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Differential flatness properties and  control of distributed parameter systems in finance

• Pricing of commodities (e.g. oil, carbon, mining products, electric power, agricultural

crops, etc.) is vital for the majority of transactions taking place in financial markets. A

method for feedback control of commodities pricing dynamics is developed.

• The PDE model of the commodities price dynamics is shown to be equivalent to a

multi-asset Black-Scholes PDE. Actually it is a diffusion process evolving in a 2D assets

space, where the first asset is the commodity’s spot price and the second asset is the

convenience yield.

• By applying semi-discretization and a finite differences scheme this multi-asset PDE

is transformed into a state-space model consisting of nonlinear differential equations.

• The controller design proceeds by showing that the state-space model of the

commodities PDE stands for a differentially flat system. Next, for each subsystem

which is related to a nonlinear ODE, a virtual control input is computed, that can invert

the subsystem’s dynamics and can eliminate the tracking error.

• From the last row of the state-space description, the control

input (boundary condition) that is actually applied to the

multi-factor commodities’ PDE system is found.

• By showing the feasibility of such a control method it is also proven that through

selected purchase and sales during the trading procedure the price of the negotiated

commodities can be made to converge and stabilize at specific reference values.

1. Outline
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2. The Commodities Price PDE

• A pricing approach in long-term contracts is based on the use of the commodities

price PDE

• In the two-factor model the distribution of the commodity’s price                   is now 

dependent on two variables, where the first one is the sport price of the commodity     and 

the second is the so-called convenience yield      or long-term price.

Now the variation of and is described by the stochastic processes

1

2

where the increments to standard Brownian motion which are

correlated with

. Defining again                  and applying Ito’s Lemma the process for the log price becomes

3

• Advanced pricing models for commodities are not only based on the spot pricing 

approach but reflect the dynamics of prices within long-term contracts

• This dynamics can be expressed either in the form of stochastic differential equations

or equivalently in the form of partial differential equations (PDEs)
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The stochastic processes for the underlying factors, that is the spot price and the 

convenience yield can be also written as

2. The Commodities Price PDE

4

5

6

where is the market price of the convenience yield risk

Futures prices then can be equivalently computed from the solution of the following partial 

differential equation, which stands for the 2-factor PDE model of the commodities price

7

The analytical solution of this PDE model is given by

where
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3. Boundary control of the multi-factor commodities price PDE

Next, the multi-asset Black-Scholes PDE is introduced

8

Moreover, without loss of generality the two-asset Black-Scholes PDE is considered

9

The above 2-asset Black-Scholes PDE is shown to be equivalent to the 2-factor 

commodities price PDE that was described in Eq. 7

This is demonstrated through the change of variables                 that is        is equal to the 

spot price,                that is         is equal to the convenience yield and after the 

coefficients of the three last partial derivative terms appearing in the right of Eq. (9)   are 

suitably modified to arrive at the form:

10
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Semi-discretization and the finite differences method is applied to the PDE model

of Eq. (10). To this end the partial derivatives appearing in Eq. (9) are computed as

follows

3. Boundary control of the multi-factor commodities price PDE

Using the previous semi-discretization, for grid point (i,j) it holds

11

12

13

14

15

17
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3. Boundary control of the multi-factor commodities price PDE

The boundary conditions of the PDE are taken to be

Considering                             and                              the commodity’s values at the grid points      

are denoted as      .   Using this notation, the semi-discretized model of the PDE 

takes the following form

18

19
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Next, the following state vector variables are defined

3. Boundary control of the multi-factor commodities price PDE

Using this notation of state variables Eq. (18) becomes

20

Thus, by defining the control input associated with the boundary conditions as

and

one obtains
21

Equivalently, one has that
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3. Boundary control of the multi-factor commodities price PDE

22

Eq. (22) can be also written as

23

Eq. (23) can be also written as

where

24
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3. Boundary control of the multi-factor commodities price PDE

and

25

26

Considering that                            and                            there are N2 state-space 

equations. Thus, the dynamics of the PDE model is written as

27
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4. Flatness-based control of the multi-factor commodities price PDE

First, it can be proven that the state-space description of the commodities price 

PDE, given in Eq. (27), is a differentially flat one, with flat output

Solving the           row of the state space model with respect to            one finds that state 

variables            is a differential function of the flat output    . Moreover, from the last row of 

Eq. (27) it holds that       is a function of the flat output and its derivatives. Next, the following 

virtual control inputs are defined

28

Using the virtual control inputs of Eq. (28) in the state-space model of Eq. (27) one gets

29
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4. Flatness-based control of the multi-factor commodities price PDE

By examining independently each nonlinear ODE of the previous state-space description of 

Eq. (29) and by defining as local flat output for the i-th ODE the state variable          it can be 

shown that the  i-th row of the state-space description stands again for a differentially flat 

system.

