
Nonlinear control and filtering for electric power systems

Nonlinear control and state estimation 

for electric power systems

Gerasimos  Rigatos
Electrical and Computer Eng., Ph.D.

Research Director

Unit of Industrial Automation

Industrial Systems Institute

26504, Rion Patras, Greece

email: grigat@ieee.org

1



Nonlinear control and filtering for electric power systems

2

1 . Outline

● The reliable functioning of electric power systems relies on the

solution of the associated nonlinear control and state estimation

problems

● The main approaches followed towards the solution of nonlinear

control problem are as follows: (i) control with global linearization

methods (ii) control with approximate (asymptotic) linearization

methods (iii) control with Lyapunov theory methods (adaptive control

methods) when the dynamic model of the electric power systems

is unknown

● The main approaches followed towards the solution of the nonlinear

state estimation problems are as follows: (i) state estimation with

methods global linearization (ii) state estimation with methods of

approximate (asymptotic) linearization

● Factors of major importance for the control loop of electric power

systems are as follows (i) global stability conditions for the related

nonlinear control scheme (ii) global stability conditions for the related

nonlinear state estimation scheme (iii) global asymptotic stability for the

joint control and state estimation scheme
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2 . Nonlinear control and state estimation with global linearization

● To this end the differential flatness control theory is used

● The method can be applied to all nonlinear systems which

are subject to an input-output linearization and actually such

systems posses the property of differential flatness

● The state-space description for the dynamic model of the electric power systems is

transformed into a more compact form that is input-output linearized. This is achieved

after defining the system’s flat outputs

● A system is differentially flat if the following two conditions hold: (i) all state variables and

control inputs of the system can be expressed as differential functions of its flat outputs (ii)

the flat outputs of the system and their time-derivatives are differentially independent,

which means that they are not connected through a relation having the form of an ordinary

differential equation

● With the applications of change of variables (diffeomorphisms) that rely

on the differential flatness property (i), the state-space description of the

electric power system is written into the linear canonical form. For the latter

state-space description it is possible to solve both the control and the state

estimation problem for the electric power system.
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3 . Nonlinear control and state estimation with approximate linearization

● To this end the theory of optimal H-infinity control and the theory of

optimal H-infinity state estimation are used

● The nonlinear state-space description of the electric power system

undergoes approximate linearization around a temporary operating point

which is updated at each iteration of the control and state estimation algorithm

● The linearization relies on first order Taylor series expansion around the temporary

operating point and makes use of the computation of the associated Jacobian matrices

● The linearization error which is due to the truncation error of higher-order terms in the

Taylor series expansion is considered to be a perturbation that is finally compensated by

the robustness of the control algorithm

● For the linearized description of the state-space model an optimal H-infinity controller

is designed. For the selection of the controller’s feedback gains an algebraic Riccati

equation has to be solved at each time step of the control algorithm

● Through Lyapunov stability analysis, the global stability properties of

the control method are proven

● For the implementation of the optimal control method through the

processing of measurements from a small number of sensors in the

electric power system, the H-infinity Kalman Filter is used as a robust

state estimator
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4 . Nonlinear control and state  estimation with Lyapunov methods

● By initially proving the differential flatness properties for the electric power

system and by defining its flat outputs a transformation of Its state-space

description into an equivalent input-output linearized form is achieved.

● The unknown dynamics of the electric power systems is incorporated

into the transformed control inputs of the system, which now appear

in its equivalent input-output linearized state-space description

● The control problem for the electric power systems of unknown dynamics in now turned

into a problem of indirect adaptive control. The computation of the control inputs of the

system is performed simultaneously with the identification of the nonlinear functions which

constitute its unknown dynamics.

● The estimation of the unknown dynamics of the electric power system is performed

through the adaptation of neurofuzzy approximators. The definition of the learning

parameters takes place through gradient algorithms of proven convergence, as

demonstrated by Lyapunov stability analysis

● The Lyapunov stability method is the tool for selecting both the gains of the stabilizing

feedback controller and the learning rate of the estimator of the unknown system’s

dynamics

● Equivalently through Lyapunov stability analysis the feedback gains of the state

estimators of the electric power system are chosen. Such observers are included in the

control loop so as to enable feedback control through the processing of a small number of

sensor measurements
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• Furthermore, by redesigning the aforementioned filter as a disturbance

observer it becomes also possible to estimate and compensate for disturbance terms

that affect each local inverter.

5.1. Outline

• Decentralized control for parallel inverters connected

to the power grid is developed using differential flatness

theory and the Derivative-free nonlinear Kalman Filter.

• The problem is of elevated difficulty comparing to the control of stand-alone inverters

because in this case in the dynamics of each inverter one has also to compensate for

interaction terms which are due to the coupling with other inverters.

• The model of inverters, is differentially flat and thus the multiple inverters model can

be transformed into a set of local inverter models which are decoupled and linearized.

• For each local inverter the design of a state feedback controller becomes possible, e.g.

using pole placement methods. Such a controller processes measurements not only coming

from the individual inverter but also coming from other inverters connected to the grid.

• Moreover, to estimate the non-measurable state variables of each local inverter, the

Derivative-free nonlinear Kalman Filter is used. This consists of the Kalman Filter

recursion applied to the local linearized model of the inverter and of an inverse

transformation that is based on differential flatness theory, which enables to compute

estimates of the state variables of the initial nonlinear model of the inverter.

