e + (1vT BT Pe + LeT PBu)+ E.
+(1dT LT Pe + LT PLd)

Assumption: For given positive definite matrix Q and coefficients r and p there exists a
positive definite matrix P, which is the solution of the following matrix equation

ATP'y PA= )+ F(EBET - SLIT)P
Moreover, the following feedback control law is applied to the system
= —%ETPE

By substituting Eq. @ and Eq. one obtains

V="1eT[-Q4 P(2BBT — L LIT)Pley
+eTPB(-LBTPe) + ' PLd=
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5. Lyapunov stability analysis

Continuing with computations one obtains

V=-1eTQe+ 1T PBBT Pe - mt Pl Pe
i _.TPBBTPc. - c.TPLd

which next gives
TQE 1 T PLITPe+ T PLd

or equivalently
1 TQE— 1 el PLLT Pet
+1ETPL.::!+ LT LT Pe

Lemma: The following inequality holds

$eTLd + $dIT Pe — 5L:eT PLLT Pe<ip®d"d

44



Nonlinear control and filtering for USVs and AUVs
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5. Lyapunov stability analysis

Proof : The binomial I:pr:tf— %Ei':l is considered. Expanding the left part of the above inequality
one gets '

glat+ 5P —2ab > 0= Lp%at + P —ab > 0=
ab— z=b% < 10%% = Lab+ tab— ﬁgbz < 2p%a?

The following substitutions are carried out: & = d and b = T PL
and the previous relation becomes

$dTLTPe + $eTPLd — LpeT PLLT Pe<tp?dTd

Eq. IS substituted in Eq. and the inequality is enforced, thus giving
Ve — 1e7Qe+ 1p%d7d

Eq. shows that the H-infinity tracking performance criterion is satisfied.

The integration of Vfrom O to T gives

o S T BT
Jru Vitdi=< — %fu ”EHE.?dﬁ"'%FEJFD ||d||2tﬁ=="

0] T3
W(T)+ fy llellgde<2v(0) + ¢ fy ||| 45
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5. Lvyapunov stability analysis

Moreover, if there exists a positive constant ;= (0 such that

£ 114)1%dt < 4

then one gets

f;‘:’||e||i—;.d.t < DV(0) + o My

Thus, the integral f;ﬂ||e||%r:£ﬁ is bounded.

Moreover, V(T) is bounded and from the definition of the Lyapunov function V it becomes
clear that e(t) will be also bounded since

e(t) € (U = {e|e? Pe<OV(0) + o2 M4}

According to the above and with the use of Barbalat’s Lemma

one obtains:
I ene(t) = 0. @

This completes the stability proof.
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5. Lyapunov stability analysis

- Elaborating on the above, it can be noted that the proof of global asymptotic stability for the
control loop of the turbocharged diesel engine is based on

R, R

and on the application of Barbalat's Lemma. It uses the condition .~ |d]|2dt < Mg

about the boiindedness of the square of the aggregate disturbance and modelling
error term ¢  that affects the model.

However, the proof of global asymptotic stability is not restricted by this condition. By
" selecting the attenuation coefficient to be sufficiently small and in particular to satisfy

72 <Ll 412
one has that the first derivative of the Lyapunov function is upper bounded by 0.

Therefore for the i-th time interval it is proven that the Lyapunov function defined in

¥V = % TPE @ . >~_ ﬂ.---r"_ :\?

Is a decreasing one. This also assures the Lyapunov function
of the system defined in will always have a negative first-order
derivative.

47



Nonlinear control and filtering for USVs and AUVs
Example 2: Nonlinear control and state estimation using approximate linearization

6. Robust state estimation with the H-infinity Kalman Filter

. The control loop has to be implemented with the use of information provided by a small
number of sensors and by processing only a small number of state variables.

To reconstruct the missing information about the state vector of the turbocharged diesel
engine it is proposed to use a filtering scheme and based on it to apply state
estimation-based control

The recursion of the H-infinity Kalman Filter, for the model of the diesel engine, can be
formulated in terms of a measurement update and a time update part

Measurement update:

Dk = [I SW (k) P~ {k}+cﬂ‘{k}ﬁ{;¢) Lok P (k)] @
K(k) = P~ () D{) CT () R(k)
8(0) = & (k) + K (1) [all) — Co (k)

Time update: @
F (k4 1) = AR e(k) + Bk wlk)
Foik+1) = Ak} P~ (k) Dik) A" (k) + Qlk)

where it is assumed that parameter 0 is sufficiently small to assure that the following

covariance matrix will be positive definite
-1

Pk} — W (k) + CT{k) B(k)-1C(k)
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7. Simulation tests

. The performance of the proposed nonlinear H-infinity control for the turbocharged
diesel engine has been evaluated through simulation experiments.

. The computation of the feedback control gain was based on the solution of the algebraic
Riccati equation given in the related Riccati equation, through a procedure that was
repeated at each iteration of the control method.

ATP+ P4 =-Q+P(:BET - LLLT)P B

. Moreover, it can be seen that the variation of the control inputs
remained smooth and within moderate ranges.

. Despite nonlinearities, the control method’s performance was very satisfactory and precise
tracking of the reference setpoints was achieved.

In the presented simulation experiments state estimation-based control has been
implemented. Out of the 3 state variables of the turbocharged diesel only 1 was considered
to be measurable.

. The only measurable state variable was the gas pressure p, in the intake manifold, The
rest of the state variables, were indirectly estimated usingf the H-infinity Kalman Filter.
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7. Simulation tests

- The real value of each state variable has been plotted in blue, the estimated value has been
plotted in green, while the associated reference setpoint has been plotted in red.

- It can be noticed that despite model uncertainty the H-infinity Kalman
Filter achieved accurate estimation of the real values of the state
vector elements.

- In this manner the robustness of the state estimation-based H-infinity
control scheme was also improved

- Comparing to the control of diesel engines that can be based on global linearization methods
the following features can be attributed to the nonlinear H-infinity control scheme

(i) it is applied directly on the nonlinear dynamical model of the turbocharged diesel
engine and does not require the computation of diffeomorphisms (change of variables)
that will bring the system into an equivalent linearized form

(i) the computation of the feedback control signal does
not require inverse transformations thus avoiding the
appearance of singularities

(iif) the method retains the known advantages of linear optimal control,
that is accurate tracking of the reference setpoints under
moderate variations of the control inputs
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7. Simulation tests
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Fig. 3. (a) Tracking of set-point 1 (red
lines) by states x;= 1,,..,3 (blue line: real

values, green line: estimated values)
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Fig. 3. (b) Control inputs u,= 1,2
applied to the diesel engine

51




Nonlinear control and filtering for USVs and AUVs

ample 2: Nonlinear control and state estimation using approximate linearization

7. Simulation tests
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Fig. 4. (a) Tracking of set-point 2 (red
lines) by states x;= 1,,..,3 (blue line: real
values, green line: estimated values)
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Fig. 4. (b) Control inputs u,= 1,2
applied to the diesel engine
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7. Simulation tests

20 T I ]
. = / ?
. 1[]7 .............. .'. .................. S
5 5 5
0 i i
0 o] 10 15 20
time (sec)
200 T ! !
3 1[][]_:{ .............. .................. ..................
i i i
0 o] 10 15 20
time (ser)
10 T |
><f".l 5_/,,_.-. ___________________________________________________________________
U'I i i i
0 o] 10 15 20

time (sec)

Fig. 5. (a) Tracking of set-point 3 (red
lines) by states x;= 1,,..,3 (blue line: real
values, green line: estimated values)
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Fig. 5. (b) Control inputs u,= 1,2
applied to the diesel engine
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7. Simulation tests

2[] o E _________________ {I?J??ﬁ':_f.r_‘___\;; e -
= e =
= 11 ]S AL LTI L PTP T L PIPRERPTPRPRIPIPRPRRRE
0 i
0 ] 10 15 20
time (sec)
200 T
XN 1[][]_Il _______________ __________________ __________________
| : : :
0 i i i
0 ] 10 15 20
time (sec)
10 T T T
XE‘TI 5_.'.1 _______________________________________________________________________
II.
0 i i i
0 ] 10 15 20

time (sec)

Fig. 6 (a) Tracking of set-point 4 (red
lines) by states x;= 1,,..,3 (blue line: real
values, green line: estimated values)
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7. Simulation tests
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Fig. 7. (a) Tracking of set-point 5 (red
lines) by states x;= 1,,..,3 (blue line: real
values, green line: estimated values)
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Fig. 7. (b) Control inputs u,= 1,2
applied to the diesel engine
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7. Simulation tests
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Fig. 8. (b) Control inputs u;= 1,2
applied to the diesel engine
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8 . Conclusions

e In this article, a nonlinear optimal (H-infinity) control method
has been developed for turbocharged ship diesel engines.

e First, a new state-space description for the diesel engine was
obtained through dynamic extension, that is after considering
specific control inputs and their time derivatives as additional
state variables for the system.

e Next, the extended state-space model of the diesel engine was subjected to
approximate linearization around a temporary operating point (equilibrium) that
recomputed at each iteration of the control algorithm.

e This equilibrium consisted of the present value of the engine’s
state vector and of the last ampled value of the control inputs
vector.

e Linearization was performed through Taylor series expansion
and the computation of the associated Jacobian matrices.

e For the linearized model of the diesel engine, the H-infinity
control problem (optimal control problem under uncertainty)
was solved.
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8 . Conclusions

e The feedback gain of the controller was repetitively computed
at each iteration of the control algorithm through the solution

of an algebraic Riccati equation. The stability of the control scheme
was proven through Lyapunov analysis.

e First, it was demonstrated that the control scheme satisfied
the H-infinity tracking performance criterion.

e Moreover, under moderate conditions the global asymptotic
stability of the control loop was proven.

e To implement feedback control without need to measure the
entire state vector of the diesel engine, the H-infinity Kalman Filter
has been proposed.

e Despite its computational simplicity the proposed nonlinear
optimal control method was confirmed to have an excellent
performance.
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1 . Control of the electric ship propulsion system

e A nonlinear optimal (H-infinity) control method is proposed for electric ships’
propulsion systems comprising an induction motor, a drivetrain and a propeller.

e The control method relies on approximate linearization of the propulsion system’s
dynamic model using Taylor-series expansion and on the computation of the state-space
description’s Jacobian matrices.

