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Nonlinear control and filtering for electric power systems

1. Outline

e The reliable functioning of electric power systems relies on the
solution of the associated nonlinear control and state estimation
problems

e The main approaches followed towards the solution of nonlinear
control problem are as follows: (i) control with global linearization
methods (ii) control with approximate (asymptotic) linearization
methods (iii) control with Lyapunov theory methods (adaptive control
methods) when the dynamic model of the electric power systems

IS unknown

e The main approaches followed towards the solution of the nonlinear
state estimation problems are as follows: (i) state estimation with
methods global linearization (ii) state estimation with methods of
approximate (asymptotic) linearization

e Factors of major importance for the control loop of electric power
systems are as follows (i) global stability conditions for the related
nonlinear control scheme (ii) global stability conditions for the related
nonlinear state estimation scheme (iii) global asymptotic stability for the
joint control and state estimation scheme
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2 . Nonlinear control and state estimation with global linearization

e To this end the differential flatness control theory is used

e The method can be applied to all nonlinear systems which
are subject to an input-output linearization and actually such
systems posses the property of differential flatness

e The state-space description for the dynamic model of the electric power systems is
transformed into a more compact form that is input-output linearized. This is achieved
after defining the system'’s flat outputs

e A system is differentially flat if the following two conditions hold: (i) all state variables and
control inputs of the system can be expressed as differential functions of its flat outputs (ii)
the flat outputs of the system and their time-derivatives are differentially independent,
which means that they are not connected through a relation having the form of an ordinary
differential equation

e With the applications of change of variables (diffeomorphisms) that rely
on the differential flatness property (i), the state-space description of the
electric power system is written into the linear canonical form. For the latter
state-space description it is possible to solve both the control and the state =
estimation problem for the electric power system.
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3. Nonlinear control and state estimation with approximate linearization

e To this end the theory of optimal H-infinity control and the theory of
optimal H-infinity state estimation are used

e The nonlinear state-space description of the electric power system
undergoes approximate linearization around a temporary operating point
which is updated at each iteration of the control and state estimation algorithm

e The linearization relies on first order Taylor series expansion around the temporary
operating point and makes use of the computation of the associated Jacobian matrices

e The linearization error which is due to the truncation error of higher-order terms in the
Taylor series expansion is considered to be a perturbation that is finally compensated by

the robustness of the control algorithm

e For the linearized description of the state-space model an optimal H-infinity controller
is designed. For the selection of the controller’s feedback gains an algebraic Riccati

equation has to be solved at each time step of the control algorithm

e Through Lyapunov stability analysis, the global stability properties of
the control method are proven

e For the implementation of the optimal control method through the
processing of measurements from a small number of sensors in the
electric power system, the H-infinity Kalman Filter is used as a robust

state estimator
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4 . Nonlinear control and state estimation with Lyapunov methods

e By initially proving the differential flatness properties for the electric power
system and by defining its flat outputs a transformation of Its state-space
description into an equivalent input-output linearized form is achieved.

e The unknown dynamics of the electric power systems is incorporated
into the transformed control inputs of the system, which now appear
In its equivalent input-output linearized state-space description

e The control problem for the electric power systems of unknown dynamics in now turned
into a problem of indirect adaptive control. The computation of the control inputs of the
system is performed simultaneously with the identification of the nonlinear functions which
constitute its unknown dynamics.

e The estimation of the unknown dynamics of the electric power system is performed
through the adaptation of neurofuzzy approximators. The definition of the learning
parameters takes place through gradient algorithms of proven convergence, as
demonstrated by Lyapunov stability analysis

e The Lyapunov stability method is the tool for selecting both the gains of the stabilizing
feedback controller and the learning rate of the estimator of the unknown system’s
dynamics

e Equivalently through Lyapunov stability analysis the feedback gains of the state
estimators of the electric power system are chosen. Such observers are included in the
control loop so as to enable feedback control through the processing of a small number of
sensor measurements
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Example 1: Nonlinear control and state estimation using global linearization
5.1. Outline

» Decentralized control for parallel inverters connected
to the power grid is developed using differential flatness
theory and the Derivative-free nonlinear Kalman Filter.

because in this case in the dynamics of each inverter one has also to compensate for
interaction terms which are due to the coupling with other inverters.

* The model of inverters, is differentially flat and thus the multiple inverters model can
be transformed into a set of local inverter models which are decoupled and linearized.

* For each local inverter the design of a state feedback controller becomes possible, e.g.
using pole placement methods. Such a controller processes measurements not only coming
from the individual inverter but also coming from other inverters connected to the grid.

* Moreover, to estimate the non-measurable state variables of each local inverter, the
Derivative-free nonlinear Kalman Filter is used. This consists of the Kalman Filter
recursion applied to the local linearized model of the inverter and of an inverse
transformation that is based on differential flathess theory, which enables to compute
estimates of the state variables of the initial nonlinear model of the inverter.

* Furthermore, by redesigning the aforementioned filter as a disturbance
observer it becomes also possible to estimate and compensate for disturbance terms
that affect each local inverter.




Nonlinear control and filtering for electric power systems

Example 1: Nonlinear control and state estimation using global linearization

5.2. Dynamics of the inverter

Voltage inverters (DC to AC converters) are usually connected to their output to a LC

or a LCL filter
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By applying Kirchhoff's voltage and current laws one obtains
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Example 1: Nonlinear control and state estimation using global linearization

5.2. Dynamics of the inverter

Using the Park transformation this is also written as a complex variable in the form

X=X, ¥riXs

Next, the voltage and current variables are represented in the rotating dq reference frame

Xﬂ!q = Xabﬁ_jﬂ:};{aﬁ = quf:‘.jﬂ
where #(1) = fD (t)dt + bq

By differentiating with respect to time one obtains the following description
Xﬂb = —qu - 3 j"-'l-'Xriq
Thus, one has for the current and voltage variables respectively,

éf ab = i*’:f dq + (jw)ir dg
{jw}v.{ Jdg

.f ab — di-[’rf g

By substituting Eq. ‘ into Eq. @ one obtains

Lif.dq + jwirdq = —VI dq —

d 4
i VL.dqg + JwVL dq = c;ide — 5
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Example 1: Nonlinear control and state estimation using global linearization

5.2. Dynamics of the inverter
Thus one arrives at a descrintion of the invertar’s dvnamics in the dq reference frame

S VL.d =wVL ¢+ %iz.d = (;%f iL.d
dt‘L q —w'\"‘}“d - %?1 (}f L q
d,’[d—Wllq‘l-"_Vld__‘/l d
Lirg=—wira+1-Vig— 1-Vig

The state vector of the system is taken to be
jf — [I-;Ld? I’I}J“, y Ilf_ti'. if.qlT

The active and the reactive power of the inverter are used next

Pr=Vi,ir, + Vi iL,

@@

a5 = Vi ing — Vigin, —wCr(VE, + V2 ) +wly(i] 4 +1if )

By solving Eq. @ and Eq. @with respect to the load currents one obtains

S
prVL,+qsVL wL ¢V g (37, +i7, )

. - q el e Vi . —
Ly =" y2 IV32 +wCy ! Lg (VEIEVED)
. T, . [
11 i) f"I f‘li _uJC ‘)’ ""I‘f".l‘d(t]d‘-{bzlq')
‘q VE FV7 f (VE,+VE) 9
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Example 1: Nonlinear control and state estimation using global linearization

5.2. Dynamics of the inverter

and by using the state variables notation =~ =1 = Vi, 2 = Vi, 23 = ip, and x4 = i,

one finally obtains the state-space description of the inverter’s dynamics

i -—l-l‘ s _1_pr1+er2 iR 0 w[,f.r-g(.rg+.r'f;)
T cx” AL o T C o T T3+ Bl Tt (I]‘r+r§’) . 0 0
, A 1 1 prTa—qpxy v wlyxy(z3+a]) 0 0 ,
T —t0 e I o 4 e B b o JERRTYY g STV R B — u
da Tl = wry + Cy T4 Cy =xi+zx3 ")Cf'l'l : (z1+3) + 1 0 :
dt | rq prt il Lt u2
Wwry 4{.1?1 2 § 1
4 2 0 T

—WIg — ﬁl‘g
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Example 1: Nonlinear control and state estimation using global linearization
5.3. Differential flatness of the inverter

» Differential flatness theory has been developed as a global linearization control

method by M. Fliess (Ecole Polytechnique, France) and co-researchers (Lévine, Rouchon,
Mounier, Rudolph, Petit, Martin, Zhu, Sira-Ramirez et. al)

- A dynamical system can be written in the ODE form S (w,w,w,...,w")), i=12,....q
where,, (i) stands for the i-th derivative of either a state vector element or of a control input

* The system is said to be differentially flat with respect to the flat output
Y. :¢(W,V.V,\.I;l,...,W(a)), i=1...m where Y=(Y1.Y2:Ym)
if the following two conditions are satisfied
(i) There does not exist any differential relation of the form