Example 1: Nonlinear control and state estimation using global linearization
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5.2. Dynamics of the inverter

Voltage inverters (DC to AC converters) are usually connected to their output to a LC

or a LCL filter

By applying Kirchhoff's voltage and current laws one obtains

For the representation of the voltage and current variables, denoted as                 

in the ab static reference frame one has

A

Example 1: Nonlinear control and state estimation using global linearization
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5.2. Dynamics of the inverter

Using the Park transformation this is also written as a complex variable in the form

Next, the voltage and current variables are represented in the rotating dq reference frame

By differentiating with respect to time one obtains the following description

Thus, one has for the current and voltage variables respectively,

By substituting Eq. into Eq. one obtains

B

B A

Example 1: Nonlinear control and state estimation using global linearization
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5.2. Dynamics of the inverter

Thus one arrives at a description of the inverter’s dynamics in the dq reference frame

The state vector of the system is taken to be

The active and the reactive power of the inverter are used next

By solving Eq.             and Eq.          with respect to the load currents one obtains

C

D

C D

Example 1: Nonlinear control and state estimation using global linearization
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5.2. Dynamics of the inverter

one finally obtains the state-space description of the inverter’s dynamics

and by using the state variables notation

thus, the inverter’s model is written in the nonlinear state-space form

Example 1: Nonlinear control and state estimation using global linearization
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• A dynamical system can be written in the ODE form q,...,,i),w,...,w,w,w(S )i(

i 21   =
•••

• The system is said to be differentially flat with respect to the flat output  

),...,,( 21 myyyy =where                                        m,...,i),w,...,w,w,w(y )a(

i 1  ==
•••



if the following two conditions are satisfied 

(i) There does not exist any differential relation of the form 

0),...,,,( )( =
•••

yyyyR

which means that the flat output and its derivatives are

linearly independent

(ii) All system variables are functions of the flat output

and its derivatives

),...,,,(
)()( iyyyyw i 

•••

=

)(iwwhere        stands for the i-th derivative of either a state vector element or of a control input                                      

• Differential flatness theory has been developed as a global linearization control

method by M. Fliess (Ecole Polytechnique, France) and co-researchers (Lévine, Rouchon,

Mounier, Rudolph, Petit, Martin, Zhu, Sira-Ramirez et. al)

5.3. Differential flatness of the inverter

Example 1: Nonlinear control and state estimation using global linearization
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5.3. Differential flatness of the inverter

The flat output of the inverter is taken to be the vector

The first row of the state-space equations is

The second row of the state-space equations is

These equations are rewritten as follows

E

F

Example 1: Nonlinear control and state estimation using global linearization
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5.3. Differential flatness of the inverter

By dividing the above two equations one gets 

while using in the notation the elements of the flat output vector this gives

By solving the above equation with respect to         gives

which is also written as G

Next Eq.             is substituted into Eq.     G E which gives.     

Example 1: Nonlinear control and state estimation using global linearization
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5.3. Differential flatness of the inverter

or equivalently.     

which finally gives.     H

Moreover, by substituting Eq.                into Eq.           one getsH G

From the last two rows of the state-space equations one has that

I

JThus, one obtains

This confirms the differential flatness of the model

Example 1: Nonlinear control and state estimation using global linearization
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5.4. Flatness-based control of the inverter

By considering the active and reactive power of the inverter as piecewise constant and by 

deriving the first row of the state-space equations in time, one has

The time derivatives are substituted from the associated rows of the state-space

equations.

Example 1: Nonlinear control and state estimation using global linearization
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The previous relation can be also written using the notation of the Lie algebra-based

linearization

5.4. Flatness-based control of the inverter

where

In a similar manner, by differentiating the second row of the state-space equations 

with respect to time one has

Example 1: Nonlinear control and state estimation using global linearization
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5.4. Flatness-based control of the inverter

The previous relation can be also written using the notation of the Lie algebra-

based linearization

where

Thus, one obtains an input-output linearized description of the inverter

or equivalently

with

Example 1: Nonlinear control and state estimation using global linearization
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5.4. Flatness-based control of the inverter

For this form of the system’s dynamics the design of a state feedback controller is easy.

This takes the form

The control input that is actually applied to the inerter is given form

or equivalently

which means that the control input that is finally applied to the system is

Moreover, by defining the new state variables

the following state-space description is obtained

Example 1: Nonlinear control and state estimation using global linearization
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5.5. Equivalence between inverters and synchronous generators

Synchronization between parallel inverters is considered next. The functioning of the i-th

inverter is shown to be equivalent to a synchronous generator with turn speed denoted as

The deviation from the synchronous speed is shown to be proportional to the deviation

of the produced active power from a reference value

measured active power of the i-th power generation unit

desirable active power

”droop” gain which is practically computed by dividing the range of variation

of the inverter’s frequency by the maximum active power

Since the measured active power is obtained from the inverter’s real active power with 

a time delay in measurement, it holds that

or equivalently

Thus the i-th inverter’s dynamics is expressed as

KK

L

Example 1: Nonlinear control and state estimation using global linearization
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5.5. Equivalence between inverters and synchronous generators

By differentiating Eq. one obtainsK

Moreover, from Eq. one obtainsL

M

N

By substituting Eq. Into Eq. one obtainsN M

and using that one has

or equivalently with

Additionally, from Eq.           one hasKK

From the previous two equations one gets

or O

Example 1: Nonlinear control and state estimation using global linearization
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5.5. Equivalence between inverters and synchronous generators

In ideal conditions there is no interaction (power exchange) between distributed

power units connected to the same electricity grid.

However, frequently such interaction exists and in the latter case Eq. should

be enhanced by including an interaction term

O

where is the virtual turn angle that is associated with the i-th

power generation unit (inverter).

About the coupling coefficients           these are functions of the conductance of the grid 

line which connects the i-th to the j-th power generation unit, as well as of the grid voltage 

that is measured at points i and j respectively

Thus, finally the dynamics of the i-th power generation unit (inverter) is described

as a synchronous generator, which interacts with other generators In the grid

P

In this approach, it is considered that the i-th local controller not only processes

measurements coming from the associated power generation unit, but also uses

measurements coming from the other power units which are connected to the grid

Example 1: Nonlinear control and state estimation using global linearization
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5.6. Control for parallel inverters connected to the grid

By representing the inverter as a virtual synchronous generator then one has that its

dynamics is composed of two parts (i) the rotation part and (ii) the electrical part.

(i) Rotation part

(i) Electrical part

The synchronizing control approach for the i-th inverter makes use of Eq.            

and of the linearized inverter model given in Eq. 

Q

R

Q

R

Example 1: Nonlinear control and state estimation using global linearization
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5.6. Control for parallel inverters connected to the grid

First, the value of     , that is the active power that the i-th inverter should inject to the 

grid, is found from the solution of the control problem of Eq.  . 