¢ The linearization takes place around a temporary operating point
which is recomputed at each time-step of the control method. S

¢ For the approximately linearized model of the ship’s propulsion
system, an H-infinity (optimal) feedback controller is developed.

e For the computation of the controller’s gains an algebraic Riccati equation is solved at
each iteration of the control algorithm.

e The stability properties of the control method are proven through Lyapunov analysis.
The method is also robust to model uncertainties and external perturbations

e The proposed control method retains the advantages of linear optimal control, that is fast
and accurate tracking of reference setpoints under moderate variations of the
control inputs 59
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2 . Dynamic model of the electric ship propulsion system

The propulsion system of the electric ship, comprises a three-phase induction motor, a
drivetrain (gearbox), and the propeller (Fig. 1).
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Fig. 1. Diagram of the electric ship propulsion system
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2 . Dynamic model of the electric ship propulsion system

The rotational motion of the induction motor is given by

dw, : 2y
']771_(# = Tp = The—Bottg,

T.is the electromagnetic torque that is developed by the motor,
T, is the torque developed by the shaft at the motor’s side (high-speed),
B, ,w,, is a friction torque that opposes to the rotational motion of the rotor.

The rotational motion of the ship’s propeller is given by

dw S8
“Jp dtp = A e Bpwp @

T, is the torque developed by the shaft at the propeller’s side (low-speed),
Cipq €XPresses the mechanical torque that is applied on the propeller
B,w, is a friction torque that opposes to the rotational motion of the propeller.

B, is the damping coefficient in the turn motion of the motor,
0, is the rotational speed of the motor,

B, Is the damping coefficient in the turn motion of the propeller
0, is the rotational speed of the propeller.
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2 . Dynamic model of the electric ship propulsion system

The rotational motion of the induction motor is given by

dw. ‘ ; pin
. m dt',n — Te = Ths = Bm,wm.

T.is the electromagnetic torque that is developed by the motor,
T, is the torque developed by the shaft at the motor’s side (high-speed),
B, ,w,, is a friction torque that opposes to the rotational motion of the rotor.

The rotational motion of the ship’s propeller is given by

dw e
<P dtp = Tls =g Bpwp @

T,. is the torque developed by the shaft at the propeller’s side (low-speed),
Cipq €XPresses the mechanical torque that is applied on the propeller

B,w, is a friction torque that opposes to the rotational motion of the propeller.
B,, is the damping coefficient in the turn motion of the motor,
Om is the rotational speed of the motor,

B, is the damping coefficient in the turn motion of the propeller
0, is the rotational speed of the propeller.
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2 . Dynamic model of the electric ship propulsion system

A drivetrain which comprises, a gear of n;, teeth at the side of the motor, and a gear of n,
teeth at the side of the propeller, is considered

The relation between the torque at the motor’s side T, and the torque at the propeller’s
side T, is given by

T — “Wp B3 7lm:>

Wimn

'Ths — T;Z: Tls

The torque of the shaft is due to torsion and at the propeller’s side is given by

Tio = K1(6p — ) + Difwp —wm) (4)

K,is an elasticity coefficient, D,is a damping coefficient.

Using that the value of D, is significantly smaller that the value of K; this result into
the following relation about the shaft’s torque at the propeller’s side

Ty = K1(6, — 6,,) ©)
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2 . Dynamic model of the electric ship propulsion system

Consequently, the shaft’s torque at the side of the induction motor is given by

Ths = 22 K1 (6 — ) (o)

Next, about the mechanical part of the transmission system one can define the
state variables

xj = @

py  Xp = Wp, T3 = D, T — Wi,

and the control input ©1 = Cpq which is related to the propeller’s
pitch angle

This results into the following state-space description:

L1 = I9
K A
12:—;(11—13)—J—p12—Jul @
rs3 = Ig4

The dynamics of the electrical part of the propulsion system is dependent on the components
of the currents of the machine’s stator [iyy, ii,] and on the components of the rotor’s

magnetic flux [y, W], which are expressed in the asynchronously rotating dq reference
frame. 64
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2 . Dynamic model of the electric ship propulsion system

By applying the field orientation concept, that is by selecting the turn speed of the

asynchronously rotating reference frame, defined by the derivative of the angle of the

rotor’s magnetic field e
p=rtan—" (=)

Ura

(i) the g-axis component of the magnetic flux vanishes, thatis =0

(ii) the d-axis component of the magnetic flux becomes equal to the magnitude of
the flux vector, that is it becomes equal to g = ||| = /12, + ©2,,

with [L;'I‘-“ra- 'C‘l’rb] to denote the magnetic flux coefficients in the non-rotating ab
reference frame. Thus the electric part of the propulsion system is

= hra + ali (8
Zrd = —ahpg + aMigq .
dieqg - BT L a]\if'igq 1 .
gy — lsd + APWrd + NpWmlsq I Drd + oL. Usd
B o B erdors o o P o DR .,
dtq — = Plgg “371])""'7711% rd — NpWmlsd — Drd ot oL. Usq
dp _ . . aMigg
dt anﬁ’n + 'l,!"rd 65
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2 . Dynamic model of the electric ship propulsion system

The coefficients of the electric part of the model are defined as follows:

_ 1—-M? _ Ry Q2 _ M
B & L, 3 ‘Lr‘a,nc‘l 3 = e

M is the mutual inductance between the stator and the rotor,
L, is the stator’s inductance,
L, is the rotor’s inductance

Taking into account the field-orientation condition, the electromagnetic torque that is
developed by the induction motor is given by

Te == [‘isq Wrd — isd‘lf’“"'rq]:> @

Te = p(isq¥rd)

coefficient p is dependent on the number of poles of the IM and is defined as [t = T T

The following state variables are defined for the electric dynamics of the propulsion system
BE = Wedy Th =N ady BF = gg-a0d. Lg =P

while the associated control inputs are:

Up = Uygd BNA W — Uy
66
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2 . Dynamic model of the electric ship propulsion system

one obtains the following state-space description for the electrical part of
the propulsion system

5 = —azxs + aM xg
. M
Tg = —YTe + afTs + npTaxy + = o +0L “2
Ty = —YT7 — PNpTaTs — NpT4Te — Ma‘?m T L U3

aMazx7
s

Moreover, using the previous notation of the state variables the electromagnetic torque
which is provided by the motor is given by

T o —yrmems

By defining the entire state vector of the propulsion system as

Tg = NpTyg +

X = [1-1, L2,L3,L4,L5,LEs L7, 1'8]

or &I = [97), Wp, Hm s Wms Urd, lrd, 'isq~ P

and the entire control inputs vector as

i = [11.1,'11,2,'11.3]T or H = [C‘.ba. li'sd.'-lv‘sq

one has the complete state-space model 67
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Example 3: Nonlinear control and state estimation using approximate linearization
2 . Dynamic model of the electric ship propulsion system

Ir1 = T2
12:%(11_‘13)_J_12_ J Uu1q
T3 =1y
(1"4— 5T Jl [n’"[\l( rq -—'1‘3)—Bm‘174]
Ts :—alr—i—a\[zg
Tg = ﬁ16+(131r—i—7zp1417+aM$?’—}-alsu.g
&7 = —YTr — PrpTiTs — NpTaZe — “MT?I’ - U}Jqug

aMxr
s

In vector fields form, the previous state-space description can be written as:

&= f(z)+ g(x)u with 2eR®*! f(z)eR®*!, g(x)eR®*? ueR*>**.