R(Y,Y, Yo Y2 =0

which means that the flat output and its derivatives are
linearly independent

(i1) All system variables are functions of the flat output
and its derivatives

W(I) :l//(y, Y, yi"'iy(yi)) 11
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Example 1: Nonlinear control and state estimation using global linearization

5.3. Differential flatness of the inverter

The flat output of the inverter is taken to be the vector

y = [y1, 2] = [VLg, Vi, ]

The first row of the state-space equations is

1 1 prri+qyxa 1 wl fl‘)(:l‘?’-*}-l‘g) @
e — (T - —— — — — £ y = ‘.}‘ 3:) 4

The second row of the state-space equations is
1 prra+qsxi

s | 9
. g 1 wLyxi(z3+ad)

These equations are rewritten as follows

i -:JJL_F:I‘Q[IE'FTE}
Cy  zy+xj

LR i sl 1 PyT1+qyTa
= T1 — W — g, T8 + oy (ara))

+ w2

i -:JJLJ-:E:1|:TE+.1:§]
Cy Ti+T5

e A S A1 1 PfTra—qyTy

— W]
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Example 1: Nonlinear control and state estimation using global linearization
5.3. Differential flatness of the inverter

By dividing the above two equations one gets

pfxrytqpxo

1'1—“”37—8 ;1‘3+Cl ! 1, :C +WwTro
_xa _ 3 f (=1+=3)
rKr 1 1 PfT2—qf=y

(.r? ~f'.1:3?|
while using in the notation the elements of the flat output vector this gives

ya - ’ I 1 (y2\Pry2—qsiu1
— =0 — WYo + —(= — —

L wy2 Cr (yl ) (yi'-i-y-i)
ety . 1 1 Pry1+4q5y2 ,
— — Wl — —T + 2 2 + Wi

+ wy2 =

By solving the above equation with respect to rs gives

= WD SR P o 1 (yoPry2—qyyr
23 =g, T4+ Crd yy Y2 T Wy ': Cru1) (vitv3) 92
: 1 Psy1tasy2 ,
TY1 — WYz + + wys }

s T TR, A 5
Cr (yi+u3)

which is also written as ~ z3 = — (37 )z4 + faly1, 91, y2, Y2) @

Next Eq. @ IS substituted into Eq. @ which gives.

s To—qrx
o = —wr1 + -%-1‘4 — —-}—E‘fﬂz‘_‘q—j‘ + WTr1—

, Cy (x1+x3)
wL x1 {[— 22 )24+ fa (v1.91.y2.dotys )] +22 }
1 whyzi{l=37)%4+fa(v1.01.v2.dotys, 1
Cy (x7+x3) 13
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Example 1: Nonlinear control and state estimation using global linearization
5.3. Differential flatness of the inverter

. ; : [ 1 fU2—qys1 :
or equivalently. o = —wy1 + groa — g AT +wyi+
1 wl,fgn{[—(z—f)rx+fa(y1.1'11.'y2.@'12)]'+1‘3}
- Cy (¥i+v3)
which finally gives. T4 = foly1,y1,y2, y2)

Moreover, by substituting Eq. @ into Eq. @ one gets

w3 = —(33) o (y1, 91, y2, 92) + faly1, 91, y2, 92)

From the last two rows of the state-space equations one has that

. 1 1
T3 = WTy — ¢ T1 =+ ;" @

: 1 1
: Ty = Mg o E o
Thus, one obtains ® S TR TR @

uy = Ly{is —wrq + ﬁ:ﬂl}:}ul = felyi, 91, y2.92)}

uz = L{3s — wzs + ﬁl‘g}:‘*ﬂz = faly1, 91, y2,92)}

This confirms the differential flatness of the model 14
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Example 1: Nonlinear control and state estimation using global linearization
5.4. Flatness-based control of the inverter

By considering the active and reactive power of the inverter as piecewise constant and by
deriving the first row of the state-space equations in time, one has
1 {(p;i*l-+-qf.i‘.2)(.r‘;)+rg)—(pfn+er-2')('2r1;if1+‘2;r~.)i'-2

. . l .
1 =WTo + =—Tq — = - = - —
X T ST Oy (z1+23)7}

. , wkL pao 1:3 .r,](.r +.rj)--wa.r){21‘31‘3+)1‘111)(1'1+1‘,)
—WIr2 + { (}.r +12)_ }
_w!4112(1§+r:';)('2.l?1;1'71+21‘2i‘2)
(z3+x3)2

The time derivatives are substituted from the associated rows of the state-space
equations.

. 1 ¢ A 1 {(p .r1+q):.r))(.r 43 )—(pfa1-Lq;.r))(2.r11'1+21'o;1‘))
r1 = wTy + —C—f(..um — =T+ 1 u)— ¢ L =

f I‘f i (1' +1‘7) }

rE2(@i+e]) (@ +e3) twl jzo(2g+a]) (2esd1+220d) )
(z1+x3)=

—wr2 + le {wL

A fos wlrxa '2.101(;1'2-%-1?%) L G
(wry — 7= I.1+EU1)+ ij l (—WI3— Ty 22Ty “2)

il wk yxa 21‘1(1‘1-7-1'))
i (x1+zx3)”

Cy (.r +:r_,_)

15
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Example 1: Nonlinear control and state estimation using global linearization
5.4. Flatness-based control of the inverter

The previous relation can be also written using the notation of the Lie algebra-based
linearization

Ty = L%hl(;r) + Ly, Lehy(x)uy + Lo, Lhy (z)usg
where

2 S, TG iy i 1 p(prEitapda)(zi+z3)—(prritarza)(2z1d1+220da)

o +L{wl,,ig(z§+xj-{)uf+z%)-w14,x2(r§+x§)(2mi,+212i2)}
Eall (z1+23)°

. TR
+w14!12.213(“'f’ Z-_j_r’)
Cy (z7+x3)

Ly Tigliale) = A fulmBe) i 44

_ wlyza 23, 1
Lg,Lshi(z) = Cr (a2+zd) Ly

In a similar manner, by differentiating the second row of the state-space equations
with respect to time one has

- . 2 2. o o
To — —1 A s 1 (prza—gra1)(zi+x5)—(PfTa—gfT1 (22131 +2x272))

-Hu'i‘l . #{ wk sy (1'§+:r.?1')(:r.f+;r§)+::Lfgflq(2:3i'3-+-'2mig)(rf-{-;r%) 3
Cy (z1+x3)*

—wh gy (+2)) (2ryi +2aad9) }
(x7+x3)°

16
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Example 1: Nonlinear control and state estimation using global linearization
5.4. Flatness-based control of the inverter

The previous relation can be also written using the notation of the Lie algebra-
based linearization

Tg = L‘J.?.h.g{.'r.} + Lg,Liha(z)ui + Lg, Lha(x)uz

where
’ - . 92 9 o .. . A
2 L, S 1 ! 1 f(pgEo—gsz1)(x1+x3)—(psra—grx1)(2T1T1+2x932)
L’fh"?.(l") = —WI1 + C—f(—UvIS) . C_f{ (z2+23)2 H
Wil — Ry wa.i'l(r§+x%)(;r¥+1‘g)—wa:zth(.r%-i-:r.g)(?mi‘1+21'-3;i‘.2)}
Cy (z3+23)°
1 ;‘.'[4‘(1‘12;1?3(\'4)1‘.1—-[‘171‘1) 1 w14f11211(—w13—117-12)
Cy (z7+x3) Cy (z1+73)
it _iwL_,-:nE;r:aL
Ly Lsha(z) = — o wiep 1;
E L) = i wlipnglng 4 5 e
oL fI2GE) = T o\ =2I 23y Ly T Ly

Thus, one obtains an input-output linearized description of the inverter

Ty = L?-hl(;r) + L, Lihi(z)uy + Lo, Lphy(x)usg
. .1‘2 = L?hz(l‘) + L’ga th-z(;lf)'lll + Lgbth.-z(I)'UQ
or equivalently
vl = L-Eh] () + Ly, Lyhi(z)ur + Lg, Lyhi(z)us

_'.f ' i ¢
1 1 with vy = th--;_)(l') + Ly, Lyho(x)uy + Ly, L tho(x)us 17

;.I?g =
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Example 1: Nonlinear control and state estimation using global linearization
5.4. Flatness-based control of the inverter

For this form of the system’s dynamics the design of a state feedback controller is easy.
This takes the form

v = ‘11 k(i r‘li) — l.é 7 I‘li)
vy = &§ — kj(d2 — 23) — kj(z2 — §)
The control input that is actually applied to the inerter is given form & = 7 + Mu

— ,
or equivatentty  (11) = (1£5.5) + (12 7mte) 12 7mce)) (o)
which means that the control input that is finally applied to the system is
=M1 — f)
Moreover, by defining the new state variables =z = x4, 23 = 71, z3 = x5 and z4
the following state-space description is obtained

2'1 0 1 0 0 A 0 0
z22] _ |0 0 0 O)f=z]|, |1 O] (uw
z3f [0 0 0 1ffz] {0 O (vz@)
Z4 00 0 0/ \z 0 1

e R
i
p SO
[l
ST
O -
e Y o
il =
(e £} )
B,
<
[ S /- B R

""lllll|
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Example 1: Nonlinear control and state estimation using global linearization
5.5. Equivalence between inverters and synchronous generators

Synchronization between parallel inverters is considered next. The functioning of the i-th
inverter is shown to be equivalent to a synchronous generator with turn speed denoted as w;

The deviation from the synchronous speed is shown to be proportional to the deviation
of the produced active power from a reference value

Ad; —w; —wg = _km{.ﬁm . Pfdf]' @

otk measured active power of the i-th power generation unit
B desirable active power
k,,  "droop” gain which is practically computed by dividing the range of variation

of the inverter’s frequency (wmaz-wmin) by the maximum active power P, .

