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1. Outline

® The functioning of nonlinear dynamical systems in real conditions is characterized by
model uncertainty, parametric changes and external perturbations.

® Control schemes must perform simultaneously identification and stabilization of such
uncertain dynamics.

® This is a dual optimization problem since modelling errors and deviation of the

system’s state vector elements from the associated setpoints have to be minimized in
real-time.

® To achieve these objectives an initial transformation

(diffeomorphism) of the system’s dynamic model
to an equivalent linearized form, is proposed.

® The transformed control inputs consist of unknown

nonlinear functions which are identified with the use of
nonlinear regressors.

® Learning in such networks is performed through gradient algorithms in which the

adaptation rate (step for the search of an optimum) is defined by conditions for the
minimization of an aggregate energy function (Lyapunov function). 2



New approaches to gradient-based optimization: Applications to robotics and to electric power systems

1. Outline

* In each iteration of the control algorithm, the estimates of the nonlinear functions
that constitute the system’s dynamics are fed into a state feedback controller.

* It has been proven that this control approach assures the minimization of the
aforementioned energy function and thus the nonlinear system becomes a
globally asymptotically stable one.

» The proposed method can be applied to all dynamical systems which satisfy the
differential flatness property.

* This is the widest class of nonlinear dynamical systems to which one can apply
optimization and control with gradient methods, while assuring the convergence
of the optimization procedure and the stability of the control loop.

» The efficiency of the proposed optimization-based
modelling and control approach has been confirmed in several
test cases, concerning complex nonlinear dynamical systems

* In particular, the method has been applied to several
electromechanical systems, including robotic systems
and electric power generation systems
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2. Differential flathess of MIMO nonlinear systems

» Differential flatness theory has been developed as a global linearization control

method by M. Fliess (Ecole Polytechnique, France) and co-researchers (Lévine, Rouchon,
Mounier, Rudolph, Petit, Martin, Zhu, Sira-Ramirez et. al)

- A dynamical system can be written in the ODE form  S;(w,w,w,..,w"), i=12,...,q

where w() stands for the i-th derivative of either a state vector element or of a control input

» The system is said to be differentially flat with respect to the flat output

yi :¢(W,V.V,\./;I,.,_’W(a) )’ i:]_’“_’m where y:(y]_,yz,...,ym) ,,1 ;

if the following two conditions are satisfied

o -

(i) There does not exist any differential relation of the form

R(Y, Y, Yo YP)) =0

which means that the flat output and its derivatives are linearly
independent

(ii) All system variables are functions of the flat output and its
derivatives

w® =y (y,y,y,..., y7)
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2. Differential flathness of MIMO nonlinear systems

The proposed optimization-based control method is based on the
transformation of the nonlinear system’s model into the linear canonical
form, and this transformation is succeeded by exploiting the system’s
differential flatness properties

 All single input nonlinear systems are differentially flat and
can be transformed into the linear canonical form

One has to define also which are the MIMO nonlinear systems
which are differentially flat.

» Differential flatness holds for MIMO nonlinear systems that admit static feedback
linearization.and which can be transformed into the linear canonical form through a change
of variables (diffeomorphism) and feedback of the state vector.

« Differential flatness holds for MIMO nonlinear models that admit dynamic feedback
linearization, This is the case of specific underactuated robotic models. In the latter
case the state vector of the system is extended by considering as additional flat outputs some
of the control inputs and their derivatives

 Finally, a more rare case is the so-called Liouvillian systems. These are systems for which
differential flatness properties hold for part of their state vector (constituting a flat subsystem)
while the non-flat state variables can be obtained by integration of the elements of the
flat subsystem. S
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3. State-space modelling of MIMO nonlinear systems

3.1. Transformation of MIMO nonlinear systems into the Brunovsky form

The initial MIMO nonlinear system is taken to be in the generic form:
x = f(x,u)

It is assumed now that after defining the flat outputs of the initial MIMO nonlinear system, and
after expressing the system state variables and control inputs as functions of the flat output and of
the associated derivatives, the system can be transformed in the Brunovsky canonical form

1 = g
W = @
: ’ h =&
ﬁlﬁhi_‘l == m.!,v.i yﬂ == mf"‘i—i
By = f‘l'[ﬁ} =t Zi'j:-lﬁi;.:'[ﬁ}ﬁj + 4
Yo = mﬁ-—ﬁ"?:,+1

meﬂ-i-l—i = m-:-'-1-|—2
g 3 = Wy -3

Tpol = Hp

& = fple) + E?=19w{m:'“j + d,

i = [y, , @) 1S the state vector

= ['E-'Jq,. e ;.%]T . Is the inputs vector

y=[wm, - ,z|T :isthe outputs vector ©
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3. State-space modelling of MIMO nonlinear systems

3.1. Transformation of MIMO nonlinear systems into the Brunovsky form

Next the following vectors and matrices can Thus, the initial nonlinear system can be written

be defined in the state-space form
F)=[f(x), . I . _
009 =[0:(X), ... gn(X)]T X=Ax+B[f(X)+g(X)u+d]
with 9,00 = (03 (9, s 93 (T =
A=diag[A,... Ay], B=diag[B,...,By]
cT = diag[Cy,...,C ], d =[d11---’dp]T or equivalently in the state space form