Ig = NpTa+

; 0 0 0
/ K, B By \ / 1 0 0 \
—p(rl— 1?3)—J—p12 —Js
where T4 0 0 0
L | pasTr — J{n[’:{;’ Ki(x1 — x3) — B4 B 0 0 0
fip) = —axs + aMxg 9(z) = 0 0 0
16—}-(131r+np1417+aM‘T7 0 o}/ 0
—y&7 — BrpraTs — npraze — T6TT 0 0 1
- aMxr ° 5
\ NpTq + = ) 0 0 0
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3. Approximate linearization of the electric ship propulsion system

The state-space model of the electric ship propulsion system undergoes approximate
linearization around the temporary operating point (equilibrium) (x*, u*), where

x* is the present value of the system’s state vector and
u* is the last sampled value of the control inputs vector

For the linearized state-space model of the system it holds that
= Ar+ Bu+d

where ( isthe cumulative disturbance vector due to approximate linearization and
truncation of higher-order terms in the Taylor series expansion, and

A=V, [f(z) + g9(@)u] | @ ur) = A = Vo [f ()] |<“’*'“*)

B =V.[f(z) + g(z)u] |(z+,ux) =B = 9(2) |(z*,u")

About the Jacobian matrix V. [f ()] |4+ ,+) one has

First row of the Jacobian matrix \/, [f

(I)] |(w*,u*)

8fi _ 0fr _ 1 0fi _( OFL _ Ofi _n Ofr _ afl_ Ofs.
ﬁ_o, ax; K, axg dej1 0, i 0, Bre 0, 0. B ! 6o
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3. Approximate linearization of the electric ship propulsion system
Second row of the Jacobian matrix Y7 [f (z)]

|(I*,’u*)
0f _ K1 9fs _ _Bp 8fs _ d fo fa 8 fa B O
9r; — Jp Oz T2 s ™% gm0 Bie — Uy ome — Uy B, = U 5z, = U

Third row of the Jacobian matrix V[ f(x)] | (2% u*)

05 0,88 =0, 0.0, % =], 0, 2550, 28 =0, 250

Oxy ! Oxp = T Oxz T Oxzyg Oxs = ) Oxg ) Oxy ~ 7 Oxg ~

Fourth row of the Jacobian matrix V[ f(z)]

|(I*,’u*)

Ofs _ _ 1 nmygr Ofa _
ory Jm np ]Xl’ Oxy O’
bfi . Bowmayr. i By B . Bhiow Ok o o Bl
Ozz  Jm np [\1’ Oxa  Jm ' Oxs = K7, Oxe ' Oxry = HTs, ors 0
Fifth row of the Jacobian matrix V[ f(x)] |z« o)
Ofs _ Ofs _n Ofs _ 0fs _n s _—_4 0Fs _ _,p O g Ofs _
8:17? =0, Bmz =0, 8:1:2 =0, Org 0, Bas @ Bz e S 0 Ozs

Sixth row of the Jacobian matrix V[ f ()]

|(I*,’u*)

Ofe — o 9f — o 9f _—

6331 T ) 6:132 T ) 6:1;3
fe - - dfe __ aﬂ—a]\lz? Ofe _ ., Ofs __ npxa+2aMzr Ofg __
Ors NpdT, Oxrs 2 ' Oxe I Qxr Ts ' Oxg 0. 70
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3. Approximate linearization of the electric ship propulsion system

Seventh row of the Jacobian matrix V[ ()] |2+ w*)
Ofr —, 9z — ¢ 9f —

Ox1  ? Oxo ' Oxz
Oft. . B e .. Oft _  BnprataMzezz 08fr __ | _- aMxy; Ofr _ _;: aMze anfa? _
= Bryzs + npze, o = = » Bre = NpTa s Y e ¥ e
Eigth row of the Jacobian matrix Y/, [f(l)] |(I*:u*)
afS — O d.f8 ) 0 df8 — 0 dfg —n afg — _QAICE-T 8f8 I O 6f8 — aM ()fg _—
Oz » Oz ' Oz Y Oxzyqg = TP Ozg z2 ? Oxe¢ =’ Oxzy = x5 ) Oxg

Thus, matrices A ad B of the linearized model of the electric propulsion system are given by

( 0 1 0 0 0 0 0 0\
K B
I —5 0 0 0 0 0 0
0 0 0 1 0 0 0 0
A= —ﬁ’;—’:]\] 0 ﬁ’:l—’;]u lj;’: Ly 0 s 0
B 0 0 0 0 —q —aM 0 0
0 0 0 fipr of-alha; —y RpratlaMer
- B
0 0 0 —“537373175 + npig _,Bn»p174‘i‘;:(2'«]v[$6177 ‘flpl‘4 _ a];':fsx7 —y— a]\f:s 0
.0 0 0 iy —aMg, 0 oM )
5 2]

B=g(x) 71
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Example 3: Nonlinear control and state estimation using approximate linearization
4. Design of the H-infinity feedback controller

The state vector notation x is used for the model of Eq. @

At every time instant the control input #* is assumed to differ from the control input &
appearing above by an amount equal to A, thatis o = 44 Ag

dp g Bl

The dynamics of the system of Eq. can be also written in s
the form '

# = Ae 4+ Fut Bu* — Bu* 4 o

and by denoting d; = —EBw«*+44dy as an aggregate disturbance term one obtains

= Adr+ Bud B4 ds
By subtracting EqQ. from EQ. ‘ one has

#— g =Ale — 20 + But ds — do @

By denoting the tracking error as € = #— 4 and the aggregate disturbance term as
d_ = dy e the tracking error dynamics becomes

¢ = Ae+ Bu+d @ 72
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4. Design of the H-infinity feedback controller

The initial model of the electric ship propulsion system assumed to be in the form
r=rf e a) HERT. HER™
Linearization of the system is performed at each iteration of the control algorithm round its

present operating point
(2, u*) = (a(t), u(t — T0))

The linearized equivalent of the system is described by

¢ = Ax + Bu+ Ld xcR" ucR™, deh*

where matrices A and B are obtained from te computation of the Jacobians

on o .. on o 85 . O @
S q acn g, &y &g

o
8 8fs . 8 5rs  Bfs  Bf%
A= o e i | Gmd B | B o B |l
*"jfﬂ S.fﬂ A 5',:_'1'”-; ‘afﬂ "ﬁfﬂ T Efi
ey o oy, g o T

and vector d denotes disturbance terms due to linearization errors.
The problem of disturbance rejection for the linearized model that

is described by = Ao+ Bu+ Ld
r=rA (2
=i
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Example 3: Nonlinear control and state estimation using approximate linearization

4. Design of the H-infinity feedback controller

where »= B™, weH™, de % and <= K¥cannot be handled efficiently if the classical LQR
control scheme Is applied. This because of the existence of the perturbation term .

In the He control approach, a feedback control scheme is designed for setpoints
tracking by the system’s state vector and simultaneous disturbance rejection, considering

that the disturbance affects the system in the worst possible manner

The disturbances’ effect are incorporated in the following quadratic cost function

= 1f0 T ()y(t) + rul ()u(t) — p2dT (t)d(t)]dt, r,p>0

The coefﬂuent r determines the penalization of the control input and the weight
coefficient p determines the reward of the disturbances’ effects. It is assumed that

Then, the optimal feedback control lawis  w{t) = —Kx(t) vith K = 1BTP
where P is a positive semi-definite symmetric matrix which is obtained ! - -ag;.-‘-:""

from the solution of a Riccati equation of the form

ATEL PA L0 P(%BBT — %ELLT)P =§ @
where Q is also a positive definite symmetric matrix.

Parameter p in Eqg. (25), is an indication of the closed-loop system robustness. If the
values of p> 0 are excessively decreased with respect to r, then the solution of the Riccati
equation is no longer a positive definite matrix. Consequently, there is a lower bound p,,, 74

of for which the H-infinity control problem has a solution.
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Example 3: Nonlinear control and state estimation using approximate linearization

5. Lyapunov stability analysis

The tracking error dynamics for the electric ship propulsion system is written in the form

é=Ae+ Bu+ Ld

where in the electric ship propulsion system L =1 € I3*® with | being the identity matrix.
The following Lyapunov function is considered

V=217 Pe

where & = x—x  Iisthe tracking error. By differentiating with
respect to time one obtains

V = %éTPE HE %ETPE',:‘;:-
V =1lde+ Bu+ LdTP + 1eTPlde + Bu + Ldj=

V = 1[eTAT + uT BT + dT LT Pe+
+1eTPlAe + Bu+ Ld]=

Vo— %ETATPE el %HTBTPE 4 %GETLTPE—I—
%ETPAE + %ETPBH + %ETPLGT

75
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5. Lyapunov stability analysis

The previous equation is rewritten as

V =1cT(4TP + PA)e + (1vT BT Pe + LeT PBu)+
+(1dT LT Pe + LT PLd)

Assumption: For given positive definite matrix Q and coefficients r and p there exists a
positive definite matrix P, which is the solution of the following matrix equation

ATP+PA=-Q+ P(2BBT — #LLT)P

Moreover, the following feedback control law is applied to the electric ship
propulsion system

A —lETPE
By substituting Eq. and Eq one obtains
VvV =1¢ [ Q + P(QBBT . LLT)P]

+€TPB( LBT Pe) + GTPL(1=>
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5. Lyapunov stability analysis

Continuing with computations one obtains

V=-2TQe+ 1T PBBT Pe — 52T PLLT Pe

2p?

