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I . Outline

● Optimized propulsion of USVs and AUVs relies on the solution of

the associated nonlinear control and state estimation problems

● The main approaches followed towards the solution of nonlinear

control problem are as follows: (i) control with global linearization

methods (ii) control with approximate (asymptotic) linearization

methods (iii) control with Lyapunov theory methods (adaptive

control methods) when the dynamic model of the USVs and AUVs is

unknown.

● The main approaches followed towards the solution of the nonlinear

state estimation problems are as follows: (i) state estimation with

methods global linearization (ii) state estimation with methods of

approximate (asymptotic) linearization

● Factors of major importance for the control loop of USVs and

AUVs, in optimized propulsion problems, are as follows (i) global

stability conditions for the related nonlinear control scheme (ii) global

stability conditions for the related nonlinear state estimation scheme

(iii) global asymptotic stability for the joint control and state

estimation scheme
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II . Nonlinear control and state estimation with global linearization

● To this end the differential flatness control theory is used

● The method can be applied to all nonlinear systems which

are subject to input-output linearization and actually such

systems posses the property of differential flatness

● The state-space description for the propulsion model of the USVs and AUVs is

transformed into a more compact form that is input-output linearized. This is achieved

after defining the system’s flat outputs

● A system is differentially flat if the following two conditions hold: (i) all state variables and

control inputs of the system can be expressed as differential functions of its flat outputs (ii)

the flat outputs of the system and their time-derivatives are differentially independent,

which means that they are not connected through a relation having the form of an ordinary

differential equation

● With the application of change of variables (diffeomorphisms) that rely

on the differential flatness property (i), the state-space description of the

USVs and AUVs propulsion system is written into the linear canonical

form. For the latter state-space description it is possible to solve both

the control and the state estimation problem for the USVs and UAVs

propulsion system
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III . Nonlinear control and state estimation with approximate linearization

● To this end the theory of optimal H-infinity control and the theory of

optimal H-infinity state estimation are used

● The nonlinear state-space description of the USVs and AUVs propulsion

undergoes approximate linearization around a temporary operating point

which is updated at each iteration of the control and state estimation algorithm

● The linearization relies on first order Taylor series expansion around the temporary

operating point and makes use of the computation of the associated Jacobian matrices

● The linearization error which is due to the truncation error of higher-order terms in the

Taylor series expansion is considered to be a perturbation that is finally compensated by

the robustness of the control algorithm

● For the linearized description of the state-space model an optimal H-infinity controller

is designed. For the selection of the controller’s feedback gains an algebraic Riccati

equation has to be solved at each time step of the control algorithm

● Through Lyapunov stability analysis, the global stability properties of

the control method are proven

● For the implementation of the optimal control method through the

processing of measurements from a small number of sensors in the

USVs and AUVs propulsion system, the H-infinity Kalman Filter is used

as a robust state estimator
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IV . Nonlinear control and state  estimation with Lyapunov methods

● By proving differential flatness properties for the USVs and AUVs

propulsion and by defining flat outputs a transformation of the related

state-space model into an equivalent input-output linearized form is achieved.

● The unknown dynamics of the USVs and AUVs propulsion is incorporated

into the transformed control inputs of the system, which now appear

in its equivalent input-output linearized state-space description

● The control problem for USVs and AUVs of unknown propulsion dynamics in now turned

into a problem of indirect adaptive control. The computation of the control inputs of the

system is performed simultaneously with the identification of the nonlinear functions which

constitute its unknown dynamics.

● The estimation of the unknown propulsion dynamics of the USVs and AUVs is

performed through the adaptation of neurofuzzy approximators. The definition of the

learning parameters takes place through gradient algorithms of proven convergence, as

demonstrated by Lyapunov stability analysis

● The Lyapunov stability method is the tool for selecting both the gains of the stabilizing

feedback controller and the learning rate of the estimator of the unknown system’s

dynamics

● Equivalently through Lyapunov stability analysis the feedback gains of the state

estimators of the USVs and AUVs propulsion system are chosen. Such observers are

included in the control loop so as to enable feedback control through the processing of a

small number of sensor measurements
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Example 1: Nonlinear control and state estimation using global linearization

• The development of efficient control for turbocharged ship Diesel

engines, requires elaborated nonlinear control and filtering methods

• To this end, nonlinear control for turbocharged Diesel engines is developed with the use of

Differential flatness theory and the Derivative-free nonlinear Kalman Filter.

• It is shown that the dynamic model of the turbocharged Diesel engine is differentially flat

and admits dynamic feedback linearization.

• It is also shown that the dynamic model can be written in the linear

Brunovsky canonical form for which a state feedback controller

can be easily designed.

• To compensate for modeling errors and external disturbances the Derivative-free nonlinear

Kalman Filter is used and redesigned as a disturbance observer.

• The filter consists of the Kalman Filter recursion on the linearized equivalent model of

the Diesel engine model and of an inverse transformation based on differential flatness

theory which enables to obtain estimates for the state variables of the initial nonlinear model.

• Once the disturbances variables are identified it is possible to compensate them by including

an additional control term in the feedback loop.

.

1. Control of turbocharged ship diesel engines
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Example 1: Nonlinear control and state estimation using global linearization

2. Dynamic model of the Diesel engine

The basic parameters of the Diesel engine are:

(i) Gas pressure in the intake manifold

(ii) Gas pressure in the exhaust manifold

(iii) Turbine power

(iv) Compressor power

Additional variables of importance are:

which is the compressor’s mass flow rate

which is the intake manifold temperature

which is the exhaust manifold temperature

which is the turbine mass-flow rate

which is the exhaust gas recirculation flow rate

𝑝1
𝑝2

𝑃𝑡
𝑃𝑐

𝑊𝑐

𝑇1

𝑇2

𝑊𝑡

𝑊𝐸𝐺𝑅

Four-stroke cycle of an internal

combustion diesel engine
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Example 1: Nonlinear control and state estimation using global linearization

2. Dynamic model of the Diesel engine

The basic relations of the Diesel-engine’s dynamics are:

The control inputs to this model are:

(i) The exhaust-gas recirculation (EGR) flow rate

(ii) The turbine’s mass flow rate

𝑢1 = 𝑊𝐸𝐺𝑅

𝑢2 = 𝑊𝑡

Moreover, it holds that:

The description of the Diesel engine in state-space form is given by:

where:
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Example 1: Nonlinear control and state estimation using global linearization

2. Dynamic model of the Diesel engine

The output variables of the Diesel engine model are:

Fig.1 : Diagram of the turbocharged Diesel engine

Exhaust Gas
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Example 1: Nonlinear control and state estimation using global linearization

3. Lie algebra-based control 

Dynamic  feedback linearization is applied to the Diesel engine’s model:

The state vector of the system is extended by considering as additional

state variables the control inputs

The transformed control inputs which appear in the linearized equivalent of the system are

functions of not only the initial control variables but also of their derivatives

The control inputs to the linearized model of the Diesel engine become:

The extended state vector of the diesel engine becomes:

The control inputs which are finally applied to the system contain an

integral action:

𝑢1 = 𝑊𝐸𝐺𝑅 𝑢2 = 𝑊𝑡where
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Example 1: Nonlinear control and state estimation using global linearization

3. Lie algebra-based control 

The extended state-space description of the Diesel engine becomes:

Consequently, in matrix form one has:

The system’s outputs are chosen to be:
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Example 1: Nonlinear control and state estimation using global linearization

3. Lie algebra-based control 

Linearization of the system’s dynamics is performed using the following state variables:

and equivalently:

After intermediate computations one obtains:

and

and also
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Example 1: Nonlinear control and state estimation using global linearization

3. Lie algebra-based control 

In a similar manner one obtains:

and also

and
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Example 1: Nonlinear control and state estimation using global linearization

3. Lie algebra-based control 

Thus, after the change of coordinates the following description of the system is obtained

which is also written in the state-space form

or also in the more compact form

••
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Example 1: Nonlinear control and state estimation using global linearization

3. Lie algebra-based control 

Moreover, by defining the control inputs

the system’s description comes to the following canonical form:

The selection of the state feedback control law, which assures elimination of the tracking 

error is:

The control input that is finally applied to the system is:
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Example 1: Nonlinear control and state estimation using global linearization

4. Nonlinear control of the diesel engine using differential flatness theory

The results about dynamic state feedback system linearization can be obtained with the

computation of time derivatives and differential flatness theory. The following differentially

flat system outputs are considered

The dynamics of the extended system are:

It holds that therefore:

which means that variable x3 is also a function of the flat output and its derivatives.
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Example 1: Nonlinear control and state estimation using global linearization

4. Nonlinear control of the diesel engine using differential flatness theory

Moreover, from the first row of the state-space equations one obtains:

which means that variable x4 is also a function of the flat output and its derivatives.