Since the measured active power is obtained from the inverter’s real active power with

a time delay in measurement, it holds that
P (s) = e *Tr: P(s) OF equivalently T, P™ = —P™ 4+ P, @

Thus the i-th inverter’s dynamics is expressed as

A = Aws
M el iy o

19
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Example 1: Nonlinear control and state estimation using global linearization

5.5. Equivalence between inverters and synchronous generators

By differentiating Eq. @ one obtains

A(D,' — —kp.P.m —}-/\'[,I.P-d @

Moreover, from Eq. @ one obtains

FP=—o-F"+ P @
By substituting Eq. @ Into Eq. @ one obtains

'——:Iq,p! .P]l“_kp_LPd

and using that P?=0 one has

Aw; = %ﬂm = f—:ﬂ or equivalently JiAd; = P™ — P, With  J; = 7, [k,

Additionally, from Eq.@ one has

Wi —Wa — kD;Pzd — _k Pm:>Pm = Al W + rwd + Pld:>
P7rf 2i Aw' + P
From the prEVIOUS two equatlons one gets

Aw; = _kp.-Prm + km Rf or JilAw; = —Dp, Aw; + Pq;d — 0 @ 20
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Example 1: Nonlinear control and state estimation using global linearization

5.5. Equivalence between inverters and synchronous generators

In ideal conditions there is no interaction (power exchange) between distributed
power units connected to the same electricity grid.

However, frequently such interaction exists and in the latter case Eq. @should
be enhanced by including an interaction term

JiAioy = — Dy, Aw; + (P2 — Pi) + > i=1.j2iGiisin(d; — &;)

1

where 4 is the virtual turn angle that is associated with the i-th
power generation unit (inverter).

About the coupling coefficients Gi; these are functions of the conductance of the grid
line which connects the i-th to the j-th power generation unit, as well as of the grid voltage
that is measured at points i and j respectively

Thus, finally the dynamics of the i-th power generation unit (inverter) is described
as a synchronous generator, which interacts with other generators In the grid

Ad(t) = Au(t @
JlAw'l(t) = —Dpl.AOJ-,'(I) + (Pld(t) f + Z i,] SIII () (5))

In this approach, it is considered that the i-th local controller not only processes
measurements coming from the associated power generation unit, but also uses
measurements coming from the other power units which are connected to the grid 21
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Example 1: Nonlinear control and state estimation using global linearization
5.6. Control for parallel inverters connected to the grid

By representing the inverter as a virtual synchronous generator then one has that its
dynamics is composed of two parts (i) the rotation part and (ii) the electrical part.

() Rotation part

Adi(t) = Awi(t)
Ji&ir(t) = —Dp, Awi(t) + (PA(E) — Pi(t)) + ;2 G sin(6: — 55)

(i) Electrical part

r .2 92
Y 1 1 PfVigtasVig | o~y wL ¢V, (17, +i7 )
v, ) w‘]‘q + oF" i, (o7 TT‘;— + wa‘ L VE +“"i.2q) 0 0
s 1V B 0N, N . pf‘z qr‘zd —WwC Vi + wl Vi, (17, +i7,) 0 0 V;
#| 0| = | T BT g, SRR Ty | L o | b
; II,; 5 “q 1 ¢ d “q I‘f ‘/lq
i, Wil, = Ty VL4 0 il

K 1 7 ['f

The synchronizing control approach for the i-th ':uuferter makes use of Eq.

9

and of the linearized inverter model given in Eq.

22
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Example 1: Nonlinear control and state estimation using global linearization
5.6. Control for parallel inverters connected to the grid

First, the value of F;, that is the active power that the i-th inverter should inject to the
grid, is found from the solution of the control problem of Eq.

Subsequently F: is used in the computation of the solution of the control problem of
Eq.

The computation of setpoints for the control of the electric part of the inverter is shown
in the following diagram

l.J" + Pr" 6]
@ Contml Wirtual Synchronous | .
Gererator
C
. Pl:*
+ w
LER o :.L.q
¥ SErpaint
Computation
o
Vid
- + o Vi
Vie L} Control — Irverter

23
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Example 1: Nonlinear control and state estimation using global linearization
5.6. Control for parallel inverters connected to the grid

It can be proven that the model of N-parallel inverters connected to the electricity grid is a
differentially flat one

By defining as flat output a generalization of the state vector of the stand-alone
inverter, that is

i

¥ = v 0n00 008 n a1

or equivalently

i il
Isolation switch

Local Local Local Local
bs bus s bus
Imverter || Logal Ivereer || Local Imereer || oy Inverter || Local
1 load 1 1 load 2 3 load3| """ N lad N
0G1 bG2 DG3 DGN
Fhotovoltaics Pholmvolzics Batiery Fuel calls

It can be confirmed that all state variables and control inputs for the model of the N
coupled inverters can be expressed as functions of the aforementioned flat output
Y and of its derivatives. 24
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Example 1: Nonlinear control and state estimation using global linearization
5.6. Control for parallel inverters connected to the grid
Using the previous flat output definition, and the state variables

i & . i i - S a g e
21 =Y, 29 = Y1, 23 = Y2, 24 = Y2, Zp =Y 24— 13

one has the state-space description

] 01000 0 0\ /[ 00 0
2\ (0000000\(35 (100\ 5
#1_Jooo0o 100 0|]|z4], 00("‘})
#1 oo oo 0ollz]l"]o 10|\
0000GO0DT1O0]|][z 0 0 0] \"3
\s¢/ \ooo0o0o0o00/\&)/ \oo 1)

where the control inputs of this model are defined as
of = =Dy Aut) + (PHO) — Pit) + £, Gpsin6, - 5)] ()

vh = L2hy"(2) + Ly, Lyhi(z)ul + L, Lyhi (z)u @
% = L2ho'(z) + Ly, Lhb(z)ui + Ly, Lphb(z)ub

The above mean that for the synchronization of the i-th virtual generator
(inverter) the control input (in the form of active power) is finally given by

P = —Jii$, — Dy, Z i Gy 112(11,—IIJ)+ @
K (o )J A

25
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Example 1: Nonlinear control and state estimation using global linearization

5.7. Disturbances estimation with Kalman Filtering

A state estimator for each local power generation unit can be also designed in the
form of a disturbance observer.

It is considered that the linearized model of the i-th inverter is affected by additive
input disturbances

5= ol +df
5§ = vl + db
5% = v} + d

The disturbances’ dynamics can be represented by the n-th order derivative of
the disturbances variables together with the associated initial conditions.

Thus the additive disturbances are equivalently described in the form

&) = fa,, dY) = fa, and &) = f,

The state vector is extended by including as additional state variables the disturbances
and their derivatives. Thus, one has

"R U CRIT N T S ST SR Y S i
2, ¥y = Zy +Vy, 23 = Z4, Z4 = Zg + Vg, Z5 = Zg, Zg — %11 + V3,

Il

o
£l

= z3p, %11 = ds and zj3 = ds. 26
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5.7. Disturbances estimation with Kalman Filtering

Therefore, one has the system’s dynamics in the extended spate-space form
Ze = AeZe + Beve

Vs = ['1'1?[;-. 'l"%r U%r fdl !ffiz': fd.'i]T

where the extended inputs vector is

_ (010000000000 (000000 (100)
while 000000100000 100000 000
000100000000 000000 010
000000001000 010000 000
000001000000 000000 001

A _|000000000010] , _fo01000f _|000

¢~ 1000000010000 ¢~ f000000| “¢ =000
000000000000 000100 000
000000000100 000000 000
000000000000 000010 000
000000000001 000000 000
\000000000000) \000001) \000)

For the extended state-space description of the system the state observer
becomes

RS RS R
where As = M and O = G
while B, differs from B. In the elements of the 10t and 12" rows which

27

are all setto 0
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5.7. Disturbances estimation with Kalman Filtering

For the linearized model of the parallel inverters, state estimation is performed
with the use of the Kalman Filter (Derivative-free nonlinear Kalman Filter)

In the filter’s algorithm, the previously defined matrices 4. Be and Ce  gre substituted
by their discrete-time equivalents Ae;,Bc; and C.; This is done through common
discretization methods