—1eTPBBT Pe + ¢T PLd
which next gives

et e — 1 T PLLT Pe+ ¢TPLd

or equivalently

V=—1eT0e— %ETPLLTPE—I—
+1ETPL.::!+ LiTIT Pe

Lemma: The following inequality holds

$eTLd + $dIT Pe — 5L:eT PLLT Pe<ip®d"d
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Example 3: Nonlinear control and state estimation using approximate linearization
5. Lyapunov stability analysis

Proof : The binomial I: = E?':l Is considered. Expanding the left part of the above inequality

one gets
pzaz—l——igbz—ﬁab}[]:} épzaz—k L —ab>0=

{lb—ﬁg‘bgi%lﬂ a? = Tab+ tab— —pgbg_ 1p%a?

The following substitutions are carried out: & = dand b = TPL
and the previous relation becomes

14T [TPe + 1eTPLd - 1 eTPLLT Pexip?dTd @

Eq.@ Is substituted in Eq. and the inequality is enforced, thus giving
V-::i— —ETQE—I— chrr;*f @

Eq.@ shows that the H-infinity tracking performance criterion is satisfied.

——

The integration of V from 0to T gives

T" FETRr
fo V(Rde= = 1f|lellbe + 2% IIdIIEtﬁ:-
W(T)+ fy |IE||c‘.:u*5‘5ﬁ“i9"3’"([313'wL o fy 11d]|%

78
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5. Lyapunov stability analysis

Moreover, if there exists a positive constant iy = 0 such that

f37 11812 < Mg

then one gets

122l < 2V (0) + p* M

Thus, the integral f||2||%d# is bounded.

Moreover, V(T) is bounded and from the definition of the Lyapunov function V it becomes
clear that e(t) will be also bounded since

e(t) € Q. = {e|e’ Pe<2V{0) + 2 M4}

According to the above and with the use of Barbalat’s Lemma
one obtains:

M emelt) = 0.
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Example 3: Nonlinear control and state estimation using approximate linearization
6. State estimation with the H-infinity Kalman Filter

The H-infinity KF is an optimal state estimator under model uncertainty and
perturbations and thus its use under the variable operating conditions of the electric hop
propulsion system is advantageous

The H-infinity KF is addressed to linear systems and to use it in the model of the electric ship
propulsion, the previously analyzed approximate linearization. was applied

/ Time update: \ / Measurement update:\

A-priori quantities A-posteriori quantities
y(k) becomes

Available measurements available : Available measurements

Y-= {y(l),.",y(k = 1)} é ) {y(l),...,y(k % 1),}'(k)}
Estimation of: .\'7(k) Estimation of: :(k)
Estimation error: €-(k) Estimationerror: ¢()
Error covariance: P_(I‘) Error covariance: [Xk)
MSE: MSE:
Ele-(k)e-(k)T] = tr(P-(k lety! 1 =(IXk

\le()e()]—tr( (k) \ PIe()e()]f—n(D(»/

N

Fig. 2 Diagram of the H-infinity Kalman Filter comprising a time-update part and a
measurement update part
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6. State estimation with the H-infinity Kalman Filter

e The recursion of the H-infinity Kalman Filter, for the electric ship propulsion system,
can be formulated in terms of a measurement update and a time update part

Measurement D(k) = [I oW ( )P (k) + CT( A)R( )~LC(k)P~ (k)] !
update K(k) = (ﬁ)D(_k} T(k)R(k)™!
(k) =z~ (k) + K(k)[y(k) — Cz~ (k)]

Time i (k + 1) = A(k)z(k) + B(k)u(k)
update P (k+1) = A(K)P~(k)D(k)AT (k) + Q(k @

where it is assumed that parameter 0 is sufficiently small to assure
that matrix

-1 .
P—(k) — W (k) + CT(k)R(k)-'C(k)
IS positive definite

e By dynamically updating the elements of the process noise covariance matrix Q and
of the measurement noise covariance matrix R the functioning of the filter under
variable noise levels is ensured 81
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Example 3: Nonlinear control and state estimation using approximate linearization
6. State estimation with the H-infinity Kalman Filter

The H-infinity Kalman Filter exhibits advantages against other nonlinear filters

EKF is not robust enough against linearization errors and measurement noise.
UKF methods are not of proven convergence and stability.
PF demands high computation power and has slow convergence

Receive
output
measurement

and repeat D(k) = |I - 8W(k)P-(k) +
@ CT (k) R(k)=*C (k) P~ (k)]

Update of covariance

®

Predict state estimate Compute filter’sgain
& (k+1) = A(K)e(k) + B{k)u(k) K(k) =
P=(k+1) = A(R)P~ () D(R) AT(K) + Q(K) P=(k)DUNCT (k) RiJ)~1

receiving Update state estimate

Before @ @

output

measurement é(k) = é'(k) - K(}c) ['y(}c) - Cfc'(}c)]

Fig. 3 The sequence of computations that constitute the H-infinity Kalman Filter.
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/. Simulation tests

® The performance of the proposed nonlinear H-infinity control scheme for the electric ship
propulsion system is tested through simulation:

Linearization of the induction motor-based
ship propulsionsystem

X=Ax + Bu +L;
A= Vf.( |(x*,u*)’B = Vfu (x':u')

A4.B.L

h

Solution of the algebraic
Riccati equation

1 1
aAfp+Pa+o-P=BBT-——11T)P=0
= 3

2p

R

b e infini Nonlinear dynamics X
X H-infini u = Ke
) : ship propulsionsystem
/&
E===prp .

- ¥ %= f(xsu)

Fig.4 Diagram of the nonlinear optimal control for the electric ship propulsion system

With the use of the H-infinity control method, fast and accurate tracking of the reference
setpoints of the state variables of the electric ship propulsion system was achieved 83
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7. Simulation tests

Tracking performance of the electric ship propulsion system in case of setpoint 1:

0.5 T T T T
: 2 : : 5 ' ! ; :
z a z
; . B ;_ - 3" U.‘... ........... . .............................
g. 0r.?'(.....................................,: ............................. '
& f : Ik ! I I 1
1! : 0 2 40 80 8 100
i ; fime (sec)
05 : : i :  — S— S S— T—
0 20 40 60 80 100 :
time (sec) S0 O
1 T . . T || BENERSTERE T |}| ..............
: : 0 20 40 60 80 100
" 05'\\..‘:-'.;';-..“‘ ............................. nn‘e‘sec‘]
R s S s s | — — ]
¥ _05 ............................. 5 0, -------------------------------
1 . 1 . . S  —
o 20 40 80 80 100 0 20 40 80 80 100
time (sec) time (sec)
Fig. 5(a) Convergence of the Fig. 5(b) Control inputs uy, u,
rotational speed of the propeller and u; applied to the
and of the rotational speed of the propulsion system

induction motor to the reference
setpoints. 84
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/.

Simulation tests

Tracking performance of the electric ship propulsion system in case of setpoint 2:

o ) : ; ; ¢ ! ! ! !
: : : ! . : : : .
Ty £ ol g st
ER| % 4 :
a 0*‘/ ............................. B :
g" f : 0 20 40 80 80 100
{ : fime {sac)
- A e A S
B 2|o 4|0 elo alo 100 3 :
time (sec) s Ope
] | | | | || EEERART s - | ] .............. | ..............
el 0 20 40 80 80 100
| time (sec)
> \" A — K T T T T
3.'_ 0_\.\,/’_*_ ...................................................... ] P ~. ... .............................
eE i : : : :") 0!__ ._L....: .............................
| | .............. .............. ..............
; : : )] GauapEs ety L il i R Y
-1 L ! ! ! 0 20 40 60 80 100
0 20 40 80 80 100 fime (sec)
time (sec)
Fig. 6(a) Convergence of the Fig. 6(b) Control inputs uy, u,
rotational speed of the propeller and u, applied to the
and of the rotational speed of the propulsion system

induction motor to the reference
setpoints. 85
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7. Simulation tests

Tracking performance of the electric ship propulsion system in case of setpoint 3:
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Fig. 7(a) Convergence of the
rotational speed of the propeller
and of the rotational speed of the
induction motor to the reference
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Fig. 7(b) Control inputs u,, u,
and u; applied to the
propulsion system
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/. Simulation tests

Tracking performance of the electric ship propulsion system in case of setpoint 4:
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Fig. 8(a) Convergence of the Fig. 8(b) Control inputs uy, u,
rotational speed of the propeller and u; applied to the
and of the rotational speed of the propulsion system

induction motor to the reference
setpoints. 87
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/. Simulation tests

Tracking performance of the electric ship propulsion system in case of setpoint 5:
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Fig. 9(a) Convergence of the Fig. 9(b) Control inputs uy, u,
rotational speed of the propeller and u; applied to the
and of the rotational speed of the propulsion system

induction motor to the reference
setpoints. 88
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7. Simulation tests

Variations of the elements of the drift vector f(x) when tracking setpoint 4 and 5:
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Fig. 10(a) Drift vector elements
f.(x) when tracking setpoint 4.
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Fig. 10(b) Drift  vector
elements f(x) when tracking
setpoint 4.
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8. Conclusions

e Electric propulsion schemes are widely used in USVs and AUVs. Such propulsion
schemes may comprise synchronous or asynchronous (induction) motors which
finally provide rotational motion to propellers

e A nonlinear optimal (H-infinity) control method has been proposed for electric ship
propulsion systems, comprising a three-phase induction motor, a drivetrain and a
propeller.

e The dynamic model of the propulsion system has undergone approximate
linearization around a temporary operating point that was redefined at each iteration
of the control method.