X=Ax+Bv+Bd
where matrix A has the MIMO canonical form, y = Cx
l.e. with elements

O 1 0 .. O where V= f (X) + g(X)U
0 1 0
A=l e For the generic case of the MIMO nonlinear system
000 ..1 it is assumed that the functions f (X) and 9(X) are
i 0 rxr unknown and have to be approximated by nonlinear

T regressors (e.g. neuro-fuzzy networks)
Bi =[0 0 .. 0 1y Ci=[t 0 .. 0 O], 7
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3. State-space modelling of MIMO nonlinear systems

3.1. Transformation of MIMO nonlinear systems into the Brunovsky form

Thus, the nonlinear system can be written in state-space form
&= Aw+ B[f(e) + g{e) 2t d]

y =
which equivalently &= Ae+ Bo+ Bd where v = fle) + gledw
can be written as y=CTg
The reference setpoints for the system’s outputs L5 PR M
are denoted as  #im: ' ¥em  and the associated tracking errors are defined as

&1 = 1 — 1w
Eg = o — o

% = Up — Ypm

B s 5T
@eﬂ=[y1mww%m]T

= (g8, T
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3. State-space modelling of MIMO nonlinear systems

3.2. Control law under measurable state vector

The control signal # = f{#) + gl«)z.  of the MIMO nonlinear system contains
the unknown nonlinear functions f(x) and g(x) which can be approximated by

.I'}{Imf]' =Dr(x)0r,  Ex|8e) = Delx)6;

where T plx)= (ﬁ}{x}@ﬁ{x};--ﬁ?{x})r,
Ex) = (95 (2, 928+ 07 ()
1.1 ‘ 12 1N
e i 1@ 4w -
T | Fe -

I A e ()

while the weights vector is defined as gff — (E}.}ﬂ%}. - g;‘f\{,
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3. State-space modelling of MIMO nonlinear systems

3.2. Control law under measurable state vector
e e
Similarly, it holds ~ ®g(x) = (& { Kt E{x} SER

ﬁ;{.‘-’[} = [: El {I}}tﬁéﬁ{x}} }tﬁéﬁ[;{}j

thus giving % L) fi’;{-’f} %*N{I}
D, (x) = '[-’f} fi’g '[} e g '[}
de : (x) e ;{I} fi’.;*N'[?f}'

while the weights vector is defined as 8, = (8}, 82, .. .88y

However, here each row of Eg Is vector thus giving

gl g ... 8

Eﬁl 351 o BE

.Bg - [ [
1 a2 F

Elw BEW TR -

If the state variables of the system are available for measurement then a state-feedback
control law can be formulated as

&7 (x]6) [- Flx|8s + 3% + Bl et ] 10
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3. State-space modelling of MIMO nonlinear systems

3.2. Control law under non-measurable state vector

The control of the system x = f(x,u) becomes more complicated when the state vector X
IS not directly measurable and has to be reconstructed through a state observer. The following
definitions are used

x—Xm: Isthe error of the state vector

™
|

T
Il

R IS the error of the estimated state vector

§=g—&=(X—Xm — (X—Xm) is the observation error

When an observer is used to reconstruct the state vector, the control law
n_ ¥ T
w= g (&%) [~ FEI8) + o — T84 u
By applying the previous feedback control law one obtains the closed-loop

dynamics

v = 1(2) + ()57 (D)= F(8) + o - KTe ] + oo T
) = fle) + [g(e) — 4(8) + s(&) )5~ (&) [- f{m} g = KTé+u,]+d= 3
P = [#(2) = F(&)]+ [s(e) - 5(8) ]+ HTé+?ae'~z+d
ltholds & = & — @ => " = 2 o8 )

and by substituting 31*-*3' in the previous feedback control loop dynamics gives 11
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3. State-space modelling of MIMO nonlinear systems

3.2. Control law under non-measurable state vector

the tracking error dynamics
o) o) = o) — KT 84w, + [fle) — F(8)]+
+15(=) — §(&)]u+
or equivalently

¢= Ae— BKT &4 Bu, + B{[f(«) — &)+
+[a(w) — §{& ]2+ d} @

=Te
1 T
where i [e s &gt }.55';'] with & [Eia} €5y B4y °
and equivalently &=[&, &, ... &7 with 2 =2 & &, ...

A state observer is designed as:

= Aé— BKT e+ K [e1 — C7

Bo=0%¢ 12
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4. An application example of optimization-based control

4.1. Dynamics of the tracking error

Without loss of generality consider a two-input MIMO system:

By applying differential flatness theory, and in the presence of
disturbances, the dynamic model of the system comes to the form

£y = f‘l{m:-ﬁ:I "l_g'l{m:-ﬂu’"l_ iy
£z = falm, #)+ gole, flu+ & @

The following control input is defined:

i é‘i{ﬂ:- ﬁ:‘ _1{ m? _ .;F'l{m ﬁ:‘ K? et Loy }
Gol, ) mg fﬂ{ﬂ i) K_; Loy
where: [Hrn uﬂj]f is a robust control term that is used for the compensation

of the model’s uncertainties as well as of the external
disturbances

and: & =[8.&,- £ ;. £] isthe feedback gain

Substituting the control input @ into the system @ one obtains

(B~ (EE ) (D)) ()
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4. An application example of optimization-based control