The filter’s recursion is:

measurement update:

K¢(k) = P~ (k)C] [Cey P~ (K)CTL, + R(K)] !
#(k) = &~ (k) + K (K)[Ce, (k) — Ce,3(K)
P(k) = P~ (k) — K(k)C., P~ (k)

time update:

= A, P(K)AT, + Q(k)
= A, (k) + Be,v(k)

After identifying the disturbance terms, the control input of the inverter is modified as follows:

v} = 21 — k(21 — ,iiii) — A},(* —2%) — 2%
vy = 23 kg("s—?'g)—ké(f»s—f?:g)—zg
vy = 25 — k(25 — 25) — kp(z5 — 25) — 211

The inclusion of the disturbance estimation term 7. Z2 and 211 in the feedback

_ o T 28
control inputs enables to compensate for effects of the perturb.di, d2 and ds
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5.8. Simulation tests

The performance of the proposed distributed control scheme for the synchronization of
parallel inverters was tested through simulation experiments. A model of N = 3 distributed

power generation units was considered, while each one of these units was connected to the
grid through an inverter

Table 1
Parameters of the Inverters
Invy || Invg || Invy
Ly (mH) || 105 || 10.3 || 10.1
Cy (mF) || 0.04 || 0.03 || 0.02
pr (Kw) [ 21.1 || 223 || 23.6

The three interconnected inverters, shown in Fig. 4, are assumed to have different model
parameters which are described in Table I.

The objective is that all inverters (virtual synchronous generators ) finally attain the same
frequency w; 29
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5.8. Simulation tests
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5.8. Simulation tests
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5.8. Simulation tests
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5.8. Simulation tests
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5.8. Simulation tests

The presented simulation experiments demonstrated the efficiency of the control
method in tracking rapidly changing reference setpoints while also achieving good

transients. The associated results are outlined in Table Il

Table 11
RMSE for the distributed inverters
RMSE; || RMSE; || RMSE;
W 0.0225 0.0427 0.0199
Vi, 0.0180 0.0008 0.0003
VL, 0.0246 0.0020 0.0010

The disturbances appearing in the simulation experiments could be met in
adverse operating conditions of the distributed power generation system.,

Even for the latter case the good performance of the control loop is confirmed.
Such disturbances can be due to modelling errors (e.g. parametric changes in

the inverters’ model) or due to external perturbations (e.g. grid faults or
disturbances due to the connection or disconnection from the grid of power

generation units).

34



Nonlinear control and filtering for electric power systems

Example 1: Nonlinear control and state estimation using global linearization
5.9. Conclusions

* The inverter’s model satisfies differential flathess properties, which allows to transform
the inverter’s model to the linear canonical form.

* Next, the problem of control and synchronization of parallel inverters connected to the
grid was analysed. It has been shown that, the dynamics of each inverter can be written in
a form that is equivalent to the model of the synchronous power generator.

 Using the latter description one can compute the active power that each inverter should be
contributing so as to remain synchronized with the reference frequency of the grid.

* The active power and the frequency associated with the inverter were used next to
compute the control input that is applied to the inverter’s electrical model.

» Thus, finally the synchronization problem of each local inverter was turned into a
problem of nonlinear feedback control for the associated inverter’s electrical model.

» To compensate for additive disturbance terms that affect
the local inverters’ models, the Derivative-free nonlinear
Kalman Filter was redesigned as a disturbance observer.

» The performance of the proposed distributed feedback
control scheme for parallel inverters was tested through
simulation experiments 35
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6.1. Outline

e A nonlinear optimal (H-infinity) control method is proposed for the model of a hybrid
excited synchronous generator.

e The generator has primary excitation at stator through AC/DC and DC/AC converter,
and auxiliary excitation at a secondary winding fed by an AC to DC converter.

e Through the hybrid excitation scheme more control inputs are applied to the generator,
thus achieving better performance for the system’s control loop.

e The dynamic model of the generator undergoes approximate linearization around a
temporary operating point which is recomputed at each time-step of the algorithm.

e The linearization procedure relies on Taylor series expansion and on p. ul
the computation of the associated Jacobian matrices. = =

e For the approximately linearized model of the hybrid excited synchronous
generator a stabilizing H-infinity feedback controller is designed.

e To compute the controller’s feedback gains an algebraic Riccati
equation is repetitively solved at each iteration of the control method.

e The global stability properties of the control scheme are proven
through Lyapunov stability analysis
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6.2. Dynamic model of the hybrid excited synchronous generator

The hybrid excited synchronous machine receives double excitation through (i) an
AC/DC and DC/AC converter which is connected to the stator’s windings, (i) an AC/DC
converter which is connected to an auxiliary winding of the stator.

The diagram of the hybrid excited synchronous generator is given next

I~ " converter converter ! electricity
: ¢ : grid
| AC ! i DC '

] Rl

: DC | ac |4

: ;

Bl i) e e e \e i i S e | (e -

AR
converter
Cha DC
AC
7 Y
Vool |V,
Vy
X = [9' w,lq,1q, if]'{' Nonlinear

>

optimal controller

Fig. 1. Diagram of the hybrid excited synchronous generator 37



Nonlinear control and filtering for electric power systems
Example 2: Nonlinear control and state estimation using approximate linearization
6.2. Dynamic model of the hybrid excited synchronous generator

e Hybrid excited synchronous machines differ from typical synchronous
machines because they receive double excitation at their stator.

« Moreover, their rotor does not have any windings and can be also free | ¢
of permanent magnets, as in the case of reluctance machines. ey

e By providing double excitation at the stator one can control more
efficiently such machines, and particularly their magnetic flux

e The dynamic model of the hybrid excited synchronous machines remains a
nonlinear and multivariable one, therefore their control is a non-trivial problem.

e Hybrid excited synchronous machines can be used as generators thus making them
suitable for renewable energy applications.

e Besides, they can be used as electric motors in the traction
systems of trains and electric vehicles.

e Other uses of hybrid excited synchronous generators are in
aircraft power supply and in wind power systems.

e Due to the complexity of the dynamic model of such machines, stability proofs
are often left as open research problems

38
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6.2. Dynamic model of the hybrid excited synchronous generator

The state-space model of the Hybrid Excited Synchonous Generator HESG
Is given in the following set of equations

; M : T
%(Ld — Lg)igiq + P"\IJ“ g + —ilq?‘f — 3z @

dw __ B .
iy
%:_%leid_[]ziq_ anWZf_\IlaPnW"F lsq @

Yt — MyRKig— MyL,K Pywiy — LaR;Kiy — MyKvs, + LaK vy @

To describe the electric dynamics of the machine, the synchronously
rotating dq reference frame is used

39
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6.2. Dynamic model of the hybrid excited synchronous generator

The parameters and state variables of the HESG model are defined as follows:

Vo4 Is the d-axis component of the stator voltage

V4q IS the g-axis component of the stator voltage

Vv is the excitation (field) voltage at an auxiliary winding of the stator

I4 IS the d-axis component of the stator current

4 is the g-axis component of the stator current N i
i IS the current at the auxiliary excitation circuit of the stator { 4

o
R is the per-phase resistance of the stator Nz

R;is the resistance of the auxiliary excitation winding
L, is the d-axis component of the stator inductance

L, Is the g-axis component of the stator inductance

40

L; is the inductance of the auxiliary excitation winding.
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6.2. Dynamic model of the hybrid excited synchronous generator
Additional parameters of the HESG model are:

M; is the mutual inductance between the auxiliary excitation winding and the
d-axis winding of the stator,

W is the flux linkage of the rotor’s permanent magnet,
P, is the number of poles of the machine,
w is the rotor’s turn speed, J is the rotor’s moment of inertia,

b is the friction coefficient in the turn motion of the rotor

T, is the mechanical torque exerted on the machine due to wind.

Moreover, coefficient K is defined as K= 1/ (LyLisMPA)K = 1/(LgLs — Mf)

The state vector of the hybrid excited synchronous machine is defined as
X=1[6,w, g g if]",

while the control inputs vector of the machine is given by v = [Cpq , Vg, Vg, V¢]T,

Cha IS an additional control input that depends on the pitch angle of the
turbine’s blades of the generator. 41
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2. Dynamic model of the hybrid excited synchronous generator

About the mechanical torque that is applied to the rotor of the generator and which
is due to wind one has

TL = %/)TFRBCba(/\. ‘;'f'_‘-})'l’2:>TL — Cba(/\, ,;'B)Tm @

where v is the speed of the wind, 3 is the blades pitch angle

A is the tip-speed-v ratio is A= wR/N, w; is the turbine’s turn speed.