e The linearization procedure relied on Taylor series expansion and
on the computation of the associated Jacobian matrices.

e For the approximately linearized model of the propulsion system,
an optimal (H-infinity) feedback controller has been designed.

e This control represents the solution to a min-max differential game in which the
controller tries to minimize a quadratic cost function of the state vector’s error whereas
the model uncertainty and external perturbation terms try to maximize this cost
functional. 90
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8. Conclusions

e The stability properties of the control scheme have been proven
through Lyapunov analysis.

e First, it has been demonstrated that the control loop of the propulsion system
satisfies the H-infinity tracking performance, which signifies elevated robustness
against parametric uncertainty and exogenous disturbances.

e Moreover, conditions have been provided under which the control
loop is globally asymptotically stable.

e To implement state estimation-based control through the measuring of small
number of state variables, the H-infinity Kalman Filter has been used as a robust
state estimator.

e The proposed nonlinear optimal control scheme avoids complicated state-space
transformations for the propulsion system, as well as the singularity problems that can
be met in global linearization-based control methods

e The proposed control method retains the known advantages of linear optimal
control, that is fast and accurate tracking of reference setpoints under moderate

variations of the control inputs 01
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Example 4: Nonlinear control and state estimation using Lyapunov methods
1. Control of turbocharged ship diesel engines

* A nonlinear control method for turbocharged Diesel engines is developed with the use of
Differential flatness theory and adaptive fuzzy control.

* It is shown that the dynamic model of the turbocharged Diesel engine is differentially flat
and admits dynamic feedback linearization. It is also shown that this dynamic model can be
written in the linear Brunovsky canonical form for which a state feedback controller can be

easily designed.

« To compensate for modeling errors and external disturbances an adaptive fuzzy control
scheme is implemented making use of the transformed state-space description of the diesel
engine that is obtained through the application of differential flatness theory.

 Since only the system’s output is measurable the complete state
vector has to be reconstructed with the use of a state observer.

* It is shown that a suitable learning law can be defined for neuro-fuzzy approximators, which
are part of the controller, so as to preserve the closed-loop system stability.

 With the use of Lyapunov stability analysis it is proven that the proposed
observer-based adaptive fuzzy control scheme results into H-infinity tracking
performance and finally into global stability.
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2. Dynamic model of the Diesel enqgine

The basic parameters of the Diesel engine are:

() Gas pressure in the intake manifold D1
(i) Gas pressure in the exhaust manifold p, ~ ~
(iii) Turbine power  p, |
(iv) Compressor power P,

Additional variables of importance are

. . \dcr.\ Q:«\\ / 2\\\‘ e E ,m \ ) -nh:
w. which is the compressor’s mass flow rate i & g YL N ‘& o
c P y_\;ﬁ_ yI_\z’i
T. Which is the intake manifold temperature I -
1 Compression - Exhrausst pimn ©
7. Wwhich is the exhaust manifold temperature i e
2

Four-stroke cycle of an internal

w. Wwhich is the turbine mass-flow rate . . )
t combustion diesel engine

Wrer Which is the exhaust gas recirculation flow rate
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2. Dynamic model of the Diesel engine

The basic relations of the Diesel-engine’s dynamics are:

B1 =K1 (W, +u — K p1)
P2 =K% p1 —uy —uz)
R =3(mmb—F)

The control inputs to this model are:

(i) The exhaust-gas recirculation (EGR) flow rate u; = Wggp

(i) The turbine’s mass flow rate  u, = W;

Moreover, it holds that:

We =P B =Ki(1-p

The description of the Diesel engine in state-space form is given by:

x = f(x) +galxlus g (x)u:

where: KiKe o — K1k d 0
f'i*’f) = KoK ap Ea (I;' = | —&2 g,;;li;':;l = =K _
_E 0 K, (1—pa™#) 94
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2. Dynamic model of the Diesel enqgine

The output variables of the Diesel engine model are:

Incoming | [ ] Tu:xhamer
Adr
I [ ] I > Exhaust Gas
Exdwanrst

——— Bt Maniiod (P Ta)

Cylinders
EGR Y & N
e [ = W O OO0
— et |tk Maniold (P, Ty)

Fig.1 : Diagram of the turbocharged Diesel engine 95
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3. Lie algebra-based control

Dynamic feedback linearization is applied to the Diesel engine’s model:

The state vector of the system is extended by considering as additional state variables
the control inputs

The transformed control inputs which appear in the linearized equivalent of the system are
functions of not only the initial control variables 1,3 but also of their derivatives 1 ,z32.

The extended state vector of the diesel engine becomes:

&= [Il'ax}.-x}ax-ﬂ]r — Lplﬁpﬂﬁﬁﬂﬁz]r

The control inputs to the linearized model of the Diesel engine become:

Vi=in =, wi=iih

The control inputs which are finally exerted on the system contain an
integral action:

) = fvidi, ug =w
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3. Lie algebra-based control

The extended state-space description of the Diesel engine becomes:

iy =K15‘5c;?}:3_—1— K Kym + Kz
X =Kk, x — Kxg— Kqwg
x=—2+ K (1 —x7H)

X4 =

Consequently, in matrix form one has:

71 5511@;;53—1—5513%I1+551I4 0 0
3 Il o e R 1T R Y
4 (] 1 i
The system’s outputs are chosen to be:
¥l = A1 =21
ya =5 ﬂ%iyg = ngIKF_—I
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3. Lie algebra-based control

Linearization of the system’s dynamics is performed using the following state variables:

2t =k (x) and equivalently: 7 =k (x)
= Lk (x) z% = Lk (x)
23 = Loy (x) + L Loy (x)usy + Lg Ly (2 78 = Lsha (x) + L Ly ko (x)ut + Lgy Lk (x)u

After intermediate computations one obtains:

i i
Liby(e) = Lyal=sLihy( ) — g G g dug

Hag

L3h () = (Kﬂ—ﬂ K f+ 0+ (BB £ 4 o o
L;h1 Kiffa_—mgéﬁt Kif‘fz;irfﬁ Hiffem1+ff1$4)+{%%%}{—;&+ffo(1—%T#}}
and also

3 a Az
Lo Lsba(0) = Lo,y =Ly, Lyba(o) = ENMEK s PR - PSR PRIEN

Lo, Liha(e) = {Kiffz"““"’f_ — K1 K go, + 0gay + (B52) 00, + Kirgay=
Ly, Lyha(w) = Ky

and

zi zi zi zi
LgLibile) = Lg#j=Lg Leha(z) = gﬁﬁ'bi + g:.:_ii?bn 25 g:c_ii?bz + g:.:_ii?h:”
Lg-;-,L,fh"l{m:l — {KIKEﬂ K‘lE }Q‘bi + ngg + {Hi Hg}ﬁbg o Kii?h
98
Ly Lpha(e) =
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3. Lie algebra-based control

In a similar manner one obtains:

= N

et '1’-“:-.?
dzi dzi Iz dza B W
{ﬂ}—ﬁf1+ﬁfz+ﬁfz+ﬁif4;‘* “lﬁ

Ht 1 w10 (K opaf—lyaiet— 1) et sl
th{m}—{m( ## Iy :I:.; £1 pey” ) 2wy j#f_{m“—if%'ﬁ:ft-gl—ﬁim.;}—l_

— Fo e {Hi.ﬁe :-:3;.4.:-:"1"' H'].Kﬂ:l—l_

Cs mf—i

e (-2 Rl - PVHEK, g2 - Ky Koos + Kroght
+_{“LH¢¢#%# {EEH 0y — Kowg)+
oy TR ByEe | K (s 0 - o)
i
‘{ 3__2?;%1&_}{1}D

and also
4'5'2'2 -rl'n".'f2 -rl'u".'f2 -f-".'f2
LﬁmLIhﬂ{m} — am,ni?mi + ,5!:.;25"¢2 i 5::.:3,'53'&3 + 5:“5&4:*
Lo, Liho(e) = $21= L, Leby(e) = mg_{—i'l#—:"i%—}fi
and

Lﬁ'i:- thﬂ{m:’ — .5':.:& E"bi S amgﬂbn = amgﬁ"bz 3 amﬁ'b&:}*
Lgaﬂfhg{m} = E%l:*ﬂmﬂfhg{m} = ﬂ;—_“qffﬂju,m?l_
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3. Lie algebra-based control

Thus, after the change of coordinates the following description of the system is obtained

11 1
& = &

.321 = Lfr.r?--ll[ﬂjl —+ Lgmﬂfh--ll[mjl i+ Lgaerh--lI[mjl'EJg
e

4 = Lihale) + Ly, Lpholw)oy + Ly, Ly b ) v,

which is also written in the state-space form

P R e i ey

or also in the more compact form

2= 1.+ M.
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3. Lie algebra-based control

Moreover, by defining the control inputs

oL, = D3ha(e) + Lo Letu(@)on + L Ly ha(edos
wi = Lf,."*z () + Lg Dyhalaiong + L Deha(eing

the system’s description comes to the following canonical form:

51 001 0 0y [ 0 0
Sl o o0 of2 1 0 fol
a'f_DDDIEE_FDD(wEﬁ)
53 000 0 0 % 0 1

The selection of the state feedback control law, which assures elimination of the tracking
error is:

The control input that is finally exerted to the system is:

— fm‘l_ ﬂ_'fa;'a:*@ — M.::i{ﬁm - f&-:l
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4. Nonlinear control of the diesel engine using differential flathess theory

The results about dynamic state feedback system linearization can be obtained with the
computation of time derivatives and differential flatness theory. The following differentially
flat system outputs are considered

.FIK:: Pl =i z
YIS T T

The dynamics of the extended system are:

4 EiHa;fﬁT—EiHeﬂi-l-Him 0 0
iﬂ — HgHeﬂ-l = Kgﬂ.:l U 1
s =3 4 FO — o) tlo|®t|o]®
g 0 1 0

It holds that »1 ==x1 therefore:

x1 =cif1l;Jf1J5‘fJ
=1
.}f2=xaxfi1=:=r —‘%—1—}#%3:
1

which means that variable x; is also a function of the flat output and its derivatives. 102
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4. Nonlinear control of the diesel enqgine using differential flatness theory

Moreover, from the first row of the state-space equations one obtains:

1 =K1ﬂ;§3_—1—ff1ﬂx1 + Ky xa=

n-Kke i+ B Eeny
s .:11 -1 ot .
x4 = I =4 = g4(y)

which means that variable x, is also a function of the flat output and its derivatives.