Subsequently      is used in the computation of the solution of the control problem of 

Eq. R

Q

The computation of setpoints for the control of the electric part of the inverter is shown 

in the following diagram

Example 1: Nonlinear control and state estimation using global linearization
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5.6. Control for parallel inverters connected to the grid

It can be proven that the model of N-parallel inverters connected to the electricity grid is a 

differentially flat one

By defining as flat output a generalization of the state vector of the stand-alone

inverter, that is

or equivalently 

It can be confirmed that all state variables and control inputs for the model of the N 

coupled inverters can be expressed as functions of the aforementioned flat output 

Y and of its derivatives.

Example 1: Nonlinear control and state estimation using global linearization
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5.6. Control for parallel inverters connected to the grid

Using the previous flat output definition, and the state variables

one has the state-space description

where the control inputs of this model are defined as

The above mean that for the synchronization of the i-th virtual generator

(inverter) the control input (in the form of active power) is finally given by

S

T

U

Example 1: Nonlinear control and state estimation using global linearization
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5.7. Disturbances estimation with Kalman Filtering

A state estimator for each local power generation unit can be also designed in the

form of a disturbance observer.

It is considered that the linearized model of the i-th inverter is affected by additive

input disturbances

The disturbances’ dynamics can be represented by the n-th order derivative of 

the disturbances variables together with the associated initial conditions.

Thus the additive disturbances are equivalently described in the form

The state vector is extended by including as additional state variables the disturbances 

and their derivatives. Thus, one has

Example 1: Nonlinear control and state estimation using global linearization
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Therefore, one has the system’s dynamics in the extended spate-space form

5.7. Disturbances estimation with Kalman Filtering

where the extended inputs vector is  

while 

For the extended state-space description of the system the state observer

becomes

where 

while In the elements of the 10th and 12th rows which  

are all set to 0

Example 1: Nonlinear control and state estimation using global linearization
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5.7. Disturbances estimation with Kalman Filtering

For the linearized model of the parallel inverters, state estimation is performed 

with the use of the Kalman Filter (Derivative-free nonlinear Kalman Filter)

In the filter’s algorithm, the previously defined matrices                       are substituted 

by their discrete-time equivalents                         This is  done through common 

discretization methods

The filter’s recursion is:

After identifying the disturbance terms, the control input of the inverter is modified as follows:

The inclusion of the disturbance estimation term     s                     in the feedback 

control inputs enables to compensate for effects of the perturbations

Example 1: Nonlinear control and state estimation using global linearization
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5.8. Simulation tests

The performance of the proposed distributed control scheme for the synchronization of 

parallel inverters was tested through simulation experiments. A model of N = 3 distributed 

power generation units was considered, while each one of these units was connected to the 

grid through an inverter

The three interconnected inverters, shown in Fig. 4, are assumed to have different model 

parameters which are described in Table I.

The objective is that all inverters (virtual synchronous generators ) finally attain the same 

frequency

Example 1: Nonlinear control and state estimation using global linearization
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5.8. Simulation tests

Test 1: (a) Angular speed of

power generation unit 1

Test 1: synchronization error between

power generation units 1 and 2

Test 1: Voltage components (in dq frame)

and their derivatives
Test 1: Estimation of disturbance

inputs

Example 1: Nonlinear control and state estimation using global linearization
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5.8. Simulation tests

Test 2: (a) Angular speed of

power generation unit 2

Test 2: synchronization error between

power generation units 2 and 3

Test 2: Voltage components (in dq frame)

and their derivatives

Test 2: Estimation of disturbance

inputs

Example 1: Nonlinear control and state estimation using global linearization
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5.8. Simulation tests

Test 3: (a) Angular speed of

power generation unit 3

Test 3: synchronization error between

power generation units 3 and 1

Test 3: Voltage components (in dq frame)

and their derivatives
Test 3: Estimation of disturbance

inputs

Example 1: Nonlinear control and state estimation using global linearization
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5.8. Simulation tests

Test 1: Three-phase

voltage variables
Test 2: Three-phase

voltage variables
Test 3: Three-phase

voltage variables

Test 1: Active and reactive

power of the inverter

Test 2: Active and reactive

power of the inverter

Test 3: Active and reactive

power of the inverter

Example 1: Nonlinear control and state estimation using global linearization
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5.8. Simulation tests

The presented simulation experiments demonstrated the efficiency of the control

method in tracking rapidly changing reference setpoints while also achieving good

transients. The associated results are outlined in Table II

The disturbances appearing in the simulation experiments could be met in

adverse operating conditions of the distributed power generation system.

Even for the latter case the good performance of the control loop is confirmed.

Such disturbances can be due to modelling errors (e.g. parametric changes in

the inverters’ model) or due to external perturbations (e.g. grid faults or

disturbances due to the connection or disconnection from the grid of power

generation units).

Example 1: Nonlinear control and state estimation using global linearization
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5.9. Conclusions

• The inverter’s model satisfies differential flatness properties, which allows to transform 

the inverter’s model to the linear canonical form.  

• Next, the problem of control and synchronization of parallel inverters connected to the 

grid was analysed. It has been shown that, the dynamics of each inverter can be written in 

a form that is equivalent to the model of the synchronous power generator. 

• Using the latter description one can compute the active power that each inverter should be 

contributing so as to remain synchronized with the reference frequency of the grid.

• The active power and the frequency associated with the inverter were used next to

compute the control input that is applied to the inverter’s electrical model.

• Thus, finally the synchronization problem of each local inverter was turned into a

problem of nonlinear feedback control for the associated inverter’s electrical model.

• To compensate for additive disturbance terms that affect

the local inverters’ models, the Derivative-free nonlinear

Kalman Filter was redesigned as a disturbance observer.

• The performance of the proposed distributed feedback

control scheme for parallel inverters was tested through

simulation experiments

Example 1: Nonlinear control and state estimation using global linearization
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Example 2: Nonlinear control and state estimation using approximate linearization

• A nonlinear optimal (H-infinity) control method is proposed for the model of a hybrid

excited synchronous generator.