Additionally, from the fourth row of the state-space equations one

obtains:

This means that the control input v1 is also a function of the flat output and its derivatives.

Similarly, from the third row of the state-space equations one has:
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Example 1: Nonlinear control and state estimation using global linearization

4. Nonlinear control of the diesel engine using differential flatness theory

while, from the second row of the state-space equations one obtains:

Therefore, all state variables of the system and the control inputs can be written as functions

of the flat output and its derivatives. Therefore, the system of the diesel engine is differentially

flat and can be subjected to dynamic feedback linearization.

Next, by considering the flat outputs and by differentiating with respect to time one obtains:

By differentiating once more with respect to time one gets:
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Example 1: Nonlinear control and state estimation using global linearization

4. Nonlinear control of the diesel engine using differential flatness theory

In a similar manner one has:

while by differentiating once more with respect to time one obtains:

Thus one arrives at a representation of the system’s dynamics that is

analogous to the one obtained by applying the Lie algebra-based

approach:
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Example 1: Nonlinear control and state estimation using global linearization

4. Nonlinear control of the diesel engine using differential flatness theory

where:

and

and also:

and

The design of the state feedback controller proceeds as in case of linearization

with the use of Lie algebra-based computations
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Example 1: Nonlinear control and state estimation using global linearization

5. Disturbances compensation using the Derivative-free nonlinear Kalman Filter

It is assumed that model uncertainty effects and external perturbation terms are described

in the model of the diesel engine as additive disturbance inputs which appear in the linearized

equivalent. Thus, one has the dynamics

and after defining

one gets while the disturbances are considered

to be described by the associated 2nd

order derivative

In the latter case, the system’s dynamics can be extended by considering

as additional state variables the disturbance terms and their derivatives.

Thus one obtains
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Example 1: Nonlinear control and state estimation using global linearization

5. Disturbances compensation using the Derivative-free nonlinear Kalman Filter

where

and matrices A,B,C are defined as follows:

In the design of the Kalman Filter-based disturbances estimator it is assumed that the

disturbances’ dynamics is completely unknown. Thus, the considered dynamics now is

where and
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Example 1: Nonlinear control and state estimation using global linearization

5. Disturbances compensation using the Derivative-free nonlinear Kalman Filter

For the above definition of dynamics of the disturbances estimator, the selection of the observer’s

gain K can be performed using the standard Kalman Filter recursion. Prior to this, matrices

are brought to the discrete-time form using common discretization

methods. The discrete-time Kalman Filter recursion is

measurement update: time update:

From the previous estimation procedure one can reconstruct the state vector of the initial

nonlinear model of the diesel engine

The control signal that enables the disturbances compensation is
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Example 1: Nonlinear control and state estimation using global linearization

6. Simulation tests

Fig, 2(a) Convergence of the state variables

to the associated setpoints 1 (red line: setpoint,

blue line: real value, green line: estimated value)

Fig, 2(b) Estimation (blue line) of

perturbation terms (red line) affecting

the diesel engine

Through simulation experiments it has been confirmed that the proposed control and Kalman

Filter-based estimation scheme can (i) succeed convergence of the elements of the state vector

of the turbocharged diesel engine to the desirable setpoints, (ii) estimate non-measurable

elements of the state vector as well as disturbance terms that affect the engine’s dynamics.
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Example 1: Nonlinear control and state estimation using global linearization

6. Simulation tests

Fig 2(a): Convergence of the state variables

to the associated setpoints 2 (red line: setpoint,

blue line: real value, green line: estimated value),

Fig. 2(b) estimation (blue line) of

perturbation terms (red line) affecting

the diesel engine
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Example 1: Nonlinear control and state estimation using global linearization

7. Conclusions

• The Diesel engine’s model does not admit static feedback linearization

and this increases the degree of difficulty of the associated nonlinear control

problem.

• To handle this, it has been proposed to apply dynamic feedback linearization which is

based on extending the state-space description of the engine with the inclusion of additional

state variables representing the derivatives of the control inputs.

• The extended state-space model of the turbocharged diesel engine satisfies differential

flatness properties and can be finally transformed into MIMO canonical (Brunovsky) form.

• The latter description facilitates the design of a state feedback controller and assures that

the elements of the state vector of the engine will converge asymptotically to the desirable

setpoints.

• To compensate for modeling errors and external disturbances the Derivative-free

nonlinear Kalman Filter has been used and redesigned as a disturbance observer.

• The filter consists of the Kalman Filter recursion on the linearized equivalent model of the

Diesel engine model and of an inverse transformation based on differential flatness theory

which enables to obtain estimates for the state variables of the initial nonlinear model.
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Example 2: Nonlinear control and state estimation using approximate linearization

1 . Control of turbocharged ship diesel engines

● A nonlinear optimal (H-infinity) control approach is proposed

for turbocharged diesel engines with potential use in ship propulsion.

● The dynamic model of the diesel engine undergoes approximate

linearization round a temporary operating point.

● This is defined at each time instant by the present value of the system’s state vector and

the last sampled value of the control inputs vector.

● The linearization is based on Taylor series expansion and on the associated

Jacobians. For the linearized model an H-infinity feedback controller is computed.

● The controller’s gain is calculated by solving an algebraic Riccati equation at each

iteration of the control method.

● The asymptotic stability of the control approach is proven

through Lyapunov analysis.

● This assures that the state variables of the diesel engine

will finally converge to the designated reference values.

● Optimal functioning of the diesel engine signifies improved power, reduced

polluting emissions and reduced fuel consumption
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Example 2: Nonlinear control and state estimation using approximate linearization

2 .  Dynamic model of the turbo-charged diesel engine

The basic parameters of the Diesel engine are:

(i) Gas pressure in the intake manifold p1,

(ii) Gas pressure in the exhaust manifold p2,

(iii)Turbine power Pt, (iv) Compressor power Pc

.

A. Nonlinear dynamics of the diesel engine

Fig. 1. Diagram of the turbocharged Diesel engine
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2 .  Dynamic model of the turbo-charged diesel engine

2.1. Nonlinear dynamics of the diesel engine

The basic relations of the diesel engine’s dynamics are:

The control inputs to this model are the exhaust gas recirculation (EGR) flow rate

u1 = WEGR and the turbine’s mass flow rate u2 = Wt. Moreover, it holds that

Additional variables of importance are

Wc which is the compressor mass flow rate, T1 the intake manifold temperature,

T2 is the exhaust manifold temperature, Wt is the turbine mass flow rate

WEGR is the exhaust gas recirculation flow rate

1

2
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2.  Dynamic model of the turbo-charged diesel engine

The model is simplified by setting. In such

a case the associated state-space equations are given by

The description of the diesel engine in state-space form is given by

where

With respect to the control, the variables of the output are: (i) the input manifold

pressure p1 and (ii) the compressor mass flow rate Wc

2.1. Nonlinear dynamics of the diesel engine

3

4

5
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2.  Dynamic model of the turbo-charged diesel engine

2.2. Dynamic extension of the diesel engine’s state-space description

Dynamic extension is performed which means that the state vector of the diesel engine is

extended by considering as additional state variables specific control inputs

and their derivatives

The purpose of dynamic extension is to select feasible

reference setpoints for the system’s nonlinear optimal controller.