Additionally, from the fourth row of the state-space equations one obtains:

g = th=ryy = @‘5'{%’} E’:‘

This means that the control input v, is also a function of the flat output and its derivatives.

Similarly, from the third row of the state-space equations one has:
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4. Nonlinear control of the diesel enqgine using differential flatness theory

while, from the second row of the state-space equations one obtains:

x=KKn —Grutwns
va =x3— Kafx + K=
V2 =gs(y)
Therefore, all state variables of the system and the control inputs can be written as

functions of the flat output and its derivatives. Therefore, the system of the diesel engine
is differentially flat and can be subjected to dynamic feedback linearization.

Next, by considering the flat outputs and by differentiating with respect to time one obtains:

¥ =x1
yi=x=p =K f_—l — K1 Koxy +Kyxg

By differentiating once more with respect to time one gets:

i
S (Hixﬂi;% - KKK Koy — K1 Koo+ Kioa)+
+{E1EQF}__13”[_ETE + K1 — mg_#:'} + K1wq
i
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4. Nonlinear control of the diesel enqgine using differential flathess theory

In a similar manner one has:

_ H
th = imzm ROEY
waFopal ™ . ., .
:-:'Ii";—'lu %1 + ﬁmg:

i
' ool ' o '
Yo = mfﬁfig_ €1+ gEig¥s=

Yo

while by differentiating once more with respect to time one obtains:

¥ wall, = i'-'-_ﬂil.‘-— Q—:IJH,::I:_i ab — o 1 "
] #_im:{ af oplp—1hal™ (ef’ E:?:f’—i?ﬁ* poel ™" 2w - Lipel™ (KiHem ii—HiKe$1+K1$4}+
+_(:-:E"'}i3:_j” (=20 H (1~ mﬁ)}}(ﬁri}feﬁi—i — K1 Kewr + Kynd) + ;%_T(Haﬁﬂ’;_i){ffﬂfemi — Kywa+ o)+
bt . . ¥
Hp o (K egtny — Koo+ Kaoa + (D=5 4+ Kol - o))+

i
+—’*—§l”3fii_f g } h

Thus one arrives at a representation of the system’s dynamics that is
analogous to the one obtained by applying the Lie algebra-based
approach:
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4. Nonlinear control of the diesel engine using differential flathess theory

_:;:{'1 = 53}31 Iile + Lg Lsin {xjm + Lg, Lsin {x}ug
Yo = Ligha (x) + L, Lk (xhuy + Lg, Lk (x)u2

where: s
LE h-‘l Eiffz_—ﬁgit KIKE}{HLF{EEFET — K Koo+ f'fimaﬂ b {%&f}{—%& + Ko{i — mg_#}}
Lo Lybale) = Ky and Lo, Lihalm) =
and also:

ki, 1 el = 13— K e 2w - 1 x
Lﬂhz{}'={3 pip 1)?‘(&‘;3:?_13}* peef " 2w thpel (K Kof2s — K1 Kooy + Kiog)+

+4°11—{—E+H{1—$“]]}{H1 e_Fl-_ HiHm1+H1m4}+ {Ha#m# YWE Kem — Komd+
+{¢_}H:i_:'_{}f1}fﬂ;ff__31_} KiKemi-FKimq-l-;f—_‘q T}}{ ;i-l-f‘fo{i—%_#}}

i a B ot
LoLsha(e) = G K and Ly Lykgle) = sep(Koped ™)

The design of the state feedback controller proceeds as in case of linearization
with the use of Lie algebra-based computations 106
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E

5. Flathess-based adaptive neurofuzzy control for MIMO nonlinear systems

5.1. Transformation of MIMO nonlinear systems into the Brunovsky form

It is assumed now that after defining the flat outputs of the initial MIMO nonlinear system, and
after expressing the system state variables and control inputs as functions of the flat output and of
the associated derivatives, the system can be transformed in the Brunovsky canonical form

1 = g

$'2=m3

(151
(]

w1
ﬁ-‘.-"i -1 = m-‘.-"i

By = f‘l'[ﬁ} =t Zi'j:-lﬁi;.:'[ﬁ}ﬁj + 4

meﬂ-i-l—i = m-:-'-1-|—2
g 3 = ey -3

Hp—1 = Ep

p = fple) + E?=19w{m:'“j + d,

i = [y, , @] s the state vector
R T :

w= [ug, 8]0 s the inputs vector
o) - 241, i .u,]*  :isthe outputs vector

107



Nonlinear control and filtering for USVs and AUVs

Example 4: Nonlinear control and state estimation using Lyapunov methods
5. Flatness-based adaptive neurofuzzy control for MIMO nonlinear systems

5.1. Transformation of MIMO nonlinear systems into the Brunovsky form

Next the following vectors and matrices can Thus, the initial nonlinear system can be written

be defined in the state-space form
feo) =i, ..., fu@]" . -
gx) =[g1(x), ..., gn(]" x =Ax + B[f(x) + g(x)u + d]
with g;(x) = [91:00), -, g (O] y = Cx
A =diag[Aq,...,Ap], B
= diag[By, ..., By]
CT = diag[Cy,...,Cp], d or equivalently in the state space form
= [dy,...,d,]"

| | x = Ax + Bv + Bd
where matrix A has the MIMO canonical form,

S y=Cx
l.e. with elements
0 1 0 ... 07 _
where v=f(x)+ g(x)u
o o 1 . o f(x) + g(x)
A; = For the case of the MIMO diesel engine model
0 0 O 1 it is assumed that the functions f(x) and g(x) are
L0 0 0 ... 04y unknown and have to be approximated by neuro-
BT=[0 0 ... 0 1lixr, fuzzy networks
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5. Flatness-based adaptive neurofuzzy control for MIMO nonlinear systems
5.1. Transformation of MIMO nonlinear systems into the Brunovsky form

Thus, the nonlinear system can be written in state-space form

&= Aw+ B[f(e) + g{e) 2t d]

y =
which equivalently #=Ae+ Bv+ Bd where o = flo) + gle)w
can be written as y=C%g

The reference setpoints for the system’s outputs Bttt Hp k
are denoted as i T

and the associated tracking errors are defined as

&1 = &1 — TfHm
Ey = o — o

Ep = p — Lhm
The error vector of the outputs of the transformed MIMO system is denoted as

E‘l [E'.l:- :-EP]T
[3"1'-'?1:- * }%M]T

= ol T 109
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5. Flathess-based adaptive neurofuzzy control for MIMO nonlinear systems
5.2. Control law

The control signal of the MIMO nonlinear system contains the unknown nonlinear functions
f(x) and g(x) which can be approximated by

.I'}{Imf]' = Dr(x)0r,  Ex|8e) = Delx)6;

where @ Ax) = (EM(R), E3(x),- - £3(2)),

50 = (9,070, 47 )

thus giving do (xR e )
o= |9 ¢E o

ot - @)

while the weights vector is defined as  g.7 = (@l 82 ... 61"
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5. Flathess-based adaptive neurofuzzy control for MIMO nonlinear systems
5.2. Control law

Similarly, it holds ~ ®g(x) = (&2 {;f}}.ég""{x}} . é_;.“ {x})r

ﬁ;{.‘-’[} = [: El {I}}tﬁéﬁ{x}} ' .[E.'ﬁ[lej

thus giving {;»:} {x} I*N'[?f:'
o -;E e 5{:' 5{}
de’ l'ir'f}' fﬁ;;(ﬂ Eﬁ(ﬂ

while the weights vector is defined as &, = [:Eé}ﬂg‘} Ep}r

However, here each row of 8. is vector thus giving

pl. g2 e gP

5%1 551 S -1

Hg - Y [
1 a2 z

BEW Hm TR -

If the state variables of the system are available for measurement then a state-feedback
control law can be formulated as

g x| 8 ) [— f{ﬂﬂﬂ +J*‘(F:J+ﬁf€+uc] 111
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5. Flatness-based adaptive neurofuzzy control for MIMO nonlinear systems