4.1. Dynamics of the tracking error

Moreover, using again Eq. @ one obtains the tracking error dynamics
g1y (A I{.‘-'i':_.f) i J;I I{.‘-'f:_.-.?} gl(x:-"t) i él{x:-f) i ‘Eflr L 2

(é3) i ( Al — ;ﬁ[x, z)) T (gz{x, £ — é’z{x}r}) o (KET et fign T i, 11

The approximation error is defined as: 5

_ f{x}rj—ﬁ{x}ﬂ gl{x%'t:'_-é {I:-Ij' 7
e (_,'é{x:,i'jl . ﬁ{xkfj) % (EE {Ik‘?} - .é;{x:-j})

Using matrices A,B,K, and considering that the estimated state vector is used in the
control loop the following description of the tracking error dynamics is obtained:

Alxt) = Az 1) a(nt) - gk | 5
fé{}f}i’} e jé{i?‘tj) kS (53 \x - éé{i%::') i}

When the estimated state vector is used in the loop the approximation error is written as

_ (A = A& g {x ) — g (%) 3
- (D hE0)+(B6R=a)

while the tracking error dynamics becomes

g =ﬂ£—BKTé+Bu¢—I—B{(

e=Ade—BET6 4L B+ Bw4-Bd
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4. An application example of optimization-based control

4.2. Dynamics of the observation error

=, .‘.

The observation error is defined as: & = S

By subtracting Eq ‘ from Eq@ one obtains:

i— b= Ale— 8+ Bu.+ B{[f (a9 — &0+
+ale, £ — §(# 8wt d) — K ,CT (e - &

E1—§1 ZOTI{E—éjl

or equivalently:
= Ae+ Bu.+ B{[f{e.t) — f{£,8)]+ [o{e, ) — §(&.8)|ut 4} — KL.CTE

gy = TG

which can be also written as:

E=(4d- K,CT\e+ Bu, + Bw+d)

=Tz

15
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4. An application example of optimization-based control

4.3. Approximation of the unknown system dynamics

Next, the first of the approximators of the unknown system dynamics is defined

He) = (fﬂ:ﬁwﬂ bR fi(a]6;) € R“‘”)
fo(#(8s) 4R fo(2l8r) € AP

[T, (44

containing kernel functions  ¢%*(&) = S T o
=1 lly=1pa 05

where #A;:'[ﬁ]' are fuzzy membership functions

appearing in the antecedent part of the I-th fuzzy rule 16
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4. An application example of optimization-based control

4.3. Approximation of the unknown system dynamics

Similarly, the second of the approximators of the unknown system dynamics is defined

- (gi(ﬁmg} pe R §1(8)8,) € R“‘”)

g{m = jg{ﬁm&?} he a1 ﬁz{ﬁmg} c R1x2

The values of the weights that result in optimal approximation are

§ = arg ming en,, [supscu, (F(e) — £(#(87))]
95 = arg ming eno, [SUPser, (9(%) — §(#]9,))]

The variation ranges for the weights are given by

My, = {8;eR™: ||8s||<ms, }
ME'EI {SQERh: ||S§||£m£"g}

The value of the approximation error that corresponds to the optimal
values of the weights vectors is

w = {#(e,8) = f(#187) ) + (gl ¥) - 5(2167)) =

17
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4. An application example of optimization-based control

4.3. Approximation of the unknown system dynamics

which is next written as

w = (#lo1) - Fol8r) + Fol8) - Falep) +
+(ale1) - 5(816,) + 5(218,) - 5(4167)

which can be also written in the following form

with w= (we+uw)

w, = { (=) — F(819:)] + [a(e,t) — §(818,)]}
and
wy = {[F(£187) — F(#[67)] + [6(8, 8) — Slelog)w)

Moreover, the following weights error vectors are defined

8y = 8¢ — 63
and these denote the distance of the weights vectors from the values that provide
optimal model estimation

It will be shown that these weights are updated through a gradient method 18
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5. Convergence proof for the optimization method

The following Lyapunov (energy) function is considered:

V = 3T Pie 1 Pyat 2 876, + 0575, ]

The selection of the Lyapunov function is based on the following principle
of indirect adaptive control

24t this results |
into Ity ) =gl

&0 iy e #(8)
g 1 iMoo &(8) = 2(2).