Using the previous notation about the state variables and the control inputs of the hybrid
excited synchronous generator one has the following state-space description

pn‘I’a ; PnA] z ; ¢
: (Ld — L Q)E3Ta+ 2 za+ =7 Lraxs — Ij@ul @

= —Lf]?]\ 13+LfL ]\P 1214+ \[f]?f[\l +Lf1\112— \[f]\ll4

fq = —72Pn zgzg—fR—-u-‘ anlzl)-*—P lz+———u4

i5 = MyRKx3 — M;LoK Pyroxy — LiRfKas — MyKus + LaK uy
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6.2. Dynamic model of the hybrid excited synchronous generator

As a result of the above one arrives at the following, affine-in-the-input, state-space description
for the dynamic model of the hybrid excited synchronous generator

i = f(x) + gla)u

with reR?*!, f(x)eR®*!, g(z)eR®** and ueR**?

In particular vector f(x) and matrix g(x) are given by

9
b " Pn e Pn\I’u n PHAI ey
=i Sall e B Yo Sy et hpe
flx) = —LfRKx3 + LfL.K Ppxoxs + My Ry Kxs
L R R . M R \Ila )
— 72 Pyxors — ToTa — L—:Pn;l,g;l,g — L—qpn.,l,.g

M¢RK w3 — M{L K Pozozs — LaRsKas
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6.2. Dynamic model of the hybrid excited synchronous generator

The definition of abbreviated parameters’ names in the dynamic model and the control loop of
the hybrid excited synchronous generator is outlined in the following Table:

Table I: Definition of parameters
HESG | Hybrid Excited Synchronous Generator
Vs d-axis component of the stator voltage
Vs, g-axis component of the stator voltage
v excitation (field) voltage at an auxiliary winding of the stator
id d-axis component of the stator current
1q g-axis component of the stator current
if current at the auxiliary excitatory circuit of the current
R per-phase resistance of the stator
Ry resistance of the auxiliary excitation winding
Lg d-axis component of the stator inductance
L g-axis component of the stator inductance
Ly inductance of the auxiliary excitation winding
M; mutual inductance between excitation and d-axis winding of stator
v, flux linkage of the rotor’s permanent magnet
P number of poles of the machine
w rotor’s turn speed
of rotor’s moment of inertia
b friction coefficient of the rotor
Ty mechanical torque exerted on the machine due to wind
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6.3. Approximate linearization of the Hybrid Excited Synchronous Generator

around the temporary operating point (equilibrium) (x*, u*), where

x* is the present value of the system’s state vector and
u* is the last sampled value of the control inputs vector

For the linearized state-space model of the svstem it holds that
r=Az +bu+d

where  d is the cumulative disturbance vector due to approximate linearization and
truncation of higher-order terms in the Taylor series expansion, and

A =V, [f(z) + g(@)u] |+ ur) = A = Vo [f(2)] | (2 u*)@

B =V.[f(z) + g(z)u] |(z+,ux) =B = 9(2) |(z*,u")

About the Jacobian matrix V[ f ()] |(z+ 4+) onehas

First row of the Jacobian matrix V. [f(x)] |($*_u*)

Ofs ) TR = 1, 00 i, PP ), e T

or1 6$2 ? (9.’1:3 ' Oxrg
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6.3. Approximate linearization of the Hybrid Excited Synchronous Generator

around the temporary operating point (equilibrium) (x*, u*), where

x* is the present value of the system’s state vector and
u* is the last sampled value of the control inputs vector

For the linearized state-space model of the svstem it holds that
r=Az +bu+d

where  d is the cumulative disturbance vector due to approximate linearization and
truncation of higher-order terms in the Taylor series expansion, and

A =V, [f(z) + g(@)u] |+ ur) = A = Vo [f(2)] | (2 u*)@

B =V.[f(z) + g(z)u] |(z+,ux) =B = 9(2) |(z*,u")

About the Jacobian matrix V[ f ()] |(z+ 4+) onehas

First row of the Jacobian matrix V. [f(x)] |($*_u*)

Ofs ) TR = 1, 00 i, PP ), e T

or1 6$2 ? (9.’1:3 ' Oxrg
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6.3. Approximate linearization of the Hybrid Excited Synchronous Generator
Second row of the Jacobian matrix V.| f ()] |z =)

Of: _ Ofs .. b Ofs .. Pa [ L

o0 = 0 3m = — T o = T (Ld — Loz,

6f2 _ , XA Pn\I’a 'Pn f df2 | PnA/I_f sz
B = J 2 Lig— Ly )ig 4072 +--"Lik BNd = iy

Third row of the Jacobian matrix V. [ f ()] |(x*_u*)

) a rpy o Ofs. -
3L =0, 3& = LyL,KPoxs, 38 = —L¢RK,

S5 = L[tLKPnas, 32 = —MiR;K

Fourth row of the Jacobian matrix V[ f ()] |(x*_u*)

Ofs _ Ofa .. L& . My . Y

aml —_— 07 81:2 _ Lq Pn.l3 Lq Pncl/s Lq Lq./
Ofs _ R Ofu ... My
 wmaa and T P55

Fifth row of the Jacobian matrix Vi [f ()] |2+ =)

) &) ; D ... Ofs
ol =0, 3£ = —M{LKP,z4, a—ﬁ = M{RK,

9fs — _M;L,K Pz, and 25 = _L,R;K 47
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6.4. Design of the H-infinity feedback controller
The state vector notation x is used for the model of Eq.

At every time instant the control input #* is assumed to differ from the control input &
appearing above by an amount equal to A, thatis o = 44 Ag

B B @

The dynamics of the system of Eq.@ can be also written in

the form
# = Ae 4+ Fut Bu* — Bu* 4 o

and by denoting d; = —EBw«*+44dy as an aggregate disturbance term one obtains

& = Ao+ But Be* + d @ }

By subtracting Eq. @ from Eqg. one has £ ]
e L BN B s

By denoting the tracking error as € = #— 4 and the aggregate disturbance term as
d_ = dy e the tracking error dynamics becomes

¢ = Ae+ Bu+d a8
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6.4. Design of the H-infinity feedback controller
The initial model of the Hybrid Excited Synchronous Generator is assumed to be in the form

r=if e u) BeRY. BeR®

Linearization of the system is performed at each iteration of the control algorithm round its

present operating point
b, et el ), wid — 207
The linearized equivalent of the system is described by

¢ = Ax + Bu+ Ld xcR" ucR™, deh*

where matrices A and B are obtained from the computation of the Jacobians

8h 8fr . 84 afs  8h . 874
Sy acn &y

o i &
8fa Bfs .. Bfa 5rs  Bfs  Bf%
A= o e i | Gmd B | B o B |l
*"jfﬂ S.fﬂ A 5',:_'1'”-; ‘afﬂ "ﬁfﬂ T Efi
ey o oy, g o T

and vector d denotes disturbance terms due to linearization errors.
The problem of disturbance rejection for the linearized model that

is described by = Ao+ Bu+ Ld
r=rA (2
=i
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6.4. Design of the H-infinity feedback controller
where »= B™, weH™, de % and <= K¥cannot be handled efficiently if the classical LQR
control scheme Is applied. This because of the existence of the perturbation term .

In the He~ control approach, a feedback control scheme is designed for trajectory
tracking by the system’s state vector and simultaneous disturbance rejection, considering
that the disturbance affects the system in the worst possible manner

The disturbances’ effect are incorporated in the following quadratic cost function

- 1[() lyT(z‘)l/ ) + Tu (t)u() p (IT( )d( )dt, r,p>0 @

The coefﬂuent r determines the penalization of the control input and the weight
coefficient p determines the reward of the disturbances’ effects. It is assumed that

Then, the optimal feedback control lawis  w{t) = —Kx(t) vith K = 1BTP

where P is a positive semi-definite symmetric matrix which is obtained
from the solution of the Riccati eauation

ATP 4+ PA+Q—P(ABBT - L LIT\P =0 @

where Q is also a positive definite symmetric matrix.

The parameter p in Eq. (15), is an indication of the closed-loop system robustness. If the
values of p> 0 are excessively decreased with respect to r, then the solution of the Riccati
equation is no longer a positive definite matrix. Consequently, there is a lower bound p,,,
of for which the H-infinity control problem has a solution. 50
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6.5. Lyapunov stability analysis

The tracking error dynamics for the Hybrid Excited Synchronous Generator is written in

the form )
¢=Ae+ Bu+ Ld @

where in the Hybrid Excited Synchronous Generator L =1 € I°*> with | being the
identity matrix. The following Lyapunov function is considered

VZ%ETPE
2= 1—104

V = %éTPE HE %ETPE',:‘;:-
V =1lde+ Bu+ LdTP + 1eTPlde + Bu + Ldj=

V = 1[eTAT + uT BT + dT LT Pe+
+1eTPlAe + Bu+ Ld]=

Vo— %ETATPE el %HTBTPE 4 %GETLTPE—I—
%ETPAE + %ETPBH + %ETPLGT

51
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6.5. Lyapunov stability analysis

The previous equation is rewritten as

V =1cT(4TP + PA)e + (1vT BT Pe + LeT PBu)+
+(1dT LT Pe + LT PLd)

Assumption: For given positive definite matrix Q and coefficients r and p there exists a
positive definite matrix P, which is the solution of the following matrix equation