5.2. Estimation of the state vector

The control of the system which has been described in the canonical form becomes more

complicated when the state vector x is not directly measurable and has to be reconstructed

through a state observer. The following definitions are used

g=x—1x,: Isthe error of the state vector

T

=g Is the error of the estimated state vector

§=¢—&=(X—Xm — (E—Xm) isthe observation error
When an observer is used to reconstruct the state vector, the control law
P e ) T
w=g" (76 - FEI8F) + o — KT el

By applving the previous feedback control law one obtains the closed-loop dynamics

) = f(e) +3(@)5 B[S @) + o - KTe+w]+ d>
o) = f(o) + [o(e) - 6(8) + 6B 1@ [ (B + o) - KTe 4w ]+d=
) = [#{e) — F(#)]+ [oe) — 8(&)]ut+ ! — KTé 4w+ d
ltholds & = & — @y = g™ = 2™ gﬂ:'

and by substituting 3,1’"":' 1 the previous tracking error dynamics gives
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5. Flathess-based adaptive neurofuzzy control for MIMO nonlinear systems
5.2. Estimation of the state vector

the new tracking error dynamics

e+ o) = o) — KTet o+ [#() - F(@)
+lo(#) = (8wt d

or equivalently

é=de='BK e 1 B 4 Bl [/(a)= SO -
+o(s) - o(Blu+d) ® 4

= Tg
1 2 T . : Cou 1_-1 e
where e=|e }‘e;u}e?;'] with &% = [es, &, 85, -+, &) ]T 1,0v . p
and equivalently &=[&, &, ..., &7 with & =& & & ... £, i=1,2--.,p

A state observer is designed as:

¢=Aé— BKTE+4 K, [ey — CTH

8= 78 113
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Example 4: Nonlinear control and state estimation using Lyapunov methods

6. Application of adaptive fuzzy control to the MIMO diesel engine model
6.1. Differential flatness of the diesel engine

By applying differential flatness theory, and in the presence of
disturbances, the dynamic model of the Diesel engine comes to the form

&y = file ) + gale, Pt dy
3 =f2{m:-ﬂ+§2{m:-ﬂu+dﬂ @

The following control input is defined:

a -1 "
- (56:3) () -(e9)- () (o)
Golm, 1) oy Fale, 1) KL T,
where: [i"':ﬂl uﬂg]f is a robust control term that is used for the compensation of the model’s
uncertainties as well as of the external disturbances

and: & =[B,&, £ _,£] isthe feedback gain

Substituting the control input @ into the system @ one obtains .

() = (A5 + (353) (@D (D) - (BER)- () e+ (o (3)
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Example 4: Nonlinear control and state estimation using Lyapunov methods

6. Application of adaptive fuzzy control to the MIMO diesel engine model
6.1. Differential flatness of the diesel engine

Moreover, using again Eq. @ one obtains the tracking error dynamics

(5) = (A= ey (B 2 (e (1) +(3)

] ff?
The approximation error is defined as:

— ﬁ{.‘-‘f:_fj:l—_,f:i{?f}!jl Q{I}I}_él{xkfj 1
= (ﬁ{.‘-’f,_!jl . ﬁ{}'f,_.fjl) % (EE{I% Ij' - ég{;'f,_i':l)

Using matrices A,B,K, and considering that the estimated state vector is used in the
control loop the following description of the tracking error dynamics is obtained:

- A - AG) 4 (808G, 4 4
o= ar-nfism+ (SO0 TR0 )+ (BGREGR) =+

When the estimated state vector is used in the loop the approximation error is written as
W= (fi[x,_.f:l _-ﬁ[%%ﬂ) o (gl [I:-Ij _'%1[%3})1;
Falxt) — i) g(xt) — EalE )

while the tracking error dvnamics becomes

¢ = Ae — BXTé 4 By, + Bw + Bd 115
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Example 4: Nonlinear control and state estimation using Lyapunov methods
6. Application of adaptive fuzzy control to the MIMO diesel engine model

6.2. Dynamics of the observation error

The observation error is defined as: & = B= i —

By subtracting Eq ‘ from Eq@ one obtains:

¢— &= Ale— & + Bu.+ B{[f (=9 - fl&,8)+
+lgle, 1) — gl f)|ut df — K,C(e— g

'_-H:n

81—51 ZC(PI{E—E?:I

or equivalently:

$= As+ Buo+ B{[f(e1) — F(8,0)]+ lo(28) — §(8, )]+ ) — K.COT3

2= TG

which can be also written as:
E={4d- K,CT\e+ Bu, + Bw+d)
gy =Tz
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Example 4: Nonlinear control and state estimation using Lyapunov methods

6. Application of adaptive fuzzy control to the MIMO diesel engine model
6.3. Approximation of functions f(x,t) and g(x,t)

Next, the first of the approximators of the unknown system dynamics is defined

ie) = (,fi{ﬁm_f} HeRY fi(8l65) € R“‘“)
fo(#]8s) 4R fo(#l8;) € RV

- : b [TFospi, ()
containing kernel functions #%¥ (&% = ¢ g
° 38 = T A e

where #A;f{ﬁ} are fuzzy membership functions

appearing in the antecedent part of the I-th fuzzy rule
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Example 4: Nonlinear control and state estimation using Lyapunov methods

6. Application of adaptive fuzzy control to the MIMO diesel engine model
6.3. Approximation of functions f(x,t) and g(x,t)

Similarly, the second of the approximators of the unknown system dynamics is defined

s G1(#|f,) #eR¥
4(&) = (Q‘z{ﬂﬁ'g} e FA71

"-ih "-ih

(#]8,)  RI*E
{ﬁm j' RIHE

The values of the weights that result in optimal approximation are

5 = arg ming,em,  [sumseu,(F(#) — F(#(87))]
8y = arg ming, e g, [Supperr, (9le) — §(2(8,))]
The variation ranges for the weights are given by

-9 = {8¢cR™: ||8¢]|=me, }
s =abeR |8, ||{me}

The value of the approximation error that corresponds to the optimal values of the
weights vectors is

w = {#(e,8) = f(#187) ) + (ale¥) - 5(2167)) =
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6. Application of adaptive fuzzy control to the MIMO diesel engine model

6.3. Approximation of functions f(x,t) and g(x,t)
which is next written as

w = (f{m} £) — F(8)8) + f(2)85) - f{ﬁlﬂ;}) +
+ (gle 1) — §(#(6,) + 5(#]0,) — §(8|67)) =

which can be also written in the following form

with w= (we+u)

w, = {[f (et} — F(819:)] + [a(e,t) — §(818,)]}
and

wy = {[F(8[85) — F(E87)] + [6(, 8,) — (&[87)]}

Moreover, the following weights error vectors are defined

95 =8¢ — 8
8, = B, — 8
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/. Lyapunov stability analysis

The following Lyapunov function is considered:

V = 38T Pre+ 327 Poe4 267 8 + Ftr(8] 6,

The selection of the Lyapunov function is based on the following principle
of indirect adaptive control

24l t) this results |
into s #0) =wgld)

E 0 iy #0F)
g iMoo &(8) = a(2).

By deriving the Lyapunov function with respect to time one obtains:

Vz—TFi.E—l— .ETFE—l— ETP B4 & _TP.5+
+or ST5'5-|— iw[.ﬁ' 8,] =

V= 3{(4d - BET)é+ K,U* e} Fiét g4 {4 — BET)é+ K,CT e+
+1{(4- HGT}5+EE¢Q+EGE+B_W}TPEE—I—
+3&7 P (A - K,CTye+ Bu, + Bd+ Bul+

T

+%S§?5‘i + %tr[&?g 8, =
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7. Lyapunov stability analysis

The equation is rewritten as:
V=1 T{A BEDYT ¥ CKIVPa4+ 18 PI(A- BEKD)e+ K .CTE+
+2{e7(4 - K,CT)T + il BT + T BT 4 aTTET}Pgé+
1aTP(4- K c’i‘)e+5uﬂ+5w+5d}+ . STE' + 1n~[.5' 8,] =

which finally takes the form:
‘L‘f = —*T{A EKTVTP e+22 el CKT P&+
*TP (A—BET e+ L& PR, CT et
+1 T{A K,CT TP+ iliuTer +dT) BT Pyay:
41T P (A - K CT}.9-|— 1Ty Blos 4w + d)+
P e
+?i.5'}‘.5'f + tr (6, 8]

Assumption 1: For given positive definite matrices Q, and Q, there exist positive definite
matrices P, and P,, which are the solution of the following Riccati equations

(A—BEOVTP 4+ B(A-BEKTY+ @1 =0

i o BBy B P Pl SO0
—FB(E - BB P4 Q=0 121
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Example 4: Nonlinear control and state estimation using Lyapunov methods

7. Lyapunov stability analysis

By substituting the conditions from the previous Riccati equations into the derivative of the
Lyapunov function one gets:

V=1T{(A-BETTP 4 Py(d - BKT) 164 sTCKT Piéy
4287 {(4d - K, 0T T Pg—l—Pg{A Hcﬂ‘;;}&k