By deriving the Lyapunov function with respect to time one obtains: -

V= 18T Pé 4 16T Pé+ 12T Py + 12T Pt

!
A s i
+:1878; + Lir[8, 8] =

V=3{4d-BEKT)e+ K,CTe)TPé+ 16TP{{A - BET) 2+ K,CT&)+
+3{(4A - K,CT)e+ Bu.+ Bd+ Bu}' Pt
+12TP (A - K,0T2 4 Bu, 4+ Bd4 Bul+
T

-|-Tii&?}”8f + %ﬁr[ﬂg g, =

19
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5. Convergence proof for the optimization method

The previous equation is rewritten as:

V=1 T{A BEDYT 4 ePCKIV P14 18T P {(A - BK e+ K CTE}+
+ {27 (A - K.CTT + BT+wTET+aITET}Pgé+
12TP (A - K, c’?}e+5uﬂ+5w+5d}+ : E'TS + iw[.ﬁ' i, =
which finally takes the form:
V=14T{4A - BKTYTP, e—l—E%_TCKTPiH
*TP (A—BET e+ L8P, CT et
{A KO Pyed 1{@?4—&: +dT) BT Pyay:
%'TPE{A K, CT}.9-|— i-ETPgE{E&Q—I—w + d)+

+; E'TE;—|— 1t1r~[|5' 3]

h:ill—l-

Assumption 1: For given positive definite matrices Q1 and Q2 there exist positive definite
matrices P1 and P2, which are the solution of the following Riccati equations

(A—BEOVTP 4+ B(A-BEKTY+ @1 =0

e B B P e O
—FB(2 - HIB P4 @ =0

20
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5. Convergence proof for the optimization method

By substituting the relations described by the previous Riccati equations into the derivative
of the Lyapunov function one gets:

V=1T{(A- BEKT)TP 4 Py(A— BEKT) 64+ eTOKT Pié4
+§f“ﬂ—ﬂﬁffﬂ+ﬁﬂﬂ—ﬁﬁﬁﬁﬂ-

+2T Py Bu.+ w+ d) + 1876; + Ler[8, 8,

or. V = —187Q,6+ EFCKTP 6~ 187{Q, — BB(2 - %)BTR}a+

T, 2

v IR, S A,
+& Py Bua+ w d) + 267 85 + (8, 8]
The supervisory control term 1. consists of two terms 1w, and wuy

The first term %4 IS

1
Uy = ——&L PoB + Au,
r

where assuming that the measurable elements of vector € are {61; 3y

21
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5. Convergence proof for the optimization method

The term Ay, Is such that

P11€1 + p13és + - -
_1gTPyB | Au, — 1 | 1381+ Puat o

Pik€1 + P3k€3 +

“s Isan H, control used for the compensation of the approximation error =y and the
additive disturbance 4 (the control term =, has been chosen so as to satisfy the condition

The previoiis relation finally stands for a product between the measurable state vector
elements {€1.€3,° - €k} and the elements of matrix P, which is obtained from the
solution of the previous Riccati equation.

The control term 3 is given by

w = —[(FBY (B B)] " (FB) CK Fié

w2 1S a control used for the compensation of the observation error (the control term 2 has
been chosen so as to satisfy the condition  zT'p. g, — —TCKTR e

22
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5. Convergence proof for the optimization method

The optimization-based control scheme is depicted in the
following diagram

Controller | . Syt e
_I_t =gl - e K7 of : x=fiix,u) —’KZ/

Ly u,-=—1_li""1};.:o—.ﬁuh.

s et e

3 Ty

d Observer
[ ::=,=1L.I'—MTL.:‘+K“LL'| CTe] L

[}

B

A0

Adaptation ¢

£l

“

By substituting the supervisory control term in the derivative of the Lyapunov function
one obtains

V = —38Q:é4+ & CKT Pie— 127 Qo2+ L2 F,BETPyi — 758" B, BET Pyt
_|_

o B T _
+2' P, Bu, + &' F,Buy 4 &7 Py Bw 4+ d) H{Ef el ﬁ*r[uﬁ'g 9]

23




New approaches to gradient-based optimization: Applications to robotics and to electric
5. Convergence proof for the optimization method

or equivalently 7 = _1g

Besides, about the adaptation of the weights of the neurofuzzy

approximator it holds -

o

=, —81 =4, 8, = §,— 6 =4,

A gradient-based update is applied to the approximator’s weights

The gradient update scheme is defined in a manner that assures that the first derivative
of the Lyapunov function will remain negative, and thus the Lyapunov function will be

8 = —nO(&)TBT Rz
8, = —y (&) TET PyeuT

monotonously decreasing.

By substituting the above relations in the derivative of the Lyapunov

function one obtains

V. = —3eTQié — 367Qeé — 32" PBBTPé +
BT Pyé(w + d + Aug) + 2(—m)é TP;;B(I»( £)(0; — 0%) +

% ( —"Tg)f?‘['uéT P

B(g(z|0,) — (g;|5r*)]

Gradient-based
optimization

power systems

24
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5. Convergence proof for the optimization method

To continue with the convergence proof for the proposed optimization method it is taken

into account that
we B2 and BT PE(§(«|9,) — §(=|82)) € R1%?

one gets
V. = -1TQié — LeTQoé - %gETPgBBTPgé +
BT Pyé(w +d + Aug) + L (—)e" ,B®(2)(6; — 0%) +
(—y2)tr[e” PaB(g(#(60y) — 9((6;))u]
Since e’ B B(§{#]8,) — §(#(8%))ue BT
tholds tr(e7 BB (§(x8,) — §{el83)w) =

= e Py B(§(w|8s) — §le|03))w
Therefore, one finally obtains
Vv = _—“‘TQlé‘ — %”TQQE - 22eTJF’QBEF”JF’QE +
BTPge(w+d+&ua) _Ti(— 1)€ TPchI){ z)(0f — 0F) +
—(—2)é" P,B(4(20,) — 4(216}))u