ATP+PA=-Q+ P(2BBT — #LLT)P @

Moreover, the following feedback control law is applied to the Synchronous
Reluctance Machine
—lETPE

By substituting Eq. @ and Eq‘ one obtains

= zel[-Q + P(% BBT——ELLT)P]
+eT PB(—1 BT Pe + ETPLﬂi:;':-

52
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6.5. Lyapunov stability analysis

Continuing with computations one obtains

V=—1eTQe4 (L PBETPe— ﬁgETPLLT]PE
—1.TPEBTPe+ T PLd

which next gives
TQE — 1 T PLITPe+ T PLd

or equivalently

V — —l TQE — %ETPLLTPE—F
+1ETPL.::!+ LiTIT Pe @

Lemma: The following inequality holds

$eTLd + $dIT Pe — 5L:eT PLLT Pe<ip®d"d

53
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6.5. Lyapunov stability analysis

Proof : The binomial I:pr:tr— %E?:IE is considered. Expanding the left part of the above inequality
one gets '
o%a? + b2 —2ab = 0= %pgag—l—ﬁguﬁg—abiﬁ 0=
ab — 52b% < 0% = Jab 4 jab— 520 < 50%

The following substitutions are carried out: & = d and b = TP,
and the previous relation becomes

LdT LT Pe + T PLd — S5eT PLLT Pe<}p?dTd
Eq. IS substituted in Eq. @ and the inequality is enforced, thus giving
V< — 1eTQe+ 1p%d7d

Eq. shows that the H-infinity tracking performance criterion is satisfied.

The integration of \/ from O to T gives

o S T BT
Jru Vit)de= ; %-Jrn:u ”EHE;'dﬁ"' %Fifuiuduidﬁ:}
V(T)+ fy llellGde<2V(0) + o fy ||d]|%t
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Example 2: Nonlinear control and state estimation using approximate linearization
6.5. Lyapunov stability analysis

Moreover, if there exists a positive constant ;= (0 such that

Jo~ 1]l 2de < Mg
then one gets

Jo llelfgdt < 2V(0) + o* My

Thus, the integral f;ﬂ||e||%r;£ﬁ is bounded.

Moreover, V(T) is bounded and from the definition of the Lyapunov function V it becomes
clear that e(t) will be also bounded since

e(t) € (U = {e|e? Pe<OV(0) + o2 M4}

According to the above and with the use of Barbalat’s Lemma
one obtains:

I ene(t) = 0.
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6.6. Robust state estimation with the use of the H-infinity Kalman Filter

e The control loop has to be implemented with the use of information provided by a small
number of sensors and by processing only a small number of state variables.

o Actually, one can implement feedback control by measuring only the stator currents. To
reconstruct the missing information about the state vector of the Hybrid Excited Synchronous
Generator one cam use use a filter and based on it to apply state estimation-based control .

e The recursion of the H-infinity Kalman Filter, for the Hybrid Excited Synchronous
Generator, can be formulated in terms of a measurement update and a time update part

Measurement D(k) = [I—HH{L)P (L)*(“T(A R(k)~'C(k)P~ (k)]

update K (_L} P~ (k)D(k)CT (k)R(E) ™!
(k) =z~ (k) + K(k)[y(k) — Cz~ (k)]
W
Time T~ (k+1) = A(k)z(k) + B(k)u(k)
update P (k+1)=Ak)P" (k}D(L‘)AT (k) + Q(k) @

where it is assumed that parameter 8 is sufficiently small to assure that the covariance matrix
P—(k) — 6W (k) + CT(K)R(k)-1C(k)

Is positive definite 56
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6.7. Simulation tests

® The performance of the proposed nonlinear H-infinity control scheme for the system of the
Hybrid Excited Synchronous Generator is tested through simulation:

Xqg *+

Fig.2 Diagram of the nonlinear optimal control for the Hybrid Excited Synchronous Generator

With the use of the H-infinity control method, fast and accurate tracking of the reference
setpoints of the state variables of the Hybrid Excited Synchronous Generator was achieved

Linearization of the model of the

x=Ax+Bu+Ld

A= fol(x*,u")'B = Vful(x*,u*)

Hybrid excited synchronous generator

A B L

Solution of the algebraic
Riccati equation

ATP + PA+Q — P(EBBT —LLLT)P =0
T 2p2

P

e H-infinity u=Ke
control gain

1
K=—-=-BTp
r

Nonlinear dynamics of the
Hybrid excited synchronous
generator model

x = f(x,u)

ample 2: Nonlinear control and state estimation using approximate linearization
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Test 1 for the hybrid excited synchronous generator:
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Fig3(a) Convergence of the state variables

X2

to x5 (blue lines) to the reference

setpoints (red lines) and state estimates
provided by the Kalman Filter (green lines)
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ample 2: Nonlinear control and state estimation using approximate linearization
6.7. Simulation tests
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Fig 3(b) Control inputs ui, i =1, ..., 4

applied to

the

hybrid

synchronous generator

excited
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6.7. Simulation tests

ample 2: Nonlinear control and state estimation using approximate linearization

Test 2 for the hybrid excited synchronous generator:
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6.7. Simulation tests

ample 2: Nonlinear control and state estimation using approximate linearization

Test 3 for the hybrid excited synchronous generator:
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6.7. Simulation tests

ample 2: Nonlinear control and state estimation using approximate linearization

Test 4 for the hybrid excited synchronous generator:

1 0.8 :
05F -~ ....... ....... 0.6f - fm
" A | 1
{~ 5 PO, .
0il ,ff 0.4 t
V : : : N—
-05 : ' : 0.2 : : :
0 5 10 15 2 0 5 10 15 2
time (sec) time (sec)
0.8 . . . 08
- 0.6}----- ....... .......
I | ; ; ; ;

o i i 5 2 04k ’E,
[ : |
o A O I 5%

: : ! | Jp] S S i e
o b
0.2 : :

. : 0 : ;
0 5 10 15 2 0 5 10 15 20
time (sec) time (sec)

Fig6(a) Convergence of the state variables
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6.7. Simulation tests

ample 2: Nonlinear control and state estimation using approximate linearization

Test 5 for the hybrid excited synchronous generator:
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6.7. Simulation tests

e Because of the nonlinearity of the state-space model of the HESG other approaches to
solve the associated optimal control problem, such as the typical model predictive control
(MPC) and the nonlinear model predictive control, (NMPC) are of questionable
performance.

e Thus, it is widely acknowledged that MPC is a linear control method which
in the case of the nonlinear dynamics of the hybrid excited synchronous
generator cannot assure the stability of the control loop.

e Besides, it is known that the NMPC'’s iterative search for an optimum
Is dependent on initial parametrization and is not always of assured convergence.

e On the other side the use of global linearization-based methods for the control of the
considered HESG requires the definition of the linearizing outputs in a case-based manner
and the application of complicated change of state-space variables].

e Moreover, such methods may come against singularity problems due to
including also additional transformations being-based on matrices inversions.,

e Finally, sliding-mode control cannot be directly applied to the considered
model of the hybrid power generator because this is not found in a canonical
linear form and consequently there is no systematic manner to define a
sliding surface
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=

6.8. Conclusions

e Anonlinear optimal control approach has been introduced for
hybrid excited synchronous generators.

e This type of generator receives double excitation, (i) from the stator’s Wlndlngs
through voltage that is provided by a AC/DC and DC/AC converter, and (ii)) from an
auxiliary excitation circuit at the stator that is fed by an AC to DC converter.

e The nonlinear dynamic model of the hybrid excited synchronous generator has
undergone approximate linearization around a temporary operating point that was
recomputed at each time-step of the control algorithm.

e The linearization procedure relied on Taylor series expansion and through the
computation of Jacobian matrices. For the approximately linearized model of the
generator a stabilizing H-infinity feedback controller has been designed.

e For the computation of the controller’s feedback gains an algebraic Riccati
equation had to be repetitively solved at each iteration of the control algorithm.

e The global stability and robustness properties of the control method
have been proven through Lyapunov analysis.

e To implement state estimation-based control without the need to measure its entire
state vector, the H-infinity Kalman Filter has been used as a robust state estimator. 64
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Example 3: Nonlinear control and state estimation using Lyapunov methods

7.1. Outline

e An adaptive control approach is proposed that is capable of
compensating for model uncertainty and parametric changes of the
distributed synchronous generators, as well as for the lack of
measurements about the distributed SG’s state vector elements.

e First it is proven that the distributed SG’s model is a differentially flat
one. By exploiting differential flathness properties it is shown that the
distributed SG’s model can be transformed into the linear canonical form.

e For the latter description, the new control inputs comprise unknown nonlinear functions
which can be identified with the use of neurofuzzy approximators. The estimated
dynamics of the machine is used by a feedback controller thus establishing an indirect
adaptive control scheme.

e Moreover, to enforce the robustness of the control loop, a supplementary
control term is computed using H-infinity control theory.

e Another problem that has to be dealt with comes from partial measurements of the
state vector of the generator. Thus, a state observer is implemented in the control loop.

e The stability of the considered observer-based adaptive control approach is proven
using Lyapunov analysis. Moreover, the performance of the control scheme is evaluated 65
through simulation experiments.
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Example 3: Nonlinear control and state estimation using Lyapunov methods
7.2. Dynamic model of the distributed synchronous generatorss

The dynamic model of the distributed power generation units is assumed to consist of
multiple synchronous generators. The modelling approach is also applicable to PMSGs
(permanent magnet synchronous generators) which are a special case of synchronous

electric machines.