4 ET P Bluat w4 o) + L8T8; + L[4, 8]

or: '
V= —187Qué+ ETCKT P2 - 137{Q, — BB(2 - X)BT R} et

_T‘_
+3T Py Blua+ w+ d) + o &T&f + -tr[8, 8]

The supervisory control term =z consists of two terms:

T =_3£¢TP{E
T

w = —[( Py By (P, B)] (R B) CK Fié

s IS an He, control used for the compensation of the approximation error w and the additiv
disturbance 4 (the control term =z, has been chosen so as to satisfy the condition

efh Bu, = —%PQEETPQ £,

w2 IS a control used for the compensation of the observation error (the control term % has
been chosen so as to satisfy the condition :T'p, g, — — T CKTP g, 122
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xample 4: Nonlinear control and state estimation using Lyapunov methods
7. Lyapunov stability analysis

The control scheme is depicted in the following diagram

R
—;.:I.':. I [l Fix kT 1_'_“153

Ly = e

5 |i -l s T e |
[y fzﬁ‘:_! 0]
.h
T Obeserver 1 M :! e -
| B o e pae =i

i

frd . ‘ 2
x /_ %

#arl

L =,
Substituting the supervisory control term in the derivative of the Lyapunov function gives:

V=-16TQ64 FTOKT P — 157054 1T R, BBT P — %ETPQE.ETPQE—I—
+8T Py Bu, + 2T ByBuy + T B, B{w + o) + L Eﬂ‘ﬁf g t*r[-fi' 8,] 123
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7. Lyapunov stability analysis

or equivalently e _18TQ 8- 18TQ,E - JEETPEEBTPQH
+&T Py B{w + d) o, .E'TE 5 —w[.ﬁ' 8]

Besides, about the adaptatlon of the weights of the neurofuzzy network it holds

Sf_af—ﬂ;;zﬂf .S'g_.ﬁ'g—ﬂ;=9g.
and also :
B¢ = — . T(#)T BT P2
8, = — (& TET PyenT

By substituting the above relations in the derivative of the Lyapunov function one obtains

V=0 108 - AT RS RS B R 04
+(— fyijeTPgEﬂIJ{mj{ﬁ'_f — E'_fjl—l—
_|__T{— Yir et Py BE(8)(6, — 4]

R

or
V=—218TQ8 - %‘nge 2 —;EETPQBETPQH— BT Byafw + dit
T H{—p1)ET PaBO(#)(8; — 67)+
+(— ?ﬂ”[m P, B §(#(8,) — 5(2]87)] 124
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xample 4: Nonlinear control and state estimation using Lyapunov methods
7. Lyapunov stability analysis

Taking into account that = € B**' and " PB(§(=|8,) — &(=|8)) € B2

one gets

V=—1aTQ8— %‘ngé — 38 B,BBT P2+ BT Pya(w + d)+
+o (=)  Pa BO(#)(8r — 8]+
4= { ":r'gjlﬁ’.f"[E Py B(§(#]8,) — §(2]80)) =]
Since e By B{§(#165) — 5(#]0%))ne BT
it holds tr{ETPgE{ﬁ{mwg} _ @{mw;} o=

= el Py B{§{»|8s) — w|02))w

Therefore, one finally obtains

V=—1aTQ8— ‘Tr;gge — gx & P BBTPye+ BT Pyi(w + A+
+o-(—y)et P BR(8)(8r - 8+
-I—,%ﬂ —TE}ETPEB{ﬁ{ﬁ|Hg} - é{%lﬁ'ﬁ}w

Next, the following approximation error is defined

h:-l-l-

wa = [f(2]83) — F(218,)] + [5(2187) — §(8184)]= 125
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7. Lyapunov stability analysis

Thus, one obtains

V=—18TQu6— 187Que — sHe" P,EETPoat
+ETPya{w + d) 4+ 27 FyBuw,

Denoting the aggregate approximation error and disturbances vector as
wy = a0+ d w0,

the derivative of the Lyapunov function becomes

Vo=—18TQ8 - 1aTQpE— T el P, EET Poa+ 2% PaBuy

which in turn is written as

V=-1:TQ, 6 - 12702~ LeT Py BETPyet
—I—%ETPE'EU-l + %'lﬂ-l -ETPE'E

Lemma: The following inequality holds

L= P

éTPE.E'lU-l + —'EU-]_ BTP & — —;EETPQEBTPEE

2 T
< Lot Tu, 126
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Example 4: Nonlinear control and state estimation using Lyapunov methods
7. Lyapunov stability analysis

Proof:

inequality one QELSP

The binomial{m_ 132 > 0

is considered. Expanding the left part of the above

p2¢12+—1§b2—9mb30=}
Lontige Pibz— L=
T RT Bl e

b — 2—1ng < %pzmi =
1 1 1 2 g e

By substituting & = w4 and b = 2L B

Moreover, by substituting the above inequality into the derivative of the Lyapunov
function one gets

Lyl BT Rz 4 127 P, Buyy —

i R

: 1
VS - 58 Qué -

which is also written as

V i EETQE + lpgw?mi

with

£ (). o=

&1
0

1

(]

2

= g @

one gets

ane PR BETPye
BRI &

1 _o 1
EETQQE—I— Elﬂgw?ﬁm

"
e

P

) = diag|1, G
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7. Lyapunov stability analysis

Hence, the H.. performance criterion is derived. For sufficiently small 2 the inequality will
be true and the 4. tracking criterion will be satisfied. In that case, the integration of "V from O
to T gives

Jo VB < =3 [T EIPdt + 32y P2 =
W (T) = 2V(0) < 2 [T d + ,gﬂjn ey |2 =
2V(T) + fy 1Bl dt < 2V (0)+ 2 fy [l |2t

It is assumed that there exists a positive constant A, > 0 such that

o lleoa|[*d < B,

Therefore for the integral ISHEHE?dﬁ one gets

L
[ 1Bt < 2710 + 0t
]
Thus, the integral f;ﬁ| |J"L-E'||E:;f3ihi Is bounded and according to Barbalat’s Lemma

s yen () = 0
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Example 4: Nonlinear control and state estimation using Lyapunov methods

8. Simulation tests

The performance of the proposed observer-based adaptive fuzzy MIMO controller was tested

in the MIMO nonlinear model of the turbocharged Diesel engine

The fuzzy rule base used for the approximation of the unknown dynamics of the diesel engine

comprised 81 rules

8 T T T m T T T :- 10 T T T T T T T
< ; ; P ﬂ :
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g MAMARAN 3 = Wi il el ek
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112 1gec) 3 : : :
] 10 T T ; mu i i ;
n z w8 " | % W F W
:~i e ] s -
Al :mu w i, - 2T :
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(a) Tracking of set-point 1 by the state (b) Tracking of set-point 1 by the state
variables z of the transformed model variables x of the initial model
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8. Simulation tests

3 'm EI._ o : : T T T T T
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8. Simulation tests
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Example 4: Nonlinear control and state estimation using Lyapunov methods

8. Simulation tests

The simulation tests confirmed the disturbance rejection capability of the control loop.
No prior knowledge of the diesel engine’s dynamics was required.

It can be observed that the proposed adaptive fuzzy control scheme achieved fast and
accurate tracking of all these setpoints..

Table I RMS5E of Diesel engine’s state variables
parometer | Py 24 Fy
R S5, 00001 | 00004 | 00002
RSBy 00202 | 0.0204 [ 00055
M SR, 00079 | 0.0411 | 0.0087
RSBy 0.0001 | 0.0009 [ 00005
RSB, 0.0001 | 00215 | 0.0128

The RMSE (root mean square error) of the examined control loop is also calculated (assuming
the same parameters of the controller) in the case of tracking of the previous setpoints 1 to 5.

The results are summarized in Table I. From the simulation diagrams it can be confirmed that
the transient characteristics of the control scheme are also quite satisfactory
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9. Conclusions

* It has been shown that the extended state-space model of the turbocharged diesel
engine admits dynamic feedback linearization and that by applying differential flatness
properties it can be transformed into the MIMO canonical (Brunovsky) form..

» The nonlinear terms which appear in the transformed control inputs contained unknown
parameters and had to be approximated with the use of neuro-fuzzy networks.

* Moreover, since only the system’s output is measurable the complete '
state vector had to be reconstructed with the use of a state observer. =38

* It has been shown that a suitable learning law can be defined for the aforementioned
neuro-fuzzy approximators so as to preserve the closed-loop system stability.

» With the use of Lyapunov stability analysis it has also been proven that the proposed
observer-based adaptive fuzzy control scheme results in .. tracking performance, while
global stability has been also proven

* For the design of the observer-based adaptive fuzzy controller one had to solve two Riccati
equations, where the first one was associated with the controller and the second one was

associated with the observer 133
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V. Final conclusions

e Methods of nonlinear control and state estimation for optimized
propulsion in USVs and AUVs have been developed

e The main approaches for nonlinear control have been: (i) control with global linearization
method (ii) control with approximate (asymptotic) linearization methods (iii) control with
Lyapunov theory methods (adaptive control) in case that the model of the propulsion
system of the USVs and AUVs is unknown

e The main approaches for nonlinear state estimation are: (i) nonlinear state estimation with
methods of global linearization (ii) nonlinear state estimation with methods of approximate
(asymptotic) linearization
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