In the state-space description that is obtained after dynamic

extension, one has that the transformed control inputs

are applied to the diesel engine’s model. Equivalently, this means that the control inputs

which are finally applied to the real system depend on through

an integration relation, that is

6

7
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---------------------------------------------------------- Dr. G. Rigatos 

The dynamical system of the diesel engine is written in an extended form

using the variables

2.  Dynamic model of the turbo-charged diesel engine

2.2. Dynamic extension of the diesel engine’s state-space description

which means

Thus, using the previous state-space description of the system and by substituting

as intermediate state variable it holds

therefore, by defining the state vector

8

9
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2 .  Dynamic model of the turbo-charged diesel engine

2.2. Dynamic extension of the diesel engine’s state-space description

Consequently, in matrix form one has

therefore, by defining the state vector

11

10
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3. Approximate linearization of the turbo-charged diesel engine

After dynamic extension, the state-space model of the diesel engine was brought to the

form of
10 where the state variables of the model are

while the control inputs are.

The above state-space model of the diesel engine undergoes approximate linearization

around the temporary equilibrium

is the last value of the control input that was exerted on the system.

is the present value of the system’s state vector

The state-space model of the diesel engine can be also written in the matrix form

where matrices A and B are described by the system’s Jacobians

Thus about matrices A and B of the linearized model one has

12

13
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Example 2: Nonlinear control and state estimation using approximate linearization

3. Approximate linearization of the turbo-charged diesel engine

The initial nonlinear system of the diesel engine is in the form

Linearization of the system is performed at each iteration of the

control algorithm around its present operating point

The linearized equivalent of the system is described by

where matrices 𝐴 and 𝐵 are obtained from the computation of the Jacobians

and vector 𝑑 denotes disturbance terms due to linearization errors.

14



Nonlinear control and filtering for USVs and AUVs

Example 2: Nonlinear control and state estimation using approximate linearization
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3. Approximate linearization of the turbo-charged diesel engine

For the Jacobian matrix it holds

15
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4. Design of an H-infinity nonlinear feedback controller

The state vector of the turbocharged diesel engine is denoted as

The input vector of the turbocharged diesel engine is denoted as

After linearization round its current position, the diesel engine’s dynamic model

is written as

Parameter d1 stands for the linearization error in the diesel engine’s

dynamic model

The reference setpoint of the turbocharged diesel engine is denoted by

Tracking of this reference setpoint is achieved after applying the control input

At every time instant the control input is assumed to differ from the control input

appearing in by an amount equal to , that is

16

16

17

𝑣 = [𝑣1, 𝑣2]
𝑇

𝑥𝑑 = [𝑥1
𝑑, 𝑥2

𝑑, 𝑥3
𝑑, 𝑥4

𝑑]𝑇
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4. Design of an H-infinity nonlinear feedback controller

The dynamic model of the system of Eq. can be also written

in the form

and by denoting as an aggregate disturbance term one obtains

18

19

By subtracting Eq. from Eq. one has19 16

20

By denoting the tracking error as and the aggregate disturbance term as

the tracking error dynamics becomes

21

16
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The problem of disturbance rejection for the linearized model that is

described by

where cannot be handled efficiently if the classical LQR

control scheme is applied. This because of the existence of the perturbation term 𝑑.

In the 𝐻∞ control approach, a feedback control scheme is designed for trajectory

tracking by the system’s state vector and simultaneous disturbance rejection, considering

that the disturbance affects the system in the worst possible manner

The disturbances’ effect are incorporated in the following quadratic

cost function

Coefficient 𝑟 determines the penalization of the control input and the weight coefficient 𝜌
determines the reward of the disturbances’ effects. It is assumed that

4. Design of an H-infinity nonlinear feedback controller

22
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Example 2: Nonlinear control and state estimation using approximate linearization

4. Design of an H-infinity nonlinear feedback controller

Then, the optimal feedback control law is given by

with

where 𝑃 is a positive semi-definite symmetric matrix which is obtained from the solution

of a Riccati equation of the form

where Q is also a positive definite symmetric matrix.

The parameter ρ in Eq. (15), is an indication of the closed-loop system

robustness. If the values of ρ> 0 are excessively decreased with respect to r, then

the solution of the Riccati equation is no longer a positive definite matrix.

Consequently, there is a lower bound ρmin of for which the H-infinity control problem

has a solution.

23

24
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414141

4. Design of an H-infinity nonlinear feedback controller

Fig. 2. Diagram of the control scheme for the turbocharged ship’s diesel engine
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5. Lyapunov stability analysis

The tracking error dynamics for the diesel engine is written in the form

where for the three-phase voltage source converter example with I being the

identity matrix. The following Lyapunov function is considered

with to be the tracking error

𝐿 ∈ 𝑅4

25
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5. Lyapunov stability analysis

The previous equation is rewritten as

Assumption: For given positive definite matrix Q and coefficients r and ρ there exists a

positive definite matrix P, which is the solution of the following matrix equation

Moreover, the following feedback control law is applied to the system

By substituting Eq. and Eq. one obtains

26

27
27 26
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5. Lyapunov stability analysis

Continuing with computations one obtains

which next gives

or equivalently

Lemma: The following inequality holds

28



Nonlinear control and filtering for USVs and AUVs

Example 2: Nonlinear control and state estimation using approximate linearization

45

5. Lyapunov stability analysis

Proof : The binomial is considered. Expanding the left part of the above inequality

one gets

The following substitutions are carried out:

and the previous relation becomes

Eq. is substituted in Eq. and the inequality is enforced, thus giving

29

29 28

Eq. shows that the H-infinity tracking performance criterion is satisfied.

The integration of from 0 to T gives

30

30

𝑉
•
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5. Lyapunov stability analysis

Moreover, if there exists a positive constant                    such that

then one gets

Thus, the integral is bounded.

According to the above and with the use of Barbalat’s Lemma

one obtains:

Moreover, V(T) is bounded and from the definition of the Lyapunov function V it becomes

clear that e(t) will be also bounded since

Τhis completes the stability proof.

31
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Therefore for the i-th time interval it is proven that the Lyapunov function defined in

is a decreasing one. This also assures the Lyapunov function

of the system defined in will always have a negative first-order

derivative.

Elaborating on the above, it can be noted that the proof of global asymptotic stability for the

control loop of the turbocharged diesel engine is based on

and on the application of Barbalat’s Lemma. It uses the condition

5. Lyapunov stability analysis

about the boundedness of the square of the aggregate disturbance and modelling

error term that affects the model.

However, the proof of global asymptotic stability is not restricted by this condition. By

selecting the attenuation coefficient to be sufficiently small and in particular to satisfy

one has that the first derivative of the Lyapunov function is upper bounded by 0. 

30

•

•

•

25
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6. Robust state estimation with the H-infinity Kalman Filter

The control loop has to be implemented with the use of information provided by a small

number of sensors and by processing only a small number of state variables.