Next, the following approximation error is defined

wa = [f(2]87) — F(2187)] + [5(2187) — §(8(84)]w
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5. Convergence proof for the optimization method

Thus, one obtains

V =—16TQé — 3€T Qqeé — 55¢" P,BBT Pyé+
—I—BTPQE(w +d+ Aug) + el P, Bw,

Denoting the aggregate approximation error and disturbances vector as
w; =w+d+w, + Au,

the derivative of the Lyapunov function becomes

V=178 -

[

Loy E—;EETPEEETPEE+ s7 By Buy

which in turn is written as

V=-1eTQ 6 - 12702 — LeT P BETPyat
—I—%ETPE'EU-l + %'lﬂ-l -ETPE'E

Lemma: The following inequality holds

157 B, Buy + ;wTBTF‘gé oze Py BBTFy2

oL i
i g,ﬁ'wiwi

26
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5. Convergence proof for the optimization method

Proof:

The binomial  {pa— 1.5}9 =10 is considered. Expanding the left part of the above
inequality one gets
pimi—l— LB Ogbh 0=
g L £ 1 &2_ b} 0
7 et + 7T G =
ab — —;gbg < 3ptet =
R iED,

—ﬁzb—|— L —gbi < 300G

By substituting & =4 and b = 2 73 E  one gets

luf BT Rz + i-ET_F'gBEU-l — 518 Py BBTPyE
1.2 T
S ogpowy
Moreover, by substituting the above inequality into the derivative of the Lyapunov
function one gets -

1 1
V"i - = Q-lE— E QEE‘F Q"Q '3"-11 o

which is also written as : il 1
V< -SBTQE+ Sptwiw

ith ’“ :
Wi B (g) g (‘%1 Q:) = ding[Q1, G

27
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5. Convergence proof for the optimization method

Hence, the ... cerformance criterion is derived. For sufficiently small p the inequality will
be true and the . racking criterion will be satisfied. In that case, the integration of "V from 0
to T gives

Ve < - fTIEIRd + 3o ol =
2VT) = 2V(0) < - [TIBI b+ 2 ol Pk =
2V(T) + JT1IEIG o < 2V(0) + ) o120

It is assumed that there exists a positive constant A, > 0 such that

o || = DL,

Therefore for the integral J'fHEH%dﬁ one gets

[ 111 < 270 + 4
0

Thus, the integral f;‘aHEH%ﬂﬁ is bounded and according to Barbalat’'s Lemma

limsyeaelt) =10

and thus global asymptotic stability is also shown for the control loop. >3
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6. Case studies on robotic and electric power systems

6.1 The model of multi-DOF robotic manipulators

The model of the robot’s dynamics is a MIMO nonlinear one:

M (0) 6+ h(6,0)+G(0) =T 0| % |crzt o=|0|cr?® Ho|Or|cree
o, 0> 5,

M M y : .
M= [Mll Mlz} eR*? isthe inertia matrix :{hl} eR?® s the Coriolis and
o e h, centrifugal forces matrix
Gl 2x1
G= [GJ <R is the gravitational T = [Tl} e R%1 Is the torques control
terms matrix 2 input matrix
VA
» Actuator
6°,6°
—P‘O—P Controllerf™" Actuator » x
s
A e

I N

29
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6. Case studies on robotic and electric power systems

6.1 The model of multi-DOF robotic manipulators

0

Defining flat outputs y, and y,
for which holds

y=[6 6]=[x xs]

X1=(91 X2=91 X3=02 X4=92

X1 = f1(X) + 911 (X)ug + g2 (X)uy

X3 = f3(X)+g21(X)ug + gz (X)us

fl(x) = _N11F1(9’ 9) - N12 Fz (‘9’ ‘9) -
—N,G,(0) —N,G,(0) € R™
91(x) =[Ny;  Npp]e R™?

fz(x) = _N21F2 (‘9’ 9) - N22F2 (‘9’ ‘9) -
- N21G1(9) - NG, (0)e R™

92(x) =[Na;  Npp]eR™

the following Brunovsky (canonical form) of the

robotic system is finally obtained

xt| fo 1 0 0 %] [0 O
X2:0000X2+10
- |7lo 0 0 x| |0 0
X3

1 loo o ofx| |01

vy = f1(X) + 911 (X)ug + g12 (X)us
Vo = fo(X) + 921 (X)Us + g2 (X)Uy
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6. Case studies on robotic and electric power systems

6.1 The model of multi-DOF robotic manipulators

—_— The optimization problem has multiple objectives:

1) Minimize the modelling error of the system’s

W\ 12 dynamics
V.d | 2) Minimize the estimation error for the system’s
7 — i gl i i state vector
1 P 456
3) Minimize the tracking error from the reference
setpoints
For the differentially flat MIMO model of ;1 = f (X, 1)+ g (X, u+d1
the multi-DOF robotic manipulator one _
gets the equivalent state-space model ;3 = f,(X%,t)+ go (X,)u+d>2

 For the multi-DOF robot control scheme differential flathness properties hold and
one can apply the control scheme analyzed in Sections 3 and 4.
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robotics and to electric