• The generator has primary excitation at stator through AC/DC and DC/AC converter,

and auxiliary excitation at a secondary winding fed by an AC to DC converter.

• Through the hybrid excitation scheme more control inputs are applied to the generator,

thus achieving better performance for the system’s control loop.

• The dynamic model of the generator undergoes approximate linearization around a

temporary operating point which is recomputed at each time-step of the algorithm.

• The linearization procedure relies on Taylor series expansion and on

the computation of the associated Jacobian matrices.

• For the approximately linearized model of the hybrid excited synchronous

generator a stabilizing H-infinity feedback controller is designed.

• To compute the controller’s feedback gains an algebraic Riccati

equation is repetitively solved at each iteration of the control method.

• The global stability properties of the control scheme are proven

through Lyapunov stability analysis

6.1. Outline
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Example 2: Nonlinear control and state estimation using approximate linearization

6.2. Dynamic model of the hybrid excited synchronous generator 

The diagram of the hybrid excited synchronous generator is given next

Fig. 1: Diagram of the hybrid excited synchronous generator

The hybrid excited synchronous machine receives double excitation through (i) an

AC/DC and DC/AC converter which is connected to the stator’s windings, (ii) an AC/DC

converter which is connected to an auxiliary winding of the stator.
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• Hybrid excited synchronous machines differ from typical synchronous

machines because they receive double excitation at their stator.

• Moreover, their rotor does not have any windings and can be also free

of permanent magnets, as in the case of reluctance machines.

• By providing double excitation at the stator one can control more

efficiently such machines, and particularly their magnetic flux

• The dynamic model of the hybrid excited synchronous machines remains a

nonlinear and multivariable one, therefore their control is a non-trivial problem.

• Hybrid excited synchronous machines can be used as generators thus making them

suitable for renewable energy applications.

• Besides, they can be used as electric motors in the traction

systems of trains and electric vehicles.

• Other uses of hybrid excited synchronous generators are in

aircraft power supply and in wind power systems.

• Due to the complexity of the dynamic model of such machines, stability proofs

are often left as open research problems

6.2. Dynamic model of the hybrid excited synchronous generator 
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6.2. Dynamic model of the hybrid excited synchronous generator 

The state-space model of the Hybrid Excited Synchonous Generator HESG

is given in the following set of equations

1

2

3

4

5

To describe the electric dynamics of the machine, the synchronously

rotating dq reference frame is used

39
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6.2. Dynamic model of the hybrid excited synchronous generator 

vsd is the d-axis component of the stator voltage

vsq is the q-axis component of the stator voltage

vf is the excitation (field) voltage at an auxiliary winding of the stator

id is the d-axis component of the stator current

iq is the q-axis component of the stator current

if is the current at the auxiliary excitation circuit of the stator

R is the per-phase resistance of the stator

Rf is the resistance of the auxiliary excitation winding

Ld is the d-axis component of the stator inductance

Lq is the q-axis component of the stator inductance

Lf is the inductance of the auxiliary excitation winding.

The parameters and state variables of the HESG model are defined as follows:
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6.2. Dynamic model of the hybrid excited synchronous generator 

Mf is the mutual inductance between the auxiliary excitation winding and the 

d-axis winding of the stator, 

Ψn is the flux linkage of the rotor’s permanent magnet, 

Pn is the number of poles of the machine, 

ω is the rotor’s turn speed, J is the rotor’s moment of inertia, 

b is the friction coefficient in the turn motion of the rotor

TL is the mechanical torque exerted on the machine due to wind. 

Moreover, coefficient K is defined as K = 1 / (LdLf-Mf
2)𝐾 = 1/(𝐿𝑑𝐿𝑓 −𝑀𝑓

2)

Additional parameters of the HESG model are:

---------------------------------------------------------- Dr. G. Rigatos 

The state vector of the hybrid excited synchronous machine is defined as

x = [θ, ω, id, iq, if ]T ,

while the control inputs vector of the machine is given by v = [cbα , vd, vq, vf ]T ,

cba is an additional control input that depends on the pitch angle of the

turbine’s blades of the generator.
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2. Dynamic model of the hybrid excited synchronous generator 

About the mechanical torque that is applied to the rotor of the generator and which

is due to wind one has

6

where v is the speed of the wind,   β is the blades pitch angle

λ is the tip-speed-v ratio  is λ= ωtR/v,  ωt is the turbine’s turn speed. 

Using the previous notation about the state variables and the control inputs of the hybrid

excited synchronous generator one has the following state-space description

7

42
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6.2. Dynamic model of the hybrid excited synchronous generator 

As a result of the above one arrives at the following, affine-in-the-input, state-space description

for the dynamic model of the hybrid excited synchronous generator

8

with

In particular vector f(x) and matrix g(x) are given by

9

10
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Example 2: Nonlinear control and state estimation using approximate linearization

The definition of abbreviated parameters’ names in the dynamic model and the control loop of 

the hybrid excited synchronous generator is outlined in the following Table:

6.2. Dynamic model of the hybrid excited synchronous generator 
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6.3. Approximate linearization of the Hybrid Excited Synchronous Generator

The state-space model of the generator undergoes approximate linearization 

around the temporary operating point (equilibrium) (x*, u*), where 

x* is the present value of the system’s state vector and 

u* is the last sampled value of the control inputs vector 

For the linearized state-space model of the system it holds that

11

where is the cumulative disturbance vector due to approximate linearization and

truncation of higher-order terms in the Taylor series expansion, and

12

13

About the Jacobian matrix                                       one has

First row of the Jacobian matrix                                  
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6.3. Approximate linearization of the Hybrid Excited Synchronous Generator

The state-space model of the generator undergoes approximate linearization 

around the temporary operating point (equilibrium) (x*, u*), where 

x* is the present value of the system’s state vector and 

u* is the last sampled value of the control inputs vector 

For the linearized state-space model of the system it holds that

11

where is the cumulative disturbance vector due to approximate linearization and

truncation of higher-order terms in the Taylor series expansion, and

12

13

About the Jacobian matrix                                       one has

First row of the Jacobian matrix                                  
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6.3. Approximate linearization of the Hybrid Excited Synchronous Generator