To reconstruct the missing information about the state vector of the turbocharged diesel

engine it is proposed to use a filtering scheme and based on it to apply state

estimation-based control

The recursion of the H-infinity Kalman Filter, for the model of the diesel engine, can be

formulated in terms of a measurement update and a time update part

•

•

•

Measurement update:

Time update:

where it is assumed that parameter θ is sufficiently small to assure that the following

covariance matrix will be positive definite
−1

32

33
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7. Simulation tests

The performance of the proposed nonlinear H-infinity control for the turbocharged

diesel engine has been evaluated through simulation experiments.

The computation of the feedback control gain was based on the solution of the algebraic

Riccati equation given in the related Riccati equation, through a procedure that was

repeated at each iteration of the control method.

It can be confirmed that fast and accurate convergence of the state

variables of the diesel engine to the reference setpoints was achieved.

Moreover, it can be seen that the variation of the control inputs

remained smooth and within moderate ranges.

Despite nonlinearities, the control method’s performance was very satisfactory and precise

tracking of the reference setpoints was achieved.

In the presented simulation experiments state estimation-based control has been

implemented. Out of the 3 state variables of the turbocharged diesel only 1 was considered

to be measurable.

•

•

•

•

•

•

The only measurable state variable was the gas pressure p1 in the intake manifold, The

rest of the state variables, were indirectly estimated usingf the H-infinity Kalman Filter.
•

26
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7. Simulation tests

The real value of each state variable has been plotted in blue, the estimated value has been

plotted in green, while the associated reference setpoint has been plotted in red.

It can be noticed that despite model uncertainty the H-infinity Kalman

Filter achieved accurate estimation of the real values of the state

vector elements.

In this manner the robustness of the state estimation-based H-infinity

control scheme was also improved

Comparing to the control of diesel engines that can be based on global linearization methods

the following features can be attributed to the nonlinear H-infinity control scheme

(i) it is applied directly on the nonlinear dynamical model of the turbocharged diesel

engine and does not require the computation of diffeomorphisms (change of variables)

that will bring the system into an equivalent linearized form

(ii) the computation of the feedback control signal does

not require inverse transformations thus avoiding the

appearance of singularities

(iii) the method retains the known advantages of linear optimal control,

that is accurate tracking of the reference setpoints under

moderate variations of the control inputs

•

•

•

•

Example 2: Nonlinear control and state estimation using approximate linearization
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7. Simulation tests

Fig. 3. (a) Tracking of set-point 1 (red

lines) by states xi = 1,,..,3 (blue line: real

values, green line: estimated values)

Fig. 3. (b) Control inputs ui = 1,2

applied to the diesel engine

Example 2: Nonlinear control and state estimation using approximate linearization
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7. Simulation tests

Fig. 4. (a) Tracking of set-point 2 (red

lines) by states xi = 1,,..,3 (blue line: real

values, green line: estimated values)

Fig. 4. (b) Control inputs ui = 1,2

applied to the diesel engine

Example 2: Nonlinear control and state estimation using approximate linearization
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7. Simulation tests

Fig. 5. (a) Tracking of set-point 3 (red

lines) by states xi = 1,,..,3 (blue line: real

values, green line: estimated values)

Fig. 5. (b) Control inputs ui = 1,2

applied to the diesel engine

Example 2: Nonlinear control and state estimation using approximate linearization
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7. Simulation tests

Fig. 6 (a) Tracking of set-point 4 (red

lines) by states xi = 1,,..,3 (blue line: real

values, green line: estimated values)

Fig. 6. (b) Control inputs ui = 1,2

applied to the diesel engine

Example 2: Nonlinear control and state estimation using approximate linearization



Nonlinear control and filtering for USVs and AUVs

55

7. Simulation tests

Fig. 7. (a) Tracking of set-point 5 (red

lines) by states xi = 1,,..,3 (blue line: real

values, green line: estimated values)

Fig. 7. (b) Control inputs ui = 1,2

applied to the diesel engine

Example 2: Nonlinear control and state estimation using approximate linearization
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7. Simulation tests

Fig. 8. (a) Tracking of set-point 6 (red

lines) by states xi = 1,,..,3 (blue line: real

values, green line: estimated values)

Fig. 8. (b) Control inputs ui = 1,2

applied to the diesel engine

Example 2: Nonlinear control and state estimation using approximate linearization
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8 . Conclusions

● In this article, a nonlinear optimal (H-infinity) control method

has been developed for turbocharged ship diesel engines.

● First, a new state-space description for the diesel engine was

obtained through dynamic extension, that is after considering

specific control inputs and their time derivatives as additional

state variables for the system.

● Next, the extended state-space model of the diesel engine was subjected to

approximate linearization around a temporary operating point (equilibrium) that

recomputed at each iteration of the control algorithm.

● This equilibrium consisted of the present value of the engine’s

state vector and of the last ampled value of the control inputs

vector.

● Linearization was performed through Taylor series expansion

and the computation of the associated Jacobian matrices.

● For the linearized model of the diesel engine, the H-infinity

control problem (optimal control problem under uncertainty)

was solved.

Example 2: Nonlinear control and state estimation using approximate linearization
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● The feedback gain of the controller was repetitively computed

at each iteration of the control algorithm through the solution

of an algebraic Riccati equation. The stability of the control scheme

was proven through Lyapunov analysis.

● First, it was demonstrated that the control scheme satisfied

the H-infinity tracking performance criterion.

● Moreover, under moderate conditions the global asymptotic

stability of the control loop was proven.

● To implement feedback control without need to measure the

entire state vector of the diesel engine, the H-infinity Kalman Filter

has been proposed.

● Despite its computational simplicity the proposed nonlinear

optimal control method was confirmed to have an excellent

performance.

8 . Conclusions

Example 2: Nonlinear control and state estimation using approximate linearization
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Example 3: Nonlinear control and state estimation using approximate linearization

1 . Control of the electric ship propulsion system

• A nonlinear optimal (H-infinity) control method is proposed for electric ships’

propulsion systems comprising an induction motor, a drivetrain and a propeller.

• The control method relies on approximate linearization of the propulsion system’s

dynamic model using Taylor-series expansion and on the computation of the state-space

description’s Jacobian matrices.

• The linearization takes place around a temporary operating point

which is recomputed at each time-step of the control method.

• For the approximately linearized model of the ship’s propulsion

system, an H-infinity (optimal) feedback controller is developed.

• For the computation of the controller’s gains an algebraic Riccati equation is solved at

each iteration of the control algorithm.

• The stability properties of the control method are proven through Lyapunov analysis.

The method is also robust to model uncertainties and external perturbations

• The proposed control method retains the advantages of linear optimal control, that is fast

and accurate tracking of reference setpoints under moderate variations of the

control inputs



Nonlinear control and filtering for USVs and AUVs

60

Example 3: Nonlinear control and state estimation using approximate linearization

2 .  Dynamic model of the electric ship propulsion system

Fig. 1: Diagram of the electric ship propulsion system

The propulsion system of the electric ship, comprises a three-phase induction motor, a 

drivetrain (gearbox), and the propeller (Fig. 1).
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Example 3: Nonlinear control and state estimation using approximate linearization

2 .  Dynamic model of the electric ship propulsion system

The rotational motion of the induction motor is given by

1

Te is the electromagnetic torque that is developed by the motor, 
Ths is the torque developed by the shaft at the motor’s side (high-speed), 
Bmωm is a friction torque that opposes to the rotational motion of the rotor.

The rotational motion of the ship’s propeller is given by

2

Tls is the torque developed by the shaft at the propeller’s side (low-speed), 

clba expresses the mechanical torque that is applied on the propeller 

Bpωp is a friction torque that opposes to the rotational motion of the propeller. 