6.2 The model of distributed power generators

The dynamic model of the distributed power generation units is assumed to be that of
synchronous generators. The modelling approach is also applicable to PMSGs (permanent
magnet synchronous generators) which are a special case of synchronous electric

active electrical power of the machine

mechanical power of the machine

damping coefficient

machines. :
b= —3(w —wo) + (P — Pe) @
g turn angle of the rotor Fe
wo turn speed of the rotor P, -
wo - synchronous speed D
F moment of inertia of the rotor f ol

The generator’s electrical dynamics is:

E, = 7—(Ey — Ey)

E.f

E, s quadrature axis voltage of the generator
Td; is the direct axis open-circuit transient time constant

E¢ is the equivalent voltage in the excitation coil

electromagnetic torque

©

q Is the quadrature-axis transient voltage (a variable related to the magnetic flux)

: " =
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6.2 The model of distributed power generators
The synchronous generator’s model is complemented by a set of algebraic equations:

B— EE E; — (rq — :.c;);f cos(Ad)
= . z
I, = J-sin(Ad)

q
dy

Iy = =+ — Yecos(AS)

x4 : direct-axis synchronous reactance I; and I, :direct and quadrature axis currents
T

: reactance of the transformer V. :infinite bus voltage
x,; :direct-axis transient reactance Q. :reactive power of the generator

+; :transmission line reactance v, :terminal voltage of the generator
33
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6. Case studies on robotic and electric power systems

6.2 The model of distributed power generators

From Eq@ and Eq. @ one obtains the dynamic model of the synchronous generator:

d =w —wo
e D, . : o : i k...
W= —57(W—wo) +wog} — wogy—*sin(A9)
) =
Y 1 1 za—T, 1 T
By =~ By + g "4 Vicos(80) + gt E

Moreover, the generator can be written in a state-space form:
& = f(x) + g(2)u

where the state vectoris = = (Ad Aw E;,)T and

W — wo
D P, i GE,

_ | —=(w —wp) + wga2 —wprs ——28tn(Ad

f(x) = 27 (@ ) 2J ;i (Ad)

g 3 H a
T;EG+T€;D ——LVscos(Ad)

dE

while the system’s output is y = h(z)=0— 94 34
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6. Case studies on robotic and electric power systems

6.2 The model of distributed power generators

The interconnection between distributed power generators results
into a multi-area multi-machine power system model

NN

3-area multi-machine system

1

2-area multi-machine system

G

The dynamic model of a power system that comprises n-interconnected power generators is

51':&.?3'—-3.«‘[;

¥ D; 'l ; Pm:‘
wg — _EJ.H; (wt I u-'ﬂ) —|_ LLID QJ-I, -
Iy
o A S v o T et R
—wogs (GiEy +Ey) i ieilgjGigsin(di — 05 — ayj)]
= _ 1 o 1 :rdi.'—;rdi P : 1 -
Eqi — Tj- qu —|_ Tda- ] 51-_003(&61) —|_ Tdﬁ.l- Ef?. 35

d

b
i & J’Ei
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6. Case studies on robotic and electric power systems

6.2 The model of distributed power generators

The active power associated with the i-th power generator is given by:

r 2 L) n - .
PE?.’ = Gﬁeq' + EqiEJ:l,j;éiquGijszn(éi — (5}' — Dit'j)

The state vector of the distributed power system is givenby = [Il, s ?:c“]T

where 1! = [iq%?Ia:mE]T with r"l = Ad; :1?5 = Aw; and ’I.'tg — g

gi '=1L1,2,---,m

Next, differential flatness is proven for the model of the stand-alone synchronous
generator.

In state-space form one has:

L1 = I3
. D 73 P wo Vs ;
2 = —55%2 + Wogy — 57 = xr3sin(ry)
i d¥
B L S 1 Ta—Z, 1
Tq = T r3 + 7 = 3 Vscos(xy) + 7. U
The flat output is takento be vy = x;
Itholdsthat z1=vy xo=9 andfor zi#xnm,
a3 = ST or gy = fo(y,4, )
% ‘:.:: sin{y} ;) i i 36

Tdx
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6. Case studies on robotic and electric power systems

6.2 The model of distributed power generators

while for the generator’s control input one has

u=Ty,[E3 + , :1:3 Tl m‘i;_md Vicos(xy)], or
d3:
U= Jo(y,9,9)
Consequently, all state variables and the control input of the synchronous generator
are written as differential functions of the flat output and thus the differential flatness

of the model is confirmed.

