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• The functioning of nonlinear dynamical systems in real conditions is characterized by
model uncertainty, parametric changes and external perturbations.

• Control schemes must perform simultaneously identification and stabilization of such
uncertain dynamics.

• This is a dual optimization problem since modelling errors and deviation of the
system’s state vector elements from the associated setpoints have to be minimized in
real-time.

• To achieve these objectives an initial transformation
(diffeomorphism) of the system’s dynamic model
to an equivalent linearized form, is proposed.

• The transformed control inputs consist of unknown
nonlinear functions which are identified with the use of
nonlinear regressors.

• Learning in such networks is performed through gradient algorithms in which the
adaptation rate (step for the search of an optimum) is defined by conditions for the
minimization of an aggregate energy function (Lyapunov function).

1. Outline
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• In each iteration of the control algorithm, the estimates of the nonlinear functions
that constitute the system’s dynamics are fed into a state feedback controller.

• It has been proven that this control approach assures the minimization of the
aforementioned energy function and thus the nonlinear system becomes a
globally asymptotically stable one.

• The proposed method can be applied to all dynamical systems which satisfy the
differential flatness property.

• This is the widest class of nonlinear dynamical systems to which one can apply
optimization and control with gradient methods, while assuring the convergence
of the optimization procedure and the stability of the control loop.

• The efficiency of the proposed optimization-based
modelling and control approach has been confirmed in several
test cases, concerning complex nonlinear dynamical systems

• In particular, the method has been applied to several
electromechanical systems, including robotic systems
and electric power generation systems

1. Outline
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2. Differential flatness of MIMO nonlinear systems

• A dynamical system can be written in the ODE form q,...,,i),w,...,w,w,w(S )i(
i 21   =

•••

• The system is said to be differentially flat with respect to the flat output  

),...,,( 21 myyyy =where                                        m,...,i),w,...,w,w,w(y )a(
i 1  ==

•••

φ

if the following two conditions are satisfied 

(i) There does not exist any differential relation of the form 

0),...,,,( )( =
••• βyyyyR

which means that the flat output and its derivatives are linearly
independent

(ii) All system variables are functions of the flat output and its
derivatives

),...,,,( )()( iyyyyw i γψ
•••

=

)(iwwhere  stands for the i-th derivative of either a state vector element or of a control input                                     

• Differential flatness theory has been developed as a global linearization control
method by M. Fliess (Ecole Polytechnique, France) and co-researchers (Lévine, Rouchon,
Mounier, Rudolph, Petit, Martin, Zhu, Sira-Ramirez et. al)
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2. Differential flatness of MIMO nonlinear systems

The proposed optimization-based control method is based on the
transformation of the nonlinear system’s model into the linear canonical
form, and this transformation is succeeded by exploiting the system’s
differential flatness properties

• All single input nonlinear systems are differentially flat and
can be transformed into the linear canonical form

One has to define also which are the MIMO nonlinear systems
which are differentially flat.

• Differential flatness holds for MIMO nonlinear systems that admit static feedback
linearization.and which can be transformed into the linear canonical form through a change
of variables (diffeomorphism) and feedback of the state vector.

• Differential flatness holds for MIMO nonlinear models that admit dynamic feedback
linearization, This is the case of specific underactuated robotic models. In the latter
case the state vector of the system is extended by considering as additional flat outputs some
of the control inputs and their derivatives

• Finally, a more rare case is the so-called Liouvillian systems. These are systems for which
differential flatness properties hold for part of their state vector (constituting a flat subsystem)
while the non-flat state variables can be obtained by integration of the elements of the
flat subsystem.
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3. State-space modelling of MIMO nonlinear systems
3.1. Transformation of MIMO nonlinear systems into the Brunovsky form

It is assumed now that after defining the flat outputs of the initial MIMO nonlinear system, and
after expressing the system state variables and control inputs as functions of the flat output and of
the associated derivatives, the system can be transformed in the Brunovsky canonical form