Bm is the damping coefficient in the turn motion of the motor, 

θm is the rotational speed of the motor, 

Bp is the damping coefficient in the turn motion of the propeller 

θp is the rotational speed of the propeller.
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Example 3: Nonlinear control and state estimation using approximate linearization

2 .  Dynamic model of the electric ship propulsion system

The rotational motion of the induction motor is given by

1

Te is the electromagnetic torque that is developed by the motor, 
Ths is the torque developed by the shaft at the motor’s side (high-speed), 
Bmωm is a friction torque that opposes to the rotational motion of the rotor.

The rotational motion of the ship’s propeller is given by

2

Tls is the torque developed by the shaft at the propeller’s side (low-speed), 

clba expresses the mechanical torque that is applied on the propeller 

Bpωp is a friction torque that opposes to the rotational motion of the propeller. 

Bm is the damping coefficient in the turn motion of the motor, 

θm is the rotational speed of the motor, 

Bp is the damping coefficient in the turn motion of the propeller 

θp is the rotational speed of the propeller.



Nonlinear control and filtering for USVs and AUVs

63

Example 3: Nonlinear control and state estimation using approximate linearization

2 .  Dynamic model of the electric ship propulsion system

A drivetrain which comprises, a gear of nm teeth at the side of the motor, and a gear of np

teeth at the side of the propeller, is considered

The relation between the torque at the motor’s side Ths and the torque at the propeller’s 

side Tls is given by

3

The torque of the shaft is due to torsion and at the propeller’s side is given by

4

K1 is an elasticity coefficient, D1 is a damping coefficient.

Using that the value of D1 is significantly smaller that the value of K1 this result into

the following relation about the shaft’s torque at the propeller’s side

5
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Example 3: Nonlinear control and state estimation using approximate linearization

2 .  Dynamic model of the electric ship propulsion system

Consequently, the shaft’s torque at the side of the induction motor is given by

6

Next, about the mechanical part of the transmission system one can define the

state variables

7

x2

This results into the following state-space  description:

The dynamics of the electrical part of the propulsion system is dependent on the components

of the currents of the machine’s stator [isd, isq] and on the components of the rotor’s

magnetic flux [ψrd, ψrq], which are expressed in the asynchronously rotating dq reference

frame.

and the control input which is related to the propeller’s

pitch angle
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By applying the field orientation concept, that is by selecting the turn speed of the

asynchronously rotating reference frame, defined by the derivative of the angle of the

rotor’s magnetic field

2 .  Dynamic model of the electric ship propulsion system

(i) the q-axis component of the magnetic flux vanishes, that is ψrq= 0

(ii) the d-axis component of the magnetic flux becomes equal to the magnitude of 
the flux vector, that is it becomes equal to

with to denote the magnetic flux coefficients in the non-rotating ab 
reference frame. Thus the electric part of the propulsion system is 

8

9

10

11
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2 .  Dynamic model of the electric ship propulsion system

The coefficients of the electric part of the model are defined as follows:

M is the mutual inductance between the stator and the rotor, 

Ls is the stator’s inductance, 

Lr is the rotor’s inductance

Taking into account the field-orientation condition, the electromagnetic torque that is 

developed by the induction motor is given by

12

coefficient μ is dependent on the number of poles of the IM and is defined as

The following state variables are defined for the electric dynamics of the propulsion system

while the associated control inputs are:
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Example 3: Nonlinear control and state estimation using approximate linearization

one obtains the following state-space description for the electrical part of

the propulsion system

2 .  Dynamic model of the electric ship propulsion system

13

Moreover, using the previous notation of the state variables the electromagnetic torque

which is provided by the motor is given by

14
By defining the entire state vector of the propulsion system as

and the entire control inputs vector as

or

or

one has the complete state-space model

x
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Example 3: Nonlinear control and state estimation using approximate linearization

2 .  Dynamic model of the electric ship propulsion system

15

In vector fields form, the previous state-space description can be written as:

16

where

with
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3. Approximate linearization of the electric ship propulsion system

The state-space model of the electric ship propulsion system undergoes approximate 

linearization around the temporary operating point (equilibrium) (x*, u*), where 

x* is the present value of the system’s state vector and 

u* is the last sampled value of the control inputs vector 

For the linearized state-space model of the system it holds that

17

where is the cumulative disturbance vector due to approximate linearization and

truncation of higher-order terms in the Taylor series expansion, and

18

19

About the Jacobian matrix                                       one has

First row of the Jacobian matrix                                  
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Example 3: Nonlinear control and state estimation using approximate linearization

3. Approximate linearization of the electric ship propulsion system

Second row of the Jacobian matrix                                  

Third row of the Jacobian matrix                                  

Fourth row of the Jacobian matrix                                  

Fifth row of the Jacobian matrix                                  

Sixth row of the Jacobian matrix                                  
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Example 3: Nonlinear control and state estimation using approximate linearization

3. Approximate linearization of the electric ship propulsion system

Seventh row of the Jacobian matrix                                  

Eigth row of the Jacobian matrix                                  

Thus, matrices A ad B of the linearized model of the electric propulsion system are given by

B=g(x)

A=
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4. Design of the H-infinity feedback controller

At every time instant the control input is assumed to differ from the control input

appearing above by an amount equal to , that is

The dynamics of the system of Eq. can be also written in

the form

and by denoting as an aggregate disturbance term one obtains

By subtracting Eq. from Eq. one has

By denoting the tracking error as and the aggregate disturbance term as

the tracking error dynamics becomes

The state vector notation x is used for the model of Eq. 17

16

19

20

18 20

21

22

18
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Example 3: Nonlinear control and state estimation using approximate linearization

4. Design of the H-infinity feedback controller

The initial model of the electric ship propulsion system assumed to be in the form

Linearization of the system is performed at each iteration of the control algorithm round its

present operating point

The linearized equivalent of the system is described by

where matrices 𝐴 and 𝐵 are obtained from te computation of the Jacobians

and vector 𝑑 denotes disturbance terms due to linearization errors.

The problem of disturbance rejection for the linearized model that

is described by

23
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Example 3: Nonlinear control and state estimation using approximate linearization

4. Design of the H-infinity feedback controller

where cannot be handled efficiently if the classical LQR

control scheme is applied. This because of the existence of the perturbation term 𝑑.

In the 𝐻∞ control approach, a feedback control scheme is designed for setpoints

tracking by the system’s state vector and simultaneous disturbance rejection, considering

that the disturbance affects the system in the worst possible manner

The disturbances’ effect are incorporated in the following quadratic cost function

The coefficient 𝑟 determines the penalization of the control input and the weight

coefficient 𝜌 determines the reward of the disturbances’ effects. It is assumed that

Then, the optimal feedback control law is with

where 𝑃 is a positive semi-definite symmetric matrix which is obtained

from the solution of a Riccati equation of the form

where Q is also a positive definite symmetric matrix.

Parameter ρ in Eq. (25), is an indication of the closed-loop system robustness. If the

values of ρ> 0 are excessively decreased with respect to r, then the solution of the Riccati

equation is no longer a positive definite matrix. Consequently, there is a lower bound ρmin

of for which the H-infinity control problem has a solution.

24

25
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Example 3: Nonlinear control and state estimation using approximate linearization

5. Lyapunov stability analysis

The tracking error dynamics for the electric ship propulsion system is written in the form

where in the electric ship propulsion system 𝐿 = 𝐼 ∈ 𝐼8𝑥8 with I being the identity matrix.