By defining the new state variables ¥1 =¥, ¥2 =1, ys =y

the generator’s model is transformed into the canonical (Brunovsky) form:

1;'1 0 1 0 M 0
72]=10 0 1 ya | + (0] v

with v = fe(y.9.9) + 9.(y,9.9)u  where

fe(.9,9) = (37)%0 — wogy 53 + wn%z‘?—”i’sﬂﬂ-@H

1V,

and 9:(¥,9.¥) = —557,-—~sin(y)

dE

1 V., 1 za—= :
—|—2J;;ﬁmgsm(y) - . ‘idEdV cos(y)sin(y)—
_wo Vs

25 27 x3c0s(y)y 37
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6. Case studies on robotic and electric power systems

6.2 The model of distributed power generators

Differential flatness can be also proven for the model of the
n-interconnected power generators

The flat output is taken to be the vector of the turn angles of the
n-power generators

y = [yl,u2, - ,yP] or y = ASL, A2, A"
For the n-machines power generation system it holds

; T (R (A .
ml_yuml_yzml_y:”'vm

ge == At = i @8 = Nw® =97, 38 = N =4
Moreover, it holds
g D; ] ()
, A=t gptm
L 1 ) T ] : :
—o7 [Giimy” + 25) 05 jui[T3Gijsin(a] — 7 — @ij)]

or using the flat outputs notation

TR —%Qi + 57 Pmi—
—o7-[Giizh” + x%Z?zl,j;éi[mjaGijsm(yl — i — aij)]
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6. Case studies on robotic and electric power systems

6.2 The model of distributed power generators

The external mechanical torque p,,. is considered to be a piecewise _
constant variable

From Eqg. and forone {=1.2..- n has a system of n equations which can be
solved with respect to the variables iE5,8 = LBy

Actually, all variables :r§ can be expressed as differential functions of the flat outputs

gt = 18 gm

and thus one has A P (T |

Moreover, from

P N
Eq'i'- T Td.Eq:[—i_TdG.

L

iy, V;iCOS(&Csi) + #Efi

Tdy

one can demonstrate that the control mputs u;=E; can be expressed as differential

functions of the flat outputs #*, i =1,2, -

Consequently, all state variables and the control inputs of the distributed power system
can be expressed as differential functions of the flat outputs, and the system is a
differentially flat one.
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6. Case studies on robotic and electric power systems

6.2 The model of distributed power generators

Next, the external mechanical torque P,,; is considered to be time-varying
The effect of this torque is viewed as a disturbance to each power generator

In such a case for a model of n=2 interconnected generators one obtains the
input-output linearized dynamics

. : s, . ni
i"% = @'{E} 1 bi"giu1 + bo'gous +d* where zé =5 =w

and
e (iﬂ )22 + %[G“IS + 33323 IJ#IIJGIJSIH(II = au)]
— o5 [Giixh + Z;l’j#mg(’;‘ijggn{ml gl ﬁjj)(_%img i (T:ﬁ Iid; Vs, cos(zy))]—
5975 L i Gissin(@h — 7 — i) (— b + (my; 7 Vecos(ah))-

T

wo oy . i wo R ROPTa | o,
_Q_Lii,mSZj:Lj;&imBGUCOS(II T] — &U)“TEQJ 3:32} ;3 #13%813505(331 T] — Qij) Ty

and - : n ' 8 ' el
bi = —35[2Guah + X, j.i@hGijsin(al — 2] — aij) -
. S 1 '

by = g3 Cuasiniat — o8 — et

while di — —Diwo pi | wo pi
a7J.
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6. Case studies on robotic and electric power systems

6.2 The model of distributed power generators

For the two interconnected generators (i=1,2) one has the linearized dynamics
e
e — ik
24 = a*(z) + bi'grur + ba'goun + d*

It iS Used that z% — {11(3'}) —|— bllg]ul —|— bglggug —I— d:l
22 = a®(z) + b1’ grus + bo’gous + d
or in matrix form 23 = fa(z) + Mu+d
where 23 = [z%,zg]T: U= [ul,ug]T and d = [(;1:.(;2]']1
and f (.1") s (al{:’f‘)) M (bllgl bﬂlgi)
- at(z) )’ bi’g1 ba’go

Setting, v= fu,(x)+ Mu+ d one obtains

24 0 1 0\ /= 0 )
2il=(0 0 1] |2i]+[0] @ +d)
i 00 0/ \z3 1
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6. Case studies on robotic and electric power systems

6.2 The model of distributed power generators

For the model of the 2-area distributed power generation
system it holds that

m‘i:% = fi(z,t) + g1(z, t)u + dy
) = fo(z,t) + ga(z, tyu + do
By denoting Xp =Xy qs Xy = Xu1, X3 = Xu1

X2 — X2,1’ X5 = X2,1’ X6 = X2,1

the Brunovsky (canonical form) of the distributed power
system is obtained

x| [0 1 00 0 Ofx ] [0 O]

y where

x,| [0 01 00 0|x,| |0 O

| _[00 000 0x| |1 0fy v 005 gl 000 o
° - = —+ +

o I O E B B A vl—fl(x)+2111(x)u1 +?;l12 (X)u2
;| (00000 1jx| |00 272 21078 922782
%| [00 000 0fx]| [0 1

» For the 2-area distributed power system differential flatness properties hold and one can
apply the control scheme analyzed in Sections 3 and 4. 42
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7. Simulation tests