= w

b= —3(w—wo) + & (Pp — Pe)
d turn angle of the rotor Fe
wo turn speed of the rotor P, -
wo - synchronous speed D
g4 moment of inertia of the rotor .

The generator’s electrical dynamics is:

©

active electrical power of the machine
mechanical power of the machine
damping coefficient

electromagnetic torque

E.f

q

E,

Td o

Ey

©

Is the quadrature-axis transient voltage (a variable related to the magnetic flux)

E, = 7—(Ey — Ey)

is quadrature axis voltage of the generator e
Is the direct axis open-circuit transient time constant

Is the equivalent voltage in the excitation coil 66
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7.2. Dynamic model of the distributed synchronous generators

The synchronous generator’s model is complemented by a set of algebraic equations:

r4 'I 4 ‘/3
B r;i E,— (zd — xd)x;v cos(Ad)
I, = J=sin(Ad)

q
dx>

-

1:12 ,Idz
V.E, .
P, = ——sin(A))
V.E e V2
Q. = ——*cos(Ad) — o

x4 : direct-axis synchronous reactance I4 and I, :direct and quadrature axis currents

xT . reactance of the transformer V. :infinite bus voltage

r

x, . direct-axis transient reactance £, reactive power of the generator

z;  transmission line reactance v, :terminal voltage of the generator

67
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Example 3: Nonlinear control and state estimation using Lyapunov methods

7.2. Dynamic model of the synchronous generator

From Eq@ and Eq. @ one obtains the dynamic model of the synchronous generator:

5=w—wo
: D IVE' 2
w=—2—J(w—wo)+wo 57 = n(Ad)
E,=- 1E + -2 ”dvcos(Ao)+T - Ey

dy>

Moreover, the generator can be written in a state-space form:
& = f(x) + g(a)u

where the state vectoris = = (Aé Aw E;,)T and

w — W

)= —%(w — wo) + wo I;J 2 e ,E"szn(Aé)

1 !
_T_éEq - Tdo = ngcos(AO)

while the system’s output is y=h(z)=10d—4dg 68
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Example 3: Nonlinear control and state estimation using Lyapunov methods

7.2. Dynamic model of the synchronous generator

The interconnection between distributed power generators results
into a multi-area multi-machine power system model

NN

3-area multi-machine system

1

2-area multi-machine system

G

The dynamic model of a power system that comprises n-interconnected power generators is

0; = W; — W

» Dl Pn’ll-
w; = —57-(wi — wo) + wogz-—
2
fign L g ‘N U AP ¢ R
2 1 1 Td;i T4, : I -
qu 2 Eq" + Tao; =, Vs,cos(A0;) + Td,, Ey; 69

1 — 1
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Example 3: Nonlinear control and state estimation using Lyapunov methods
7.2. Dynamic model of the synchronous generator

The active power associated with the i-th power generator is given by:

/ ‘2 ’ . ’ - ~ ~
Pe,: = G-iiEqi =+ Eq.iZ;:l‘jaéiquGijSZn(()i — Oj T Cl','j)

The state vector of the distributed power systemis givenby  z = [2! 22 ... 2"]T

where 1! = [mii_’:r_-asgja]jﬂ with 1'“1 = AJ; :1?5 = Aw; and ’I.'tg =7

gi '=L1,2,---,m

Next, differential flatness is proven for the model of the stand-alone synchronous
generator.

In state-space form one has:

Py =.TH
T — _Q_ /0y Prn __ Wwo V’s o < .
To = —557%2 + W0 55 QJI;vlgSZn(iLl)
, >
. 1 1 Tg—T, 1
g = —— 1 08(x |
T3 77 T3 + Ty 2 Vscos(zy) + U

The flat output is takento be vy = x;

Itholdsthat x; =y x2 =y andfor xzi#Enm,

70
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Example 3: Nonlinear control and state estimation using Lyapunov methods
7.2. Dynamic model of the synchronous generator

while for the generator’s control input one has

u="Ty,[E3 + ,J,ng %’-Vcos z1)], or
dx

u—fb(y Y, 1)

Consequently, all state variables and the control input of the synchronous generator
are written as differential functions of the flat output and thus the differential flatness

of the model is confirmed.

By defining the new state variables Y1 =¥, ¥2 =1, ys =y

the generator’s model is transformed into the canonical (Brunovsky) form:

n 0 1 0 U
im] =[]0 @& 1 ya | +
U3 0 0 0 Y3

with v = fe(y,9,9) + 9:(y, 9, j)u  where

fe(y,9,4) = (%) Y — wogl?, }2):',‘ +wO(T§)—)T Zv x3sin(y)+
1

v
429 QJ ﬁ*’—Fdra:;;sm(y) — 3

OV

T(lio I‘;:E 1V cos(y)sin(y)—

__ﬂ___
2J »

..4

3008(y)y

71
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Example 3: Nonlinear control and state estimation using Lyapunov methods

7.3. Dynamic model of the distributed synchronous generators

Differential flatness can be also proven for the model of the
n-interconnected power generators

The flat output is taken to be the vector of the turn angles of the
n-power generators

y; [y%y%, ,y?] or y &51 A2, ... AS"

For the n-machines power generation system it holds

; . (R (AR . N
ml_y!ml_yrml_y:”'vml

L nt

gs = Nt = i @8 = Rw® =0, 38 = Kg® =4, #=

Moreover, it holds

as D;
:BQ 2J$2+wopmz

[Gu"«':s + 517323 1];&1[37301331"(371 — 7] — 0y

or using the flat outputs notation

i = — 50" + 53 Pmi
[anv:} +$321 11#1[1?](;2]8271(?; _y‘) _azj)]
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7.3. Dynamic model of the distributed synchronous generators

The external mechanical torque P, . is considered to be a piecewise
constant variable

From Eqg. @ and forone i=1,2,-.-.n has a system of n equations which can be
solved with respect to the variables ix5.1=1,2.---.n

Actually, all variables ’I.'tg can be expressed as differential functions of the flat outputs

o o e IR

and thus one has 2y = Fasltf s 95225 ")

Moreover, from

L

rd

F 1 1 i_I’ i 1 .
. _EE‘T;’_T&W E_d V;l_cas(&éi)—!—mEfi

one can demonstrate that the control inputs  U; =E; can be expressed as differential

functions of the flat outputs ', i=1.2.---.n

Consequently, all state variables and the control inputs of the distributed power system
can be expressed as differential functions of the flat outputs, and the system is a
differentially flat one.

-
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Example 3: Nonlinear control and state estimation using Lyapunov methods
7.3. Dynamic model of the distributed synchronous generators

Next, the external mechanical torque P,,; is considered to be time-varying
The effect of this torque is viewed as a disturbance to each power generator

In such a case for a model of n=2 interconnected generators one obtains the
input-output linearized dynamics

i"% = ai(:ﬂ) + bliglul -+ bgigqu + dwi where Z:i3 = 5 =

and
] D; D; i '
a' = (53 )2x% + TJ“’” [Gﬂ,g +1‘ng 11#213GU3271($1 —x] — a)]—

/

. : . . s 2 Tq.—T
—o3-[Giizh + Z}f‘zl,#inguszn(wi —x] — Q'ij)(-}l,—l‘% - (le dxdv “ Vi, cos(zh))]—

d;

’
T/ T4 + (7 i T Y, cos(zh))—

doi Tdgy

—27 321 11;&,0213’"(121 — &7 — ai5)(—

; ' Y. b el iadNed
32_} 1]751'1’302.1008(‘1;1 I’{ Qi ‘TQ QJ J’3Z] 1]¢1L3G1JCOS(‘II 1 QU):LQ

and i w i Z‘n J sk e ——
bl — —ﬁ[Q( 1”.'173 + ]=1]#l‘7‘302]82n(l’1 :1’1 Qz])] Tdoi

. W Yoaiafat a2 ooy 1

bh = 57 Giosin(z] — o7 azQ)Tdog

while Ji

S T Diwy pi wo Di
d SR T Pm—i_ﬂj,ipm
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7.3. Dynamic model of the distributed synchronous generators

For the two interconnected generators (i=1,2) one has the linearized dynamics

It is used that =a'(z)+ bllglul - bglgg'u.g +d!

21
/;'43 o)
22 = a®(z) + b1’ g1y + bo’goup + d?

or in matrix form 3= fa(®) + Mu+d
where 23 = [23, 22|, u = [uy,ug]T and d = [d;, do]T
and f (.’L‘) s (al(l)> M = <b1.191 bQ.IQQ)
- a*(z) )" bi’g1 ba’go
Setting, v= f.(z)+ Mu+ d  one obtains
21 0 1 0 ::i 0 )
2)0=10 0 1) [25]+ 0] (v +d)
z3 0O 0 O z3 1

75
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7.3. Dynamic model of the distributed synchronous generators

For the model of the 2-area distributed power generation
system it holds that

3
;1:(1'{ = fi(z,t) + g1(z, t)u + dy
(3
L(lg = fo(x,t) + go(x,t)u + da
By denoting X =X X =X11, X3 = X11

Xo =Xo1 X = X21, Xg = X21

the Brunovsky (canonical form) of the distributed power
system is obtained

X1 01 000O0O|x]| |00

y where

x,| 1001 00 0|x,| [0 O

| _[00 000 0fx| |10y Vi = £1(x)+ 11 (U + Gro (X)U
x| (00001 0)x) 100y, vl:fl(x)+2]11(x)u1 +%12 (x)u2
.| 00000 1{x| |00 2= 2 2113+ 9228802
x| (0000 0 0fx| [0 1

» For the 2-area MIMO nonlinear system of the distributed SGs differential flatness
properties hold and one can apply an adaptive fuzzy control scheme using only output
feedback. 76
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Example 3: Nonlinear control and state estimation using Lyapunov methods

7.4. Design of an adaptive neurofuzzy controller for the distributed SG system

7.4.1. Transformation of MIMO nonlinear systems into the Brunovsky form

It is assumed now that after defining the flat outputs of the initial MIMO nonlinear system, and
after expressing the system state variables and control inputs as functions of the flat output and of

the associated derivatives, the system can be transformed in the Brunovsky canonical form

$'1=$g
$'2=$3

ﬁ-‘.-"i -1 = m-‘.-"i

By = f‘l'[ﬁ} =t Zi'j:-lﬁi;.:'[ﬁ}ﬁj + 4

meﬂ-i-l—i = m-:-'-1-|—2
g 3 = ey -3

Tpol = Hp

p = fple) + E?=19w{m:'“j + d,

i = [y, ,#)° IS the state vector
A T .

@ = [ug, -+, 2] s the inputs vector
y=[wm, - ,z|T :isthe outputs vector

i =&
o = By —1
o = mﬁ-—ﬁ"?:,+1

77
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Example 3: Nonlinear control and state estimation using Lyapunov methods

7.4. Design of an adaptive neurofuzzy controller for the distributed SG system
7.4.1. Transformation of MIMO nonlinear systems into the Brunovsky form

Next the following vectors and matrices can Thus, the initial nonlinear system

be defined can be writtenin the state-space form
F)=[f(¥), o Fu(]' . i
g() =[01(X¥), - gn(Q]" X =AX+B[f(x)+g(x)u+d]
with g; (X) =[91i (X), .., Opi 1" y=Cx
A=diaglA.... Ap]’ B =diag[By,..., Bp] or equivalently in the state space form
C' =diag[C;,....Cpl, d =[dy,....d 1" e ByaBd

where matrix A has the MIMO canonical form, y =Cx

I.e. with elements

_ where V= f(x)+g(x)u

0 1 0 .. 0
O 01 .. 0

A=l e For the case of the MIMO distributed SGs model
00 0 .. 1 it is assumed that the functions f(X) and 9(X) are
000 . 0 unknown and have to be approximated by neuro-

fuzzy networks
Bl =[0 0 .. 0 1, Ci=[L 0 .. 0 0O} 78
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Example 3: Nonlinear control and state estimation using Lyapunov methods

7.4. Design of an adaptive neurofuzzy controller for the distributed SG system
7.4.1. Transformation of MIMO nonlinear systems into the Brunovsky form

Thus, the nonlinear system can be written in state-space form

&= Aw+ B[f(«) + gl )+ d]

".'-'jn' v
which equivalently #= Ae+ Boat+ Bd where v = fla) + gle)w
can be written as y=C" g
The reference setpoints for the system’s outputs Bttt Hp k
are denoted as  Hiww: vt T

and the associated tracking errors are defined as

BT

&1 = &1 — TfHm
Ey = o — o

& = Yp — Ypm
Ei ['91:- :-E?J']T
[5"1'-'“:- T %]T

[Ehw S 79
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Example 3: Nonlinear control and state estimation using Lyapunov methods
7.4. Design of an adaptive neurofuzzy controller for the distributed SG system
7.4.2. Control law

The control signal of the MIMO nonlinear system contains the unknown nonlinear functions
f(x) and g(x) which can be approximated by

.I'}{Imf]' = Dr(x)0r,  Ex|8e) = Delx)6;

where (%) = (EL(2), E3(x), - EX(x)),
B0 = (#(0, 07, 07 )

thus giving cj;}l{) ci;*z{x) SO V63
@f{}f}: '[:' ‘i{?;{-’f}' ‘i{?ﬂ'{-ﬂ

¢;1.[x;. fi’”;{-’f}' ()

while the weights vector is defined as  g.7 = (@l 82 ... 61"
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Example 3: Nonlinear control and state estimation using Lyapunov methods

7.4. Design of an adaptive neurofuzzy controller for the distributed SG system
7.4.2. Control law

Similarly, it holds ~ ®g(x) = (&2 {;f}}.ég""{x}} . é_;.“ {x})r

ﬁ;{.‘-’[} = [: El {I}}tﬁéﬁ{x}} ' .[E.'ﬁ[lej

thus giving bt (R @t e g ()
o= | W @ - 6

R R e e

: : : . r
while the weights vector is defined as 8, = (8}, 82, ..., 851",

However, here each row of Eg IS vector thus giving

gl g2 .. gF

Eﬁl 351 5%1

A= EZ E2 El
1 2 r

Em Bm TR -

If the state variables of the system are available for measurement then a state-feedback
control law can be formulated as

w =g (x|8.) [~ F{x(67) + ¥ % + Bl o+ 1] 81
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Example 3: Nonlinear control and state estimation using Lyapunov methods

7.4. Design of an adaptive neurofuzzy controller for the distributed SG system
7.4.2. Estimation of the state vector

The control of the system described by becomes more complicated when the state vector x

Is not directly measurable and has to be reconstructed through a state observer. The following
definitions are used

g=x—1x.,: Isthe error of the state vector

R o is the error of the estimated state vector

g=¢—&=(X—Xn) — (X—Xn) isthe observation error
When an observer is used to reconstruct the state vector, the control law

u= g (3]6,) [~ FEIBA + 3% — ke 4w,

By applying the previous feedback control law one obtains the closed-loop dynamics

) = fla) + o()F B [-F B+ o) - KTe 4w+ d=
A7) = fle) + [s.a-{m]' - §(8) + 4(#)]57(#) [—f{m} +on’ = KTét u,]+d=
) = [fw) — (&) + [ale) — 58wt o’ — KTé 4 w44

tholds & = & — sy = A7) = 2lrd g o)

and by substituting 3,1"'":' 1the previous tracking error dynamics gives 82
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Example 3: Nonlinear control and state estimation using Lyapunov methods

7.4. Design of an adaptive neurofuzzy controller for the distributed SG system
7.4.2. Estimation of the state vector

the new tracking error dynamics

e+ o) = o) — KTet o+ [#() - F(@)
+lo(#) = (8wt d

or equivalently

¢= Ae— BKTé4 Bu, + B{[f(«) — &)+
+[a(w) — G{& ]2+ d} @

gy =0C7e
1 2 T . : Cou 1_-1 e
where S [E FoThet: "E?}] with & = [E'i:- By By vt & ]T 1:- Q:-“ P
and equivalently &=[&, &, ..., &7 with & =& & & ... £, i=1,2--.,p

A state observer is designed as:

i BETe4+ K [e1 — C7 8

8= 078
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Example 3: Nonlinear control and state estimation using Lyapunov methods
7.5. Application of adaptive neurofuzzy control to the distributed SG system

7.5.1. Tracking error dynamics under feedback control

By applying differential flatness theory, and in the presence of
disturbances, the dvhamic model of the distributed SGs comes to the form

(52) = () + () v+ (@)

The following control input is defined:

gz, )\, (i fi(zt) KT\  (ue
:(gi{r-ﬂ) {(ré)‘(flm)‘(fﬁ") +()}

'

where: [u., u,]" is arobust control term that is used for the compensation of the model’s
uncertainties as well as of the external disturbances

and: ﬁff=[5:’1}ﬁéwwk§,_1>k§,]. is the feedback gain

Substituting the control input @ into the system @ one obtains
(11) _ (fl(:r,t)> N <91(' )) (f}l( ))-1_
g fa(z,t) ga2(z,t) ) \ga(z,1)
74 fi(z.t) KT (T di
3 (ié’) (ﬁ(r t>) - (Ké" ) Y ( )“ <d) A

C2
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Example 3: Nonlinear control and state estimation using Lyapunov methods

7.5. Application of adaptive neurofuzzy control to the distributed SG system