The following Lyapunov function is considered

T

26

27

where is the tracking error. By differentiating with

respect to time one obtains
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Example 3: Nonlinear control and state estimation using approximate linearization

5. Lyapunov stability analysis

The previous equation is rewritten as

Assumption: For given positive definite matrix Q and coefficients r and ρ there exists a

positive definite matrix P, which is the solution of the following matrix equation

Moreover, the following feedback control law is applied to the electric ship

propulsion system

By substituting Eq. and Eq. one obtains

28

29

28 29
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5. Lyapunov stability analysis

Continuing with computations one obtains

which next gives

or equivalently

Lemma: The following inequality holds

30
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Example 3: Nonlinear control and state estimation using approximate linearization

5. Lyapunov stability analysis

Proof : The binomial is considered. Expanding the left part of the above inequality

one gets

The following substitutions are carried out:

and the previous relation becomes

Eq. is substituted in Eq. and the inequality is enforced, thus giving

Eq. shows that the H-infinity tracking performance criterion is satisfied.

The integration of from 0 to T gives𝑉
•

31

31 30

32

32
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Example 3: Nonlinear control and state estimation using approximate linearization

5. Lyapunov stability analysis

Moreover, if there exists a positive constant                    such that

then one gets

Thus, the integral is bounded.

According to the above and with the use of Barbalat’s Lemma

one obtains:

Moreover, V(T) is bounded and from the definition of the Lyapunov function V it becomes

clear that e(t) will be also bounded since

33
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Example 3: Nonlinear control and state estimation using approximate linearization

The H-infinity KF is an optimal state estimator under model uncertainty and

perturbations and thus its use under the variable operating conditions of the electric hop

propulsion system is advantageous

The H-infinity KF is addressed to linear systems and to use it in the model of the electric ship

propulsion, the previously analyzed approximate linearization. was applied

6. State estimation with the H-infinity Kalman Filter

Fig. 2 Diagram of the H-infinity Kalman Filter comprising a time-update part and a

measurement update part

y(k) becomes 

available
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● The recursion of the H-infinity Kalman Filter, for the electric ship propulsion system,

can be formulated in terms of a measurement update and a time update part

where it is assumed that parameter θ is sufficiently small to assure

that matrix

Measurement

update

Time

update

is positive definite

-1

20

21

● By dynamically updating the elements of the process noise covariance matrix Q and

of the measurement noise covariance matrix R the functioning of the filter under

variable noise levels is ensured

6. State estimation with the H-infinity Kalman Filter
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Fig. 3 The sequence of computations that constitute the H-infinity Kalman Filter. 

The H-infinity Kalman Filter exhibits advantages against other nonlinear filters

EKF is not robust enough against linearization errors and measurement noise.

UKF methods are not of proven convergence and stability.

PF demands high computation power and has slow convergence

6. State estimation with the H-infinity Kalman Filter
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Example 3: Nonlinear control and state estimation using approximate linearization

7. Simulation tests

• The performance of the proposed nonlinear H-infinity control scheme for the electric ship

propulsion system is tested through simulation:

With the use of the H-infinity control method, fast and accurate tracking of the reference 

setpoints of the state variables of the electric ship propulsion system was achieved

Fig.4 Diagram of the nonlinear optimal control for the electric ship propulsion system
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Example 3: Nonlinear control and state estimation using approximate linearization

7. Simulation tests

Tracking performance of the electric ship propulsion system in case of setpoint 1:

Fig. 5(a) Convergence of the

rotational speed of the propeller

and of the rotational speed of the

induction motor to the reference

setpoints.

Fig. 5(b) Control inputs u1, u2

and u3 applied to the

propulsion system
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Example 3: Nonlinear control and state estimation using approximate linearization

7. Simulation tests

Tracking performance of the electric ship propulsion system in case of setpoint 2:

Fig. 6(a) Convergence of the

rotational speed of the propeller

and of the rotational speed of the

induction motor to the reference

setpoints.

Fig. 6(b) Control inputs u1, u2

and u3 applied to the

propulsion system
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Example 3: Nonlinear control and state estimation using approximate linearization

7. Simulation tests

Tracking performance of the electric ship propulsion system in case of setpoint 3:

Fig. 7(a) Convergence of the

rotational speed of the propeller

and of the rotational speed of the

induction motor to the reference

setpoints.

Fig. 7(b) Control inputs u1, u2

and u3 applied to the

propulsion system
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Example 3: Nonlinear control and state estimation using approximate linearization

7. Simulation tests

Tracking performance of the electric ship propulsion system in case of setpoint 4:

Fig. 8(a) Convergence of the

rotational speed of the propeller

and of the rotational speed of the

induction motor to the reference

setpoints.

Fig. 8(b) Control inputs u1, u2

and u3 applied to the

propulsion system
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7. Simulation tests

Tracking performance of the electric ship propulsion system in case of setpoint 5:

Fig. 9(a) Convergence of the

rotational speed of the propeller

and of the rotational speed of the

induction motor to the reference

setpoints.

Fig. 9(b) Control inputs u1, u2

and u3 applied to the

propulsion system
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Variations of the elements of the drift vector f(x) when tracking setpoint 4 and 5:

Fig. 10(a) Drift vector elements

fi(x) when tracking setpoint 4.

Fig. 10(b) Drift vector

elements fi(x) when tracking

setpoint 4.

7. Simulation tests
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Example 3: Nonlinear control and state estimation using approximate linearization

8. Conclusions

• Electric propulsion schemes are widely used in USVs and AUVs. Such propulsion

schemes may comprise synchronous or asynchronous (induction) motors which

finally provide rotational motion to propellers

• A nonlinear optimal (H-infinity) control method has been proposed for electric ship

propulsion systems, comprising a three-phase induction motor, a drivetrain and a

propeller.

• The dynamic model of the propulsion system has undergone approximate

linearization around a temporary operating point that was redefined at each iteration

of the control method.

• The linearization procedure relied on Taylor series expansion and

on the computation of the associated Jacobian matrices.

• For the approximately linearized model of the propulsion system,

an optimal (H-infinity) feedback controller has been designed.

• This control represents the solution to a min-max differential game in which the

controller tries to minimize a quadratic cost function of the state vector’s error whereas

the model uncertainty and external perturbation terms try to maximize this cost

functional.
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8. Conclusions

• The stability properties of the control scheme have been proven

through Lyapunov analysis.

• First, it has been demonstrated that the control loop of the propulsion system

satisfies the H-infinity tracking performance, which signifies elevated robustness

against parametric uncertainty and exogenous disturbances.

• Moreover, conditions have been provided under which the control

loop is globally asymptotically stable.

• To implement state estimation-based control through the measuring of small

number of state variables, the H-infinity Kalman Filter has been used as a robust

state estimator.

• The proposed nonlinear optimal control scheme avoids complicated state-space

transformations for the propulsion system, as well as the singularity problems that can

be met in global linearization-based control methods

• The proposed control method retains the known advantages of linear optimal

control, that is fast and accurate tracking of reference setpoints under moderate

variations of the control inputs
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• A nonlinear control method for turbocharged Diesel engines is developed with the use of

Differential flatness theory and adaptive fuzzy control.

• It is shown that the dynamic model of the turbocharged Diesel engine is differentially flat

and admits dynamic feedback linearization. It is also shown that this dynamic model can be

written in the linear Brunovsky canonical form for which a state feedback controller can be

easily designed.

• To compensate for modeling errors and external disturbances an adaptive fuzzy control

scheme is implemented making use of the transformed state-space description of the diesel

engine that is obtained through the application of differential flatness theory.

• Since only the system’s output is measurable the complete state

vector has to be reconstructed with the use of a state observer.

• It is shown that a suitable learning law can be defined for neuro-fuzzy approximators, which

are part of the controller, so as to preserve the closed-loop system stability.

• With the use of Lyapunov stability analysis it is proven that the proposed

observer-based adaptive fuzzy control scheme results into H-infinity tracking

performance and finally into global stability.