7.1 Optimization-based modelling and control of a multi-DOF robotic manipulator

The dynamic model of the robot was taken to be completely unknown, while the state vector
could be partially measured

setpoint 1
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2 e -
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4 -]
s o 14
g £ &
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g g allll s z
L o £
B g g -1001-
- 7}
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15 200
= i i i i = ; i - i i i ) i i i _3m0 i i i i i i i
s T B t{:gc; 2 & 1 5 W 155 W B W B 0 5 1 15 2 2% W B 4
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E I I I I I I I ° T T T T T T T 300 T T T T T T
o T N S : L
i ) G G- j ;8 0
_||| 11 : g If ll' 5 u2 200 B e M e B e
P R T U | 3 : : :
k-1 | : s : E :
] I| i H B : : : L
2 f\ g 3 : : : )
& 05H- i o i o 100k b e L e
2 3 E,J 2 : E T~
s : ! = : = ; ; ;
TR e . - : s Lo
v X -f = oL
3 ]| |I z 3 5
= | I - 2 w
§ -05- e B - 5
.4 o .I: : -15f- e
5 A E : g -100-
L & el W :
b O ||'Jr : :
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| O (e 2 : 200
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power systems

7.1 Optimization-based modelling and control of a multi-DOF robotic manipulator

setpoint 2

slate variable x1

state variable <3

¢

10 2 40
t (sec)
iy

10 20 40
t(sec)

state variable =2

state variable =«

100 :

| ; :

i I

o e S

-100 ; ]
0 10 0 W 40

t(sec)

100 ; T T

| . r

i I

| e e

= SN S

_1[|,[| F L i
0 10 20 N 40

t(sec)
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7.1 Optimization-based modelling and control of a multi-DOF robotic manipulator

setpoint 3

o

state variable =<1

state variable <3

2 10
T R
=
[ ||HJ'1|I'“'|'H'|
£ o H,J L ﬂdﬂ
.
]

. : : : -10 : : :

] 10 20 I 40 0 W 2 I 4
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2 10
|
2 i
s i ﬂ A E' \
5 Oy JU. nL ‘JLIﬂIJ
B
g 5

-2 : . : -10 ) i i

0 10 A0 W0 40 0 W 2 X 4«
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7. Simulation tests

7.1 Optimization-based modelling and control of a multi-DOF robotic manipulator

setpoint 4
2 ; ; 10 :
4] 3 3 ) i .
E s ; PO % I :
= : : > | :
£ : : £ ! :
*E 1 : : % = I :
E E : : | :
e -1
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7. Simulation tests

7.1 Optimization-based modelling and control of a multi-DOF robotic manipulator

setpoint 5
4 : : :
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1‘% -2} {‘II Lllldll,
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power systems

Table II: RMSE of joints’ angles

parameter 4 o

RMSE, 0.0471 | 0.0449
RMSE, 0.0418 | 0.0427
RMSE, 0.0495 | 0.0288
RMSE,; 0.0449 | 0.0472
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7. Simulation tests

7.1 Optimization-based modelling and control of a multi-DOF robotic manipulator

video

robotic manipulator
in a pick and place
task
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7. Simulation tests
7.2 Optimization-based modelling and control of distributed power generators
The dynamic model of the distributed power generators was taken to be completely unknown,
while the state vector could be partially measured
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7. Simulation tests
7.2 Optimization-based modelling and control of distributed power generators
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7. Simulation tests

7.2 Optimization-based modelling and control of distributed power generators

setpoint 5
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7. Simulation tests

7.2 Optimization-based modelling and control of distributed power generators

Table I: RMSE of the power generator’s state variables

parameter Wi Wi Wo Wo

RMSE 0.0035 | 0.0002 | 0.0034 | 0.0002
RMSE, 0.0123 | 0.0545 | 0.0118 | 0.0602
RMSE; 0.0035 | 0.0020 | 0.0035 | 0.0020
RMSE;, 0.0031 | 0.0020 | 0.0026 | 0.0020
RMSE: 0.0034 | 0.0003 | 0.0033 | 0.0002
RMSE§g 0.0035 | 0.0003 | 0.0033 | 0.0002

The tracking accuracy of the control method was remarkable despite the fact that
(i) the dynamic model of the systems was completely unknown,
(i) only output feedback was used in the implementation of the control scheme.

It has been also confirmed that the transient characteristics of the control
scheme are quite satisfactory

The proposed optimization-based modelling and control method is
of generic use and can be applied to a wide class of nonlinear dynamical
systems of unknown model
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7. Simulation tests
7.2 Optimization-based modelling and control of distributed power generators

video

synchronization
between the

distributed power
generators
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8. Conclusions

* Agradient-based method of assured convergence and stability
has been developed. The method is suitable for modelling
and optimization-based control in a wide class of nonlinear systems

» By exploiting the differential flatness properties of the MIMO ;
nonlinear model of the dynamical systems this was transformed
into the linear canonical (Brunovsky) form. For the latter description
the design of a feedback controller was possible.

* Moreover, to cope with unknown nonlinear terms appearing in the new control
inputs of the transformed state-space description of the systems, the use of nonlinear
regressors (neurofuzzy approximators) has been proposed..

» These estimators were online trained to identify the unknown
dynamics of the system and the associated learning procedure

was determined by the requirement the first derivative of the control
loop’s Lyapunov function to be a negative one.

» The computation of the control input required the solution of two
algebraic Riccati equation.

* Through Lyapunov stability analysis it was proven that the closed loop satisfies the
H-infinity tracking performance criterion, while also an asymptotic stability
condition has been formulated. o4




8. Conclusions
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