Second row of the Jacobian matrix                                  

Third row of the Jacobian matrix                                  

Fourth row of the Jacobian matrix                                  

Fifth row of the Jacobian matrix                                  

47
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6.4. Design of the H-infinity feedback controller

At every time instant the control input is assumed to differ from the control input

appearing above by an amount equal to , that is

The dynamics of the system of Eq. can be also written in

the form

and by denoting as an aggregate disturbance term one obtains

By subtracting Eq. from Eq. one has

By denoting the tracking error as and the aggregate disturbance term as

the tracking error dynamics becomes

The state vector notation x is used for the model of Eq. 14

15

11

16

17

15 16

18
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6.4. Design of the H-infinity feedback controller

The initial model of the Hybrid Excited Synchronous Generator is assumed to be in the form

Linearization of the system is performed at each iteration of the control algorithm round its

present operating point

The linearized equivalent of the system is described by

where matrices 𝐴 and 𝐵 are obtained from the computation of the Jacobians

and vector 𝑑 denotes disturbance terms due to linearization errors.

The problem of disturbance rejection for the linearized model that

is described by

20
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6.4. Design of the H-infinity feedback controller

where cannot be handled efficiently if the classical LQR

control scheme is applied. This because of the existence of the perturbation term 𝑑.

In the 𝐻∞ control approach, a feedback control scheme is designed for trajectory

tracking by the system’s state vector and simultaneous disturbance rejection, considering

that the disturbance affects the system in the worst possible manner

The disturbances’ effect are incorporated in the following quadratic cost function

The coefficient 𝑟 determines the penalization of the control input and the weight

coefficient 𝜌 determines the reward of the disturbances’ effects. It is assumed that

Then, the optimal feedback control law is with

where 𝑃 is a positive semi-definite symmetric matrix which is obtained

from the solution of the Riccati equation

where Q is also a positive definite symmetric matrix.

The parameter ρ in Eq. (15), is an indication of the closed-loop system robustness. If the

values of ρ> 0 are excessively decreased with respect to r, then the solution of the Riccati

equation is no longer a positive definite matrix. Consequently, there is a lower bound ρmin

of for which the H-infinity control problem has a solution.

21
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6.5. Lyapunov stability analysis

The tracking error dynamics for the Hybrid Excited Synchronous Generator is written in

the form

where in the Hybrid Excited Synchronous Generator 𝑳 = 𝑰 ∈ 𝑰𝟓𝒙𝟓 with I being the

identity matrix. The following Lyapunov function is considered

T

23

24
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6.5. Lyapunov stability analysis

The previous equation is rewritten as

Assumption: For given positive definite matrix Q and coefficients r and ρ there exists a

positive definite matrix P, which is the solution of the following matrix equation

Moreover, the following feedback control law is applied to the Synchronous

Reluctance Machine

By substituting Eq. and Eq. one obtains

25

26

25 26



Nonlinear control and filtering for electric power systems

Example 2: Nonlinear control and state estimation using approximate linearization

53

6.5. Lyapunov stability analysis

Continuing with computations one obtains

which next gives

or equivalently

Lemma: The following inequality holds

27
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6.5. Lyapunov stability analysis

Proof : The binomial is considered. Expanding the left part of the above inequality

one gets

The following substitutions are carried out:

and the previous relation becomes

Eq. is substituted in Eq. and the inequality is enforced, thus giving

Eq. shows that the H-infinity tracking performance criterion is satisfied.

The integration of from 0 to T gives
•

V

28

28 27
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6.5. Lyapunov stability analysis

Moreover, if there exists a positive constant                    such that

then one gets

Thus, the integral is bounded.

According to the above and with the use of Barbalat’s Lemma

one obtains:

Moreover, V(T) is bounded and from the definition of the Lyapunov function V it becomes

clear that e(t) will be also bounded since

31
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6.6. Robust state estimation with the use of the H-infinity Kalman Filter

● The control loop has to be implemented with the use of information provided by a small

number of sensors and by processing only a small number of state variables.

● Actually, one can implement feedback control by measuring only the stator currents. To

reconstruct the missing information about the state vector of the Hybrid Excited Synchronous

Generator one cam use use a filter and based on it to apply state estimation-based control .

● The recursion of the H-infinity Kalman Filter, for the Hybrid Excited Synchronous

Generator, can be formulated in terms of a measurement update and a time update part

where it is assumed that parameter θ is sufficiently small to assure that the covariance matrix

Measurement

update

Time

update

Is positive definite

32

33



Nonlinear control and filtering for electric power systems

Example 2: Nonlinear control and state estimation using approximate linearization

57

6.7. Simulation tests

• The performance of the proposed nonlinear H-infinity control scheme for the system of the

Hybrid Excited Synchronous Generator is tested through simulation:

With the use of the H-infinity control method, fast and accurate tracking of the reference 

setpoints of the state variables of the Hybrid Excited Synchronous Generator was achieved

Fig.2 Diagram of the nonlinear optimal control for the Hybrid Excited Synchronous Generator
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Test 1 for the hybrid excited synchronous generator:

6.7. Simulation tests

Fig3(a) Convergence of the state variables

x2 to x5 (blue lines) to the reference

setpoints (red lines) and state estimates

provided by the Kalman Filter (green lines)

Fig 3(b) Control inputs ui, i = 1, …, 4

applied to the hybrid excited

synchronous generator
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Test 2 for the hybrid excited synchronous generator:

6.7. Simulation tests

Fig4(a) Convergence of the state variables

x2 to x5 (blue lines) to the reference

setpoints (red lines) and state estimates

provided by the Kalman Filter (green lines)

Fig 4(b) Control inputs ui, i = 1, …, 4

applied to the hybrid excited

synchronous generator
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Test 3 for the hybrid excited synchronous generator:

6.7. Simulation tests

Fig5(a) Convergence of the state variables

x2 to x5 (blue lines) to the reference

setpoints (red lines) and state estimates

provided by the Kalman Filter (green lines)

Fig 5(b) Control inputs ui, i = 1, …, 4
applied to the hybrid excited
synchronous generator
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Test 4 for the hybrid excited synchronous generator:

6.7. Simulation tests

Fig6(a) Convergence of the state variables

x2 to x5 (blue lines) to the reference

setpoints (red lines) and state estimates

provided by the Kalman Filter (green lines)

Fig 6(b) Control inputs ui, i = 1, …, 4

applied to the hybrid excited

synchronous generator
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Test 5 for the hybrid excited synchronous generator:

6.7. Simulation tests

Fig7(a) Convergence of the state variables

x2 to x5 (blue lines) to the reference

setpoints (red lines) and state estimates

provided by the Kalman Filter (green lines)

Fig 7(b) Control inputs ui, i = 1, …, 4

applied to the hybrid excited

synchronous generator
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6.7. Simulation tests

• Because of the nonlinearity of the state-space model of the HESG other approaches to

solve the associated optimal control problem, such as the typical model predictive control

(MPC) and the nonlinear model predictive control, (NMPC) are of questionable

performance.

• Thus, it is widely acknowledged that MPC is a linear control method which

in the case of the nonlinear dynamics of the hybrid excited synchronous

generator cannot assure the stability of the control loop.

• Besides, it is known that the NMPC’s iterative search for an optimum

is dependent on initial parametrization and is not always of assured convergence.

• On the other side the use of global linearization-based methods for the control of the

considered HESG requires the definition of the linearizing outputs in a case-based manner

and the application of complicated change of state-space variables].

• Moreover, such methods may come against singularity problems due to

including also additional transformations being-based on matrices inversions.

• Finally, sliding-mode control cannot be directly applied to the considered

model of the hybrid power generator because this is not found in a canonical

linear form and consequently there is no systematic manner to define a

sliding surface



Nonlinear control and filtering for electric power systems

64

Example 2: Nonlinear control and state estimation using approximate linearization

• A nonlinear optimal control approach has been introduced for

hybrid excited synchronous generators.

• This type of generator receives double excitation, (i) from the stator’s windings

through voltage that is provided by a AC/DC and DC/AC converter, and (ii) from an

auxiliary excitation circuit at the stator that is fed by an AC to DC converter.

• The nonlinear dynamic model of the hybrid excited synchronous generator has

undergone approximate linearization around a temporary operating point that was

recomputed at each time-step of the control algorithm.

• The linearization procedure relied on Taylor series expansion and through the

computation of Jacobian matrices. For the approximately linearized model of the

generator a stabilizing H-infinity feedback controller has been designed.

• For the computation of the controller’s feedback gains an algebraic Riccati

equation had to be repetitively solved at each iteration of the control algorithm.

• The global stability and robustness properties of the control method

have been proven through Lyapunov analysis.

• To implement state estimation-based control without the need to measure its entire

state vector, the H-infinity Kalman Filter has been used as a robust state estimator.

6.8. Conclusions
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● An adaptive control approach is proposed that is capable of

compensating for model uncertainty and parametric changes of the

distributed synchronous generators, as well as for the lack of

measurements about the distributed SG’s state vector elements.

● First it is proven that the distributed SG’s model is a differentially flat

one. By exploiting differential flatness properties it is shown that the

distributed SG’s model can be transformed into the linear canonical form.

● For the latter description, the new control inputs comprise unknown nonlinear functions

which can be identified with the use of neurofuzzy approximators. The estimated

dynamics of the machine is used by a feedback controller thus establishing an indirect

adaptive control scheme.

● Moreover, to enforce the robustness of the control loop, a supplementary

control term is computed using H-infinity control theory.

● Another problem that has to be dealt with comes from partial measurements of the

state vector of the generator. Thus, a state observer is implemented in the control loop.

● The stability of the considered observer-based adaptive control approach is proven

using Lyapunov analysis. Moreover, the performance of the control scheme is evaluated

through simulation experiments.

7.1. Outline
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7.2. Dynamic model of the distributed synchronous generatorss

66

The dynamic model of the distributed power generation units is assumed to consist of

multiple synchronous generators. The modelling approach is also applicable to PMSGs

(permanent magnet synchronous generators) which are a special case of synchronous

electric machines.

:

:

:

:

:

:

:

:

turn angle of the rotor

turn speed of the rotor

synchronous speed

moment of inertia of the rotor

active electrical power of the machine

mechanical power of the machine

damping coefficient

electromagnetic torque

The generator’s electrical dynamics is:

is the quadrature-axis transient voltage (a variable related to the magnetic flux)

is quadrature axis voltage of the generator

is the direct axis open-circuit transient time constant

is the equivalent voltage in the excitation coil

1

2
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7.2. Dynamic model of the distributed synchronous generators

67

The synchronous generator’s model is complemented by a set of algebraic equations:

where:

: direct-axis synchronous reactance

: reactance of the transformer

: direct-axis transient reactance

: transmission line reactance

: direct and quadrature axis currents

: infinite bus voltage

: reactive power of the generator

: terminal voltage of the generator

3
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7.2. Dynamic model of the synchronous generator

68

From Eq.         and Eq.            one obtains the dynamic model of the synchronous generator:1 2

Moreover, the generator can be written in a state-space form:

where the state vector is and

while the system’s output is
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7.2. Dynamic model of the synchronous generator

69

The interconnection between distributed power generators results 

into a multi-area multi-machine power system model

The dynamic model of a power system that comprises n-interconnected power generators is

2-area multi-machine system 3-area multi-machine system
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7.2. Dynamic model of the synchronous generator

70

The active power associated with the i-th power generator is given by:

The state vector of the distributed power system is given by

where with and

Next, differential flatness is proven for the model of the stand-alone synchronous 

generator. 

In state-space form one has:

The flat output is taken to be  

It holds that and for 
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while for the generator’s control input one has

Consequently, all state variables and the control input of the synchronous generator 

are written as differential functions of the flat output and thus the differential flatness 

of the model is confirmed.

By defining the new state variables 

the generator’s model is transformed into the canonical (Brunovsky) form:

with where

and

7.2. Dynamic model of the synchronous generator
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7.3. Dynamic model of the distributed synchronous generators

72

Differential flatness can be also proven for the model of the 

n-interconnected power generators

The flat output is taken to be the vector of the turn angles of the 

n-power generators 

For the n-machines power generation system it holds

Moreover, it holds

or using the flat outputs notation

4
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The external mechanical torque is considered to be a piecewise

constant variable

From Eq. and for one has a system of n equations which can be

solved with respect to the variables

4

Actually, all variables          can be expressed as differential functions of the flat outputs

and thus one has

Moreover, from

one can demonstrate that the control inputs
ifi Eu = can be expressed as differential

functions of the flat outputs

Consequently, all state variables and the control inputs of the distributed power system

can be expressed as differential functions of the flat outputs, and the system is a

differentially flat one.

7.3. Dynamic model of the distributed synchronous generators
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Next, the external mechanical torque is considered to be time-varying

The effect of this torque is viewed as a disturbance to each power generator

In such a case for a model of n=2 interconnected generators one obtains the

input-output linearized dynamics

and

and

while

where
ii

iz
•••

== 3

7.3. Dynamic model of the distributed synchronous generators
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For the two interconnected generators (i=1,2) one has the linearized dynamics

It is used that

or in matrix form

where

and

Setting, one obtains

7.3. Dynamic model of the distributed synchronous generators
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For the model of the 2-area distributed power generation

system it holds that

the Brunovsky (canonical form) of the distributed power

system is obtained




































+





















































=





























•

•

•

•

•

•

2

1

6

5

4

3

2

1

6

5

4

3

2

1

10

00

00

01

00

00

000000

100000

010000

000000

000100

000010

v

v

x

x

x

x

x

x

x

x

x

x

x

x

22212122

21211111

)()()(

)()()(

uxguxgxfv

uxguxgxfv

++=

++=

where

By denoting

1,261,251,22

1,131,121,11

  ,  ,

  ,  ,

•••

•••

===

===

xxxxxx

xxxxxx

• For the 2-area MIMO nonlinear system of the distributed SGs differential flatness

properties hold and one can apply an adaptive fuzzy control scheme using only output

feedback.

Example 3: Nonlinear control and state estimation using Lyapunov methods

7.3. Dynamic model of the distributed synchronous generators
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7.4. Design of an adaptive neurofuzzy controller for the distributed SG system

7.4.1. Transformation of MIMO nonlinear systems into the Brunovsky form

It is assumed now that after defining the flat outputs of the initial MIMO nonlinear system, and

after expressing the system state variables and control inputs as functions of the flat output and of

the associated derivatives, the system can be transformed in the Brunovsky canonical form

: is the state vector

: is the inputs vector

: is the outputs vector
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7.4. Design of an adaptive neurofuzzy controller for the distributed SG system

7.4.1. Transformation of MIMO nonlinear systems into the Brunovsky form

Next the following vectors and matrices can 

be defined

Thus, the initial nonlinear system 

can be writtenin the  state-space form 

or equivalently in the state space form

where uxgxfv )()( +=

For the case of the MIMO distributed SGs model

it is assumed that the functions         and         are

unknown and have to be approximated by neuro-

fuzzy networks  
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where matrix A has the MIMO canonical form,
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7.4. Design of an adaptive neurofuzzy controller for the distributed SG system

7.4.1. Transformation of MIMO nonlinear systems into the Brunovsky form

Thus, the nonlinear system can be written in state-space form

which  equivalently 

can be written as

The reference setpoints for the system’s outputs 

where

are denoted as and the associated tracking errors are defined as 

The error vector of the outputs of the transformed MIMO system is denoted as
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7.4. Design of an adaptive neurofuzzy controller for the distributed SG system

7.4.2. Control law

The control signal of the MIMO nonlinear system contains the unknown nonlinear functions

f(x) and g(x) which can be approximated by

where

thus giving

while the weights vector is defined as
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7.4. Design of an adaptive neurofuzzy controller for the distributed SG system

7.4.2. Control law

Similarly, it holds

thus giving

while the weights vector is defined as

However, here each row of       is vector thus giving

If the state variables of the system are available for measurement then a state-feedback

control law can be formulated as
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7.4. Design of an adaptive neurofuzzy controller for the distributed SG system

7.4.2. Estimation of the state vector

The control of the system described by becomes more complicated when the state vector x

is not directly measurable and has to be reconstructed through a state observer. The following

definitions are used

When an observer is used to reconstruct the state vector, the control law

is the error of the state vector

is the error of the estimated state vector

is the observation error

By applying the previous feedback control law one obtains the closed-loop dynamics

It holds

and  by substituting           in the previous tracking error dynamics gives
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7.4. Design of an adaptive neurofuzzy controller for the distributed SG system

7.4.2. Estimation of the state vector

the new tracking error dynamics

or equivalently

where

and equivalently

with

with

A state observer is designed as: 

A

B
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7.5. Application of adaptive neurofuzzy control to the distributed SG system

7.5.1. Tracking error dynamics under feedback control

By applying differential flatness theory, and in the presence of

disturbances, the dynamic model of the distributed SGs comes to the form

The following control input is defined:

where: is a robust control term that is used for the compensation of the model’s

uncertainties as well as of the external disturbances

and: is the feedback gain

Substituting the control input into the system C

C

D

D one obtains



Nonlinear control and filtering for electric power systems

Example 3: Nonlinear control and state estimation using Lyapunov methods

85

7.5. Application of adaptive neurofuzzy control to the distributed SG system

Moreover, using again Eq.           one obtains the tracking error dynamicsD

The approximation error is defined as:

and considering that the estimated state vector is used in the control loop

the following description of the tracking error dynamics is obtained:

When the estimated state vector is used in the loop the approximation error is written as

while the tracking error dynamics becomes

7.5.1. Tracking error dynamics under feedback control

Using matrices A,B,K, 
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7.5.2. Dynamics of the observation error

The observation error is defined as:

By subtracting Eq. from Eq. one obtains:B A

or equivalently:

which can be also written as:



Nonlinear control and filtering for electric power systems

87

Example 3: Nonlinear control and state estimation using Lyapunov methods

7.5. Application of adaptive neurofuzzy control to the distributed SG system

7.5.3. Approximation of functions f(x,t) and g(x,t)

Next, the first of the approximators of the unknown system dynamics is defined

containing kernel functions

where are fuzzy membership functions

appearing in the antecedent part of the l-th fuzzy rule 
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7.5. Application of adaptive neurofuzzy control to the distributed SG system

7.5.3. Approximation of functions f(x,t) and g(x,t)

The variation ranges for the weights are given by

The value of the approximation error that corresponds to the optimal values of the

weights vectors is

The values of the weights that result in optimal approximation are

Similarly, the second of the approximators of the unknown system dynamics is defined

Example 3: Nonlinear control and state estimation using Lyapunov methods



Nonlinear control and filtering for electric power systems

89

Example 3: Nonlinear control and state estimation using Lyapunov methods

7.5. Application of adaptive neurofuzzy control to the distributed SG system

7.5.3. Approximation of functions f(x,t) and g(x,t)

which can be also written in the following form

with

and

Moreover, the following weights error vectors are defined

which is next written as
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7.6. Lyapunov stability analysis

The following Lyapunov function is considered: 

The selection of the Lyapunov function is based on the following principle

of indirect adaptive control

this results

into

By deriving the Lyapunov function with respect to time one obtains:
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7.6. Lyapunov stability analysis

The equation is rewritten as:

which finally takes the form:

Assumption 1: For given positive definite matrices Q1 and Q2 there exist positive definite

matrices P1 and P2, which are the solution of the following Riccati equations
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7.6. Lyapunov stability analysis

By substituting the conditions from the previous Riccati equations into the derivative of the

Lyapunov function one gets:

or:

● The supervisory control term consists of two terms:

where assuming that the measurable elements of vector

the term au Is given by
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7.6. Lyapunov stability analysis

● The control term Is given by

is an H-infinity control used for the compensation of the approximation error w and 

the additive disturbance   

Its first component                    has been chosen so as to compensate for the term

which appears in the previously computed function about ˙V . 

By including also the second component              one has that              is computed 

based on the feedback only the measurable variables                              out of the 

complete vector 

Eq.                                                  Is     finally rewritten  as 

● is a control used for the compensation of the observation error (the control term 

has been chosen so as to satisfy the condition
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7.6. Lyapunov stability analysis

The control scheme is depicted in the following diagram

By substituting the supervisory control term in the derivative of the Lyapunov function

one obtains
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7.6. Lyapunov stability analysis

or equivalently

Besides, about the adaptation of the weights of the neurofuzzy network

it holds

and also

By substituting the above relations in the derivative of the Lyapunov function one obtains

or



Nonlinear control and filtering for electric power systems

96

Example 3: Nonlinear control and state estimation using Lyapunov methods

7.6. Lyapunov stability analysis

Taking into account that

one gets

Since

it holds

Therefore, one finally obtains

Next, the following approximation error is defined
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7.6. Lyapunov stability analysis

Thus, one obtains

Denoting the aggregate approximation error and disturbances vector as

the derivative of the Lyapunov function becomes

which in turn is written as

Lemma: The following inequality holds
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7.6. Lyapunov stability analysis

Proof: 

The binomial is considered. Expanding the left part of the above

inequality one gets

By substituting one gets

Moreover, by substituting the above inequality into the derivative of the Lyapunov

function one gets

which is also written as

with
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7.6. Lyapunov stability analysis

Hence, the performance criterion is derived. For sufficiently small the inequality will

be true and the tracking criterion will be satisfied. In that case, the integration of ˙V from 0

to T gives

It is assumed that there exists a positive constant such that

Therefore for the integral one gets

Thus, the integral is bounded and according to Barbalat’s Lemma
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7.7. Simulation tests

100

setpoint 1

setpoint 2
time

ω1

ω2

ω1

ω2

u1

u2

u1

u2

time

The dynamic model of the distributed SGs was taken to be completely unknown, while the

state vector could be partially measured
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7.7. Simulation tests
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setpoint 3

setpoint 4
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Example 3: Nonlinear control and state estimation using Lyapunov methods

7.7. Simulation tests
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setpoint 5

setpoint 6
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ω1
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u1

u2

u1
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time

time

time

time
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The tracking accuracy of the control method was remarkable despite the fact that

(i) the dynamic model of the systems was completely unknown,

(ii) only output feedback was used in the implementation of the control scheme.

It has been also confirmed that the transient characteristics of the control

scheme are quite satisfactory

The proposed optimization-based modelling and control method is

of generic use and can be applied to a wide class of nonlinear dynamical

systems of unknown model

Example 3: Nonlinear control and state estimation using Lyapunov methods

7.7. Simulation tests
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7.8. Conclusions

● A solution to the problem of model-free adaptive control for

distributed synchronous generators has been proposed

● It was proven that the dynamic model of the distributed SGs is a

differentially flat one. The flat outputs of the model were taken to be the

rotor’s turn speed and the currents of the secondary (control) winding of the stator.

● By proving differential flatness properties for the distributed SGs

the transformation of its model to the linear canonical form was achieved.

● In this new linearized description the control inputs comprised

nonlinear terms which were related to the system’s unknown dynamics.

● These terms were dynamically identified with the use of neurofuzzy

approximators. These estimates of the unknown dynamics were used in turn in the

computation of a feedback control input, thus establishing an indirect adaptive

control scheme.

● It was also assumed that only the output of the distributed SGs could be directly

measured and that the rest of the state vector elements of the machine had to be

computed with the use of a state-observer.

● The stability of the control loop was proven with the use of Lyapunov analysis.

Example 3: Nonlinear control and state estimation using Lyapunov methods
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8. Final Conclusions

grigat@ieee.org

● Methods for nonlinear control and state estimation in electric

power systems have been developed

● The main approaches for nonlinear control have been: (i) control with global linearization

method (ii) control with approximate (asymptotic) linearization methods (iii) control with

Lyapunov theory methods (adaptive control) in case that the dynamic model of the

electric power system is unknown

● The main approaches for nonlinear state estimation are: (i) nonlinear state estimation with

methods of global linearization (ii) nonlinear state estimation with methods of approximate

(asymptotic) linearization