1. Control of turbocharged ship diesel engines



Nonlinear control and filtering for USVs and AUVs

Example 4: Nonlinear control and state estimation using Lyapunov methods

93

2. Dynamic model of the Diesel engine

The basic parameters of the Diesel engine are:

(i) Gas pressure in the intake manifold

(ii) Gas pressure in the exhaust manifold

(iii) Turbine power

(iv) Compressor power

Additional variables of importance are

which is the compressor’s mass flow rate

which is the intake manifold temperature

which is the exhaust manifold temperature

which is the turbine mass-flow rate

which is the exhaust gas recirculation flow rate

𝑝1
𝑝2

𝑃𝑡
𝑃𝑐

Four-stroke cycle of an internal 

combustion diesel engine

𝑊𝑐

𝑇1

𝑇2

𝑊𝑡

𝑊𝐸𝐺𝑅
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2. Dynamic model of the Diesel engine

The basic relations of the Diesel-engine’s dynamics are:

The control inputs to this model are:

(i) The exhaust-gas recirculation (EGR) flow rate

(ii) The turbine’s mass flow rate

𝑢1 = 𝑊𝐸𝐺𝑅

𝑢2 = 𝑊𝑡

Moreover, it holds that:

The description of the Diesel engine in state-space form is given by:

where:
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2. Dynamic model of the Diesel engine

The output variables of the Diesel engine model are:

Fig.1 : Diagram of the turbocharged Diesel engine

Exhaust Gas
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3. Lie algebra-based control 

Dynamic  feedback linearization is applied to the Diesel engine’s model:

The state vector of the system is extended by considering as additional state variables

the control inputs

The transformed control inputs which appear in the linearized equivalent of the system are

functions of not only the initial control variables but also of their derivatives

The control inputs to the linearized model of the Diesel engine become:

The extended state vector of the diesel engine becomes:

The control inputs which are finally exerted on the system contain an

integral action:
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3. Lie algebra-based control 

The extended state-space description of the Diesel engine becomes:

Consequently, in matrix form one has:

The system’s outputs are chosen to be:
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3. Lie algebra-based control 

Linearization of the system’s dynamics is performed using the following state variables:

and equivalently:

After intermediate computations one obtains:

and

and also
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3. Lie algebra-based control 

In a similar manner one obtains:

and also

and
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3. Lie algebra-based control 

Thus, after the change of coordinates the following description of the system is obtained

which is also written in the state-space form

or also in the more compact form

••
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3. Lie algebra-based control 

Moreover, by defining the control inputs

the system’s description comes to the following canonical form:

The selection of the state feedback control law, which assures elimination of the tracking 

error is:

The control input that is finally exerted to the system is:
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4. Nonlinear control of the diesel engine using differential flatness theory

The results about dynamic state feedback system linearization can be obtained with the

computation of time derivatives and differential flatness theory. The following differentially

flat system outputs are considered

The dynamics of the extended system are:

It holds that therefore:

which means that variable x3 is also a function of the flat output and its derivatives.
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4. Nonlinear control of the diesel engine using differential flatness theory

Moreover, from the first row of the state-space equations one obtains:

which means that variable x4 is also a function of the flat output and its derivatives.

Additionally, from the fourth row of the state-space equations one obtains:

This means that the control input v1 is also a function of the flat output and its derivatives.

Similarly, from the third row of the state-space equations one has:
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4. Nonlinear control of the diesel engine using differential flatness theory

while, from the second row of the state-space equations one obtains:

Therefore, all state variables of the system and the control inputs can be written as

functions of the flat output and its derivatives. Therefore, the system of the diesel engine

is differentially flat and can be subjected to dynamic feedback linearization.

Next, by considering the flat outputs and by differentiating with respect to time one obtains:

By differentiating once more with respect to time one gets:
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4. Nonlinear control of the diesel engine using differential flatness theory

In a similar manner one has:

while by differentiating once more with respect to time one obtains:

Thus one arrives at a representation of the system’s dynamics that is

analogous to the one obtained by applying the Lie algebra-based

approach:
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4. Nonlinear control of the diesel engine using differential flatness theory

where:

and

and also:

and

The design of the state feedback controller proceeds as in case of linearization

with the use of Lie algebra-based computations



Nonlinear control and filtering for USVs and AUVs

107

Example 4: Nonlinear control and state estimation using Lyapunov methods

5. Flatness-based adaptive neurofuzzy control for MIMO nonlinear systems

5.1. Transformation of MIMO nonlinear systems into the Brunovsky form

It is assumed now that after defining the flat outputs of the initial MIMO nonlinear system, and

after expressing the system state variables and control inputs as functions of the flat output and of

the associated derivatives, the system can be transformed in the Brunovsky canonical form

: is the state vector

: is the inputs vector

: is the outputs vector
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5. Flatness-based adaptive neurofuzzy control for MIMO nonlinear systems

5.1. Transformation of MIMO nonlinear systems into the Brunovsky form

Next the following vectors and matrices can 

be defined

Thus, the initial nonlinear system can be written

in the  state-space form 

or equivalently in the state space form

where 𝑣 = 𝑓(𝑥) + 𝑔(𝑥)𝑢

For the case of the MIMO diesel engine model

it is assumed that the functions         and         are

unknown and have to be approximated by neuro-

fuzzy networks  

𝑓(𝑥) = [𝑓1(𝑥), . . . , 𝑓𝑛(𝑥)]
𝑇

𝑔(𝑥) = [𝑔1(𝑥), . . . , 𝑔𝑛(𝑥)]
𝑇

with 𝑔𝑖(𝑥) = [𝑔1𝑖(𝑥), . . . , 𝑔𝑝𝑖(𝑥)]𝑇

𝐴 = 𝑑𝑖𝑎𝑔[𝐴1, . . . , 𝐴𝑝], 𝐵

= 𝑑𝑖𝑎𝑔[𝐵1, . . . , 𝐵𝑝]

𝐶𝑇 = 𝑑𝑖𝑎𝑔[𝐶1, . . . , 𝐶𝑝], 𝑑

= [𝑑1, . . . , 𝑑𝑝]
𝑇

where matrix A has the MIMO canonical form,

i.e. with elements

𝐴𝑖 =

0 1 0 . . . 0
0 0 1 . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . 1
0 0 0 . . . 0 𝑟𝑖×𝑟𝑖

𝐵𝑖
𝑇 = [0 0 . . . 0 1]1×𝑟𝑖

𝑥
•
= 𝐴𝑥 + 𝐵[𝑓(𝑥) + 𝑔(𝑥)𝑢 + 𝑑

~

]
𝑦 = 𝐶𝑥

𝑥
•
= 𝐴𝑥 + 𝐵𝑣 + 𝐵𝑑

~

𝑦 = 𝐶𝑥

𝑓(𝑥) 𝑔(𝑥)
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5. Flatness-based adaptive neurofuzzy control for MIMO nonlinear systems

5.1. Transformation of MIMO nonlinear systems into the Brunovsky form

Thus, the nonlinear system can be written in state-space form

which  equivalently 

can be written as

The reference setpoints for the system’s outputs 

where

are denoted as and the associated tracking errors are defined as 

The error vector of the outputs of the transformed MIMO system is denoted as
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5. Flatness-based adaptive neurofuzzy control for MIMO nonlinear systems

5.2. Control law

The control signal of the MIMO nonlinear system contains the unknown nonlinear functions

f(x) and g(x) which can be approximated by

where

thus giving

while the weights vector is defined as
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5. Flatness-based adaptive neurofuzzy control for MIMO nonlinear systems

5.2. Control law

Similarly, it holds

thus giving

while the weights vector is defined as

However, here each row of       is vector thus giving

If the state variables of the system are available for measurement then a state-feedback

control law can be formulated as
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5. Flatness-based adaptive neurofuzzy control for MIMO nonlinear systems