: is the state vector

: is the inputs vector

: is the outputs vector

The initial MIMO nonlinear system is taken to be in the generic form:
𝑥̇𝑥 = 𝑓𝑓(𝑥𝑥,𝑢𝑢)
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3.1. Transformation of MIMO nonlinear systems into the Brunovsky form

Next the following vectors and matrices can 
be defined

Thus, the initial nonlinear system can be written
in the  state-space form 

or equivalently in the state space form

where uxgxfv )()( +=

For the generic case of the MIMO nonlinear system
it is assumed that the functions         and         are
unknown and have to be approximated by nonlinear 
regressors (e.g. neuro-fuzzy networks)  
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3.1. Transformation of MIMO nonlinear systems into the Brunovsky form

Thus, the nonlinear system can be written in state-space form

which  equivalently 
can be written as

The reference setpoints for the system’s outputs 

where

are denoted as and the associated tracking errors are defined as 

The error vector of the outputs of the transformed MIMO system is denoted as

3. State-space modelling of MIMO nonlinear systems
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3.2. Control law under measurable state vector

where

thus giving

while the weights vector is defined as

The control signal of the MIMO nonlinear system contains
the unknown nonlinear functions f(x) and g(x) which can be approximated by

3. State-space modelling of MIMO nonlinear systems
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Similarly, it holds

thus giving

while the weights vector is defined as

However, here each row of       is vector thus giving

If the state variables of the system are available for measurement then a state-feedback
control law can be formulated as

3. State-space modelling of MIMO nonlinear systems
3.2. Control law under measurable state vector
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The control of the system becomes more complicated when the state vector x
is not directly measurable and has to be reconstructed through a state observer. The following
definitions are used

When an observer is used to reconstruct the state vector, the control law

is the error of the state vector

is the error of the estimated state vector

is the observation error

By applying the previous feedback control law one obtains the closed-loop
dynamics

It holds

and  by substituting           in the previous feedback control loop dynamics gives

3. State-space modelling of MIMO nonlinear systems
3.2. Control law under non-measurable state vector

𝑥̇𝑥 = 𝑓𝑓(𝑥𝑥,𝑢𝑢)
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the tracking error dynamics

or equivalently

where

and equivalently

with

with

A state observer is designed as: 

A

B

3. State-space modelling of MIMO nonlinear systems

3.2. Control law under non-measurable state vector
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4. An application example of optimization-based control
4.1. Dynamics of the tracking error

By applying differential flatness theory, and in the presence of
disturbances, the dynamic model of the system comes to the form

The following control input is defined:

where: is a robust control term that is used for the compensation
of the model’s uncertainties as well as of the external
disturbances

and: is the feedback gain

Substituting the control input into the system C

C

D

D one obtains

Without loss of generality consider a two-input MIMO system:
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Moreover, using again Eq.           one obtains the tracking error dynamicsD

The approximation error is defined as:

Using matrices A,B,K, and considering that the estimated state vector is used in the
control loop the following description of the tracking error dynamics is obtained:

When the estimated state vector is used in the loop the approximation error is written as

while the tracking error dynamics becomes

4. An application example of optimization-based control
4.1. Dynamics of the tracking error
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4.2. Dynamics of the observation error

The observation error is defined as:

By subtracting Eq. from Eq. one obtains:B A

or equivalently:

which can be also written as:

4. An application example of optimization-based control
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4.3. Approximation of the unknown system dynamics

Next, the first of the approximators of the unknown system dynamics is defined

containing kernel functions

where are fuzzy membership functions

appearing in the antecedent part of the l-th fuzzy rule 

4. An application example of optimization-based control
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The variation ranges for the weights are given by

The value of the approximation error that corresponds to the optimal
values of the weights vectors is

Similarly, the second of the approximators of the unknown system dynamics is defined

The values of the weights that result in optimal approximation are

4. An application example of optimization-based control

4.3. Approximation of the unknown system dynamics
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which can be also written in the following form

with

and

Moreover, the following weights error vectors are defined

which is next written as

4. An application example of optimization-based control

4.3. Approximation of the unknown system dynamics

It will be shown that these weights are updated through a gradient method

and these denote the distance of the weights vectors from the values that provide
optimal model estimation
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5. Convergence proof for the optimization method

The following Lyapunov (energy) function is considered: 

The selection of the Lyapunov function is based on the following principle
of indirect adaptive control

this results
into

By deriving the Lyapunov function with respect to time one obtains:
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The previous equation is rewritten as:

which finally takes the form:

Assumption 1: For given positive definite matrices Q1 and Q2 there exist positive definite
matrices P1 and P2, which are the solution of the following Riccati equations

5. Convergence proof for the optimization method
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By substituting the relations described by the previous Riccati equations into the derivative
of the Lyapunov function one gets:

or:

The first term is

where assuming that the measurable elements of vector  are

The supervisory control term consists of two terms

5. Convergence proof for the optimization method
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is a control used for the compensation of the observation error (the control term has
been chosen so as to satisfy the condition

The previous relation finally stands for a product between the measurable state vector
elements and the elements of matrix which is obtained from the
solution of the previous Riccati equation.

The control term is given by

The term               is such that

is an control used for the compensation of the approximation error and the
additive disturbance (the control term has been chosen so as to satisfy the condition

∞H

5. Convergence proof for the optimization method
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The optimization-based control scheme is depicted in the
following diagram

By substituting the supervisory control term in the derivative of the Lyapunov function
one obtains

5. Convergence proof for the optimization method
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or equivalently

Besides, about the adaptation of the weights of the neurofuzzy
approximator it holds

A gradient-based update is applied to the approximator’s weights

By substituting the above relations in the derivative of the Lyapunov
function one obtains

Gradient-based 
optimization

5. Convergence proof for the optimization method

The gradient update scheme is defined in a manner that assures that the first derivative
of the Lyapunov function will remain negative, and thus the Lyapunov function will be
monotonously decreasing.
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Since

it holds

Therefore, one finally obtains

Next, the following approximation error is defined

one gets

5. Convergence proof for the optimization method

To continue with the convergence proof for the proposed optimization method it is taken
into account that
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Thus, one obtains

Denoting the aggregate approximation error and disturbances vector as

the derivative of the Lyapunov function becomes

which in turn is written as

Lemma: The following inequality holds

5. Convergence proof for the optimization method
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Proof: 

The binomial is considered. Expanding the left part of the above
inequality one gets

By substituting one gets

Moreover, by substituting the above inequality into the derivative of the Lyapunov
function one gets

which is also written as

with

5. Convergence proof for the optimization method
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Hence, the performance criterion is derived. For sufficiently small ρ the inequality will
be true and the tracking criterion will be satisfied. In that case, the integration of ˙V from 0
to T gives

It is assumed that there exists a positive constant such that

Therefore for the integral one gets

Thus, the integral is bounded and according to Barbalat’s Lemma

5. Convergence proof for the optimization method

and thus global asymptotic stability is also shown for the control loop.
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6. Case studies on robotic and electric power systems

6.1 The model of multi-DOF robotic manipulators
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21

,θθ  
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The model of the robot’s dynamics is a MIMO nonlinear one:
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6.1 The model of multi-DOF robotic manipulators

Defining flat outputs y1 and y2
for which holds

the following Brunovsky (canonical form) of the
robotic system is finally obtained
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For the differentially flat MIMO model of
the multi-DOF robotic manipulator one
gets the equivalent state-space model 2
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6.1 The model of multi-DOF robotic manipulators

• For the multi-DOF robot control scheme differential flatness properties hold and
one can apply the control scheme analyzed in Sections 3 and 4.

The optimization problem has multiple objectives:

1) Minimize the modelling error of the system’s
dynamics

2) Minimize the estimation error for the system’s
state vector

3) Minimize the tracking error from the reference
setpoints

6. Case studies on robotic and electric power systems
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6.2 The model of distributed power generators
The dynamic model of the distributed power generation units is assumed to be that of
synchronous generators. The modelling approach is also applicable to PMSGs (permanent
magnet synchronous generators) which are a special case of synchronous electric
machines.

:

:

:

:

:

:

:

:

turn angle of the rotor
turn speed of the rotor

synchronous speed

moment of inertia of the rotor

active electrical power of the machine

mechanical power of the machine

damping coefficient

electromagnetic torque

The generator’s electrical dynamics is:

is the quadrature-axis transient voltage (a variable related to the magnetic flux)

is quadrature axis voltage of the generator

is the direct axis open-circuit transient time constant

is the equivalent voltage in the excitation coil

1

2

6. Case studies on robotic and electric power systems
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6.2 The model of distributed power generators

The synchronous generator’s model is complemented by a set of algebraic equations:

where:

: direct-axis synchronous reactance
: reactance of the transformer
: direct-axis transient reactance

: transmission line reactance

: direct and quadrature axis currents

: infinite bus voltage
: reactive power of the generator
: terminal voltage of the generator

3

6. Case studies on robotic and electric power systems
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6.2 The model of distributed power generators

From Eq.         and Eq.            one obtains the dynamic model of the synchronous generator:1 2

Moreover, the generator can be written in a state-space form:

where the state vector is and

while the system’s output is

6. Case studies on robotic and electric power systems
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6.2 The model of distributed power generators

The interconnection between distributed power generators results 
into a multi-area multi-machine power system model

The dynamic model of a power system that comprises n-interconnected power generators is

6. Case studies on robotic and electric power systems

2-area multi-machine system 3-area multi-machine system
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6.2 The model of distributed power generators

The active power associated with the i-th power generator is given by:

The state vector of the distributed power system is given by

where with and

Next, differential flatness is proven for the model of the stand-alone synchronous 
generator. 
In state-space form one has:

The flat output is taken to be  

It holds that and for 

6. Case studies on robotic and electric power systems
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6.2 The model of distributed power generators

while for the generator’s control input one has

Consequently, all state variables and the control input of the synchronous generator 
are written as differential functions of the flat output and thus the differential flatness 
of the model is confirmed.

By defining the new state variables 

the generator’s model is transformed into the canonical (Brunovsky) form:

with where

and

6. Case studies on robotic and electric power systems
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6.2 The model of distributed power generators

Differential flatness can be also proven for the model of the 
n-interconnected power generators
The flat output is taken to be the vector of the turn angles of the 
n-power generators 

For the n-machines power generation system it holds

Moreover, it holds

or using the flat outputs notation

4

6. Case studies on robotic and electric power systems
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The external mechanical torque is considered to be a piecewise
constant variable

6.2 The model of distributed power generators

From Eq. and for one has a system of n equations which can be
solved with respect to the variables

4

Actually, all variables          can be expressed as differential functions of the flat outputs

and thus one has

Moreover, from

one can demonstrate that the control inputs ifi Eu = can be expressed as differential

functions of the flat outputs

Consequently, all state variables and the control inputs of the distributed power system
can be expressed as differential functions of the flat outputs, and the system is a
differentially flat one.

6. Case studies on robotic and electric power systems
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Next, the external mechanical torque is considered to be time-varying

6.2 The model of distributed power generators

The effect of this torque is viewed as a disturbance to each power generator

In such a case for a model of n=2 interconnected generators one obtains the
input-output linearized dynamics

and

and

while

6. Case studies on robotic and electric power systems

where
ii

iz
•••

== ωδ3
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6.2 The model of distributed power generators

For the two interconnected generators (i=1,2) one has the linearized dynamics

It is used that

or in matrix form

where

and

Setting, one obtains

6. Case studies on robotic and electric power systems
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6.2 The model of distributed power generators

For the model of the 2-area distributed power generation
system it holds that

the Brunovsky (canonical form) of the distributed power
system is obtained
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6. Case studies on robotic and electric power systems

• For the 2-area distributed power system differential flatness properties hold and one can
apply the control scheme analyzed in Sections 3 and 4.
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7. Simulation tests
7.1 Optimization-based modelling and control of a multi-DOF robotic manipulator

setpoint 1

1θ 1

•

θ
1u

2θ 2

•

θ
2u

The dynamic model of the robot was taken to be completely unknown, while the state vector
could be partially measured
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7. Simulation tests

7.1 Optimization-based modelling and control of a multi-DOF robotic manipulator

setpoint 2

1θ 1

•

θ

2θ 2

•

θ
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7. Simulation tests

7.1 Optimization-based modelling and control of a multi-DOF robotic manipulator

setpoint 3

1θ 1

•

θ

2θ 2

•

θ
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7. Simulation tests

7.1 Optimization-based modelling and control of a multi-DOF robotic manipulator

setpoint 4
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7. Simulation tests

7.1 Optimization-based modelling and control of a multi-DOF robotic manipulator

setpoint 5
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7. Simulation tests

7.1 Optimization-based modelling and control of a multi-DOF robotic manipulator
video

robotic manipulator
in a pick and place 

task
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7. Simulation tests
7.2 Optimization-based modelling and control of distributed power generators

setpoint 1

setpoint 2

time time

time

ω1

ω2

ω1

ω2

u1

u2

u1

u2

time

The dynamic model of the distributed power generators was taken to be completely unknown,
while the state vector could be partially measured
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7. Simulation tests
7.2 Optimization-based modelling and control of distributed power generators
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7. Simulation tests
7.2 Optimization-based modelling and control of distributed power generators

setpoint 5
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7. Simulation tests

7.2 Optimization-based modelling and control of distributed power generators

The tracking accuracy of the control method was remarkable despite the fact that

(i) the dynamic model of the systems was completely unknown,

(ii) only output feedback was used in the implementation of the control scheme.

It has been also confirmed that the transient characteristics of the control
scheme are quite satisfactory

The proposed optimization-based modelling and control method is
of generic use and can be applied to a wide class of nonlinear dynamical
systems of unknown model
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7. Simulation tests

7.2 Optimization-based modelling and control of distributed power generators

video

synchronization
between the 

distributed power 
generators
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8. Conclusions

• A gradient-based method of assured convergence and stability
has been developed. The method is suitable for modelling
and optimization-based control in a wide class of nonlinear systems

• By exploiting the differential flatness properties of the MIMO
nonlinear model of the dynamical systems this was transformed
into the linear canonical (Brunovsky) form. For the latter description
the design of a feedback controller was possible.

• Moreover, to cope with unknown nonlinear terms appearing in the new control
inputs of the transformed state-space description of the systems, the use of nonlinear
regressors (neurofuzzy approximators) has been proposed..

• These estimators were online trained to identify the unknown
dynamics of the system and the associated learning procedure
was determined by the requirement the first derivative of the control
loop’s Lyapunov function to be a negative one.

• The computation of the control input required the solution of two
algebraic Riccati equation.

• Through Lyapunov stability analysis it was proven that the closed loop satisfies the
H-infinity tracking performance criterion, while also an asymptotic stability
condition has been formulated.
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• Deliverables from related research projects are:

[1] G. Rigatos, Modelling and control for intelligent
industrial systems: adaptive algorithms In Robotics
and Industrial Engineering, Springer, 2011

[2] G. Rigatos, Advanced models of Neural Networks:
Nonlinear Dynamics and Stochasticity in Biological
Neurons, Springer, 2013

[3] G. Rigatos, Nonlinear control and filtering
using differential flatness approaches: applications
to electromechanical systems, Springer 2015.

[4] G. Rigatos, Intelligent renewable energy systems:
Modelling and Control, Springer, 2017

[5] G. Rigatos, Journal of Intelligent Industrial Systems,
Springer, 2015

Thank you for your attention

8. Conclusions



New approaches to gradient-based optimization: Applications to robotics and to electric power systems

56



New approaches to gradient-based optimization: Applications to robotics and to electric power systems

57



New approaches to gradient-based optimization: Applications to robotics and to electric power systems

58


	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58