•  Actually, one has now         subsystems, each one of them related to a row of the state-space 

model and the local flat outputs for these subsystems are

30

• From the i-th row of the state-space model it can be seen that the virtual control input        

is a differential function of the local flat output xi, which shows again that the i-th

subsystem, if independently examined, is also differentially flat.

One can find the values that the virtual control inputs          should 

have, so as to eliminate the tracking error for each one of the subsystems \

that are obtained from the per-row  decomposition
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4. Flatness-based control of the multi-factor commodities price PDE

31

32

33

34

35

36

Virtual control inputs stabilizing the commodities price PDE:
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5. Stability analysis of the control loop of the multi-factor commodities price PDE

The dynamics of the multi-factor commodities PDE system has been shown to be

37

38

39

40

41

From Eq. and Eq. one gets4136

42
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5. Stability analysis of the control loop of the multi-factor commodities price PDE

43

From Eq. and Eq. one gets4035

44

45

This procedure is also applied to the rest of the rows of the

PDE’s state-space description
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5. Stability analysis of the control loop of the multi-factor commodities price PDE

From Eq. and Eq. one gets3934
46

47

From Eq. and Eq. one gets3833

48
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5. Stability analysis of the control loop of the multi-factor commodities price PDE

49

From Eq. and Eq. one gets3732

50

51

Through this procedure, it is proven that the tracking error for the individual control 

loops into which the PDE model is decomposed converges asymptotically to 0. 
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From the previous analysis one can also demonstrate the stability of the control loop

by applying the Lyapunov method. It holds that

5. Stability analysis of the control loop of the multi-factor commodities price PDE

52

The following Lyapunov function is defined

Setting, the first derivative of this Lyapunov function is

53

54

The above result confirms the asymptotic stability of the multi-factor commodities price PDE 

control loop,that has been based on differential flatness theory.
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6. Simulation tests

The numerical simulation experiments have confirmed the theoretical findings. It has been 

shown that by applying the proposed control method, the multi-factor commodities PDE 

dynamics can be modified so as to converge to the desirable reference setpoints. 

Fig. 1 Setpoint 1: Tracking of reference 

setpoint (dashed red line) by the PDE 

system (blue line) at the final grid point

Fig. 2 Setpoint 2: Tracking of reference 

setpoint (dashed red line) by the PDE 

system (blue line) at the final grid point
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The control input that succeeds stabilization of the Commodities Price PDE has a

moderate range of variation. The accuracy of tracking of the reference setpoints was quite

satisfactory.

6. Simulation tests

Fig. 3 Setpoint 3: Tracking of reference 

setpoint (dashed red line) by the PDE 

system (blue line) at the final grid point

Fig. 4 Setpoint 4: Tracking of reference 

setpoint (dashed red line) by the PDE 

system (blue line) at the final grid point
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The proposed method shows that stabilization of financial systems dynamics is

possible through feedback control

6. Simulation tests

Fig. 5 Setpoint 5: Tracking of reference 

setpoint (dashed red line) by the PDE 

system (blue line) at the final grid point

Fig. 6 Setpoint 6: Tracking of reference 

setpoint (dashed red line) by the PDE 

system (blue line) at the final grid point
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8. Conclusions

• The Commodities Price PDE has been shown

to be equivalent to a multi-asset 2D Black-Scholes PDE.

• Following semi-discretization and a finite differences scheme, the Commodities

Price PDE model has been decomposed into an equivalent set of nonlinear ordinary

differential equations (ODEs) and a state-space model has been obtained.

• Next, it has been proven that each one of the aforementioned ODEs stands for a

differentially flat subsystem. This enables to compute for each ODE subsystem a virtual

control input which linearizes its dynamics and eliminates the output’s tracking error.

• From the state equations that constitute the last subsystem one can find the boundary

condition that also stands for the control input to the Commodities Price PDE model.

• To compute the boundary control input of the Commodities Price PDE model one has

to use recursively all virtual control inputs which are applied to the previously mentioned

ODE subsystems. The computation of control inputs moves from the last to the first ODE.

• Consequently, by tracing the rows of the state-space model backwards, the boundary

control input that stabilizes the Commodities Price PDE is obtained.

• The asympotic stability of the control method has been proven.