5.2. Estimation of the state vector

The control of the system which has been described in the canonical form becomes more

complicated when the state vector x is not directly measurable and has to be reconstructed

through a state observer. The following definitions are used

When an observer is used to reconstruct the state vector, the control law

is the error of the state vector

is the error of the estimated state vector

is the observation error

By applying the previous feedback control law one obtains the closed-loop dynamics

It holds

and  by substituting           in the previous tracking error dynamics gives
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5. Flatness-based adaptive neurofuzzy control for MIMO nonlinear systems

5.2. Estimation of the state vector

the new tracking error dynamics

or equivalently

where

and equivalently

with

with

A state observer is designed as: 

A

B
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6. Application of adaptive fuzzy control to the MIMO diesel engine model

6.1. Differential flatness of the diesel engine

By applying differential flatness theory, and in the presence of

disturbances, the dynamic model of the Diesel engine comes to the form

The following control input is defined:

where: is a robust control term that is used for the compensation of the model’s

uncertainties as well as of the external disturbances

and: is the feedback gain

Substituting the control input into the system C

C

D

D one obtains
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6. Application of adaptive fuzzy control to the MIMO diesel engine model

6.1. Differential flatness of the diesel engine

Moreover, using again Eq.           one obtains the tracking error dynamicsD

The approximation error is defined as:

Using matrices A,B,K, and considering that the estimated state vector is used in the

control loop the following description of the tracking error dynamics is obtained:

When the estimated state vector is used in the loop the approximation error is written as

while the tracking error dynamics becomes

Example 4: Nonlinear control and state estimation using Lyapunov methods
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6. Application of adaptive fuzzy control to the MIMO diesel engine model

6.2. Dynamics of the observation error

The observation error is defined as:

By subtracting Eq. from Eq. one obtains:B A

or equivalently:

which can be also written as:

Example 4: Nonlinear control and state estimation using Lyapunov methods
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6. Application of adaptive fuzzy control to the MIMO diesel engine model

6.3. Approximation of functions f(x,t) and g(x,t)

Next, the first of the approximators of the unknown system dynamics is defined

containing kernel functions

where are fuzzy membership functions

appearing in the antecedent part of the l-th fuzzy rule 
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6. Application of adaptive fuzzy control to the MIMO diesel engine model

6.3. Approximation of functions f(x,t) and g(x,t)

The variation ranges for the weights are given by

The value of the approximation error that corresponds to the optimal values of the

weights vectors is

Similarly, the second of the approximators of the unknown system dynamics is defined

The values of the weights that result in optimal approximation are
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6. Application of adaptive fuzzy control to the MIMO diesel engine model

6.3. Approximation of functions f(x,t) and g(x,t)

which can be also written in the following form

with

and

Moreover, the following weights error vectors are defined

which is next written as
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7. Lyapunov stability analysis

The following Lyapunov function is considered: 

The selection of the Lyapunov function is based on the following principle

of indirect adaptive control

this results

into

By deriving the Lyapunov function with respect to time one obtains:
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7. Lyapunov stability analysis

The equation is rewritten as:

which finally takes the form:

Assumption 1: For given positive definite matrices Q1 and Q2 there exist positive definite

matrices P1 and P2, which are the solution of the following Riccati equations
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7. Lyapunov stability analysis

By substituting the conditions from the previous Riccati equations into the derivative of the

Lyapunov function one gets:

or:

The supervisory control term consists of two terms:

is an control used for the compensation of the approximation error and the additive

disturbance (the control term has been chosen so as to satisfy the condition

is a control used for the compensation of the observation error (the control term has

been chosen so as to satisfy the condition

𝐻∞
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7. Lyapunov stability analysis

The control scheme is depicted in the following diagram

Substituting the supervisory control term in the derivative of the Lyapunov function gives:
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7. Lyapunov stability analysis

or equivalently

Besides, about the adaptation of the weights of the neurofuzzy network it holds

and also

By substituting the above relations in the derivative of the Lyapunov function one obtains

or
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7. Lyapunov stability analysis

Taking into account that

one gets

Since

it holds

Therefore, one finally obtains

Next, the following approximation error is defined
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7. Lyapunov stability analysis

Thus, one obtains

Denoting the aggregate approximation error and disturbances vector as

the derivative of the Lyapunov function becomes

which in turn is written as

Lemma: The following inequality holds
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Proof: 

7. Lyapunov stability analysis

The binomial is considered. Expanding the left part of the above

inequality one gets

By substituting one gets

Moreover, by substituting the above inequality into the derivative of the Lyapunov

function one gets

which is also written as

with
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7. Lyapunov stability analysis

Hence, the performance criterion is derived. For sufficiently small the inequality will

be true and the tracking criterion will be satisfied. In that case, the integration of ˙V from 0

to T gives

It is assumed that there exists a positive constant such that

Therefore for the integral one gets

Thus, the integral is bounded and according to Barbalat’s Lemma
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8. Simulation tests

The performance of the proposed observer-based adaptive fuzzy MIMO controller was tested

in the MIMO nonlinear model of the turbocharged Diesel engine

The fuzzy rule base used for the approximation of the unknown dynamics of the diesel engine

comprised 81 rules

(a) Tracking of set-point 1 by the state

variables z of the transformed model

(b) Tracking of set-point 1 by the state

variables x of the initial model
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8. Simulation tests

(a) Tracking of set-point 2 by the state

variables z of the transformed model

(b) Tracking of set-point 2 by the state

variables x of the initial model

(a) Tracking of set-point 3 by the state

variables z of the transformed model

(b) Tracking of set-point 3 by the state

variables x of the initial model
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8. Simulation tests

(a) Tracking of set-point 4 by the state

variables z of the transformed model

(a) Tracking of set-point 4 by the state

variables z of the transformed model

(b) Tracking of set-point 5 by the state

variables x of the initial model
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8. Simulation tests

It can be observed that the proposed adaptive fuzzy control scheme achieved fast and

accurate tracking of all these setpoints..

The RMSE (root mean square error) of the examined control loop is also calculated (assuming

the same parameters of the controller) in the case of tracking of the previous setpoints 1 to 5.

The results are summarized in Table I. From the simulation diagrams it can be confirmed that

the transient characteristics of the control scheme are also quite satisfactory

The simulation tests confirmed the disturbance rejection capability of the control loop.

No prior knowledge of the diesel engine’s dynamics was required.
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9.  Conclusions

• It has been shown that the extended state-space model of the turbocharged diesel

engine admits dynamic feedback linearization and that by applying differential flatness

properties it can be transformed into the MIMO canonical (Brunovsky) form..

• The nonlinear terms which appear in the transformed control inputs contained unknown

parameters and had to be approximated with the use of neuro-fuzzy networks.

• Moreover, since only the system’s output is measurable the complete

state vector had to be reconstructed with the use of a state observer.

• It has been shown that a suitable learning law can be defined for the aforementioned

neuro-fuzzy approximators so as to preserve the closed-loop system stability.

• With the use of Lyapunov stability analysis it has also been proven that the proposed

observer-based adaptive fuzzy control scheme results in p tracking performance, while

global stability has been also proven

• For the design of the observer-based adaptive fuzzy controller one had to solve two Riccati

equations, where the first one was associated with the controller and the second one was

associated with the observer
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V. Final conclusions

● Methods of nonlinear control and state estimation for optimized

propulsion in USVs and AUVs have been developed

● The main approaches for nonlinear control have been: (i) control with global linearization

method (ii) control with approximate (asymptotic) linearization methods (iii) control with

Lyapunov theory methods (adaptive control) in case that the model of the propulsion

system of the USVs and AUVs is unknown

● The main approaches for nonlinear state estimation are: (i) nonlinear state estimation with

methods of global linearization (ii) nonlinear state estimation with methods of approximate

(asymptotic) linearization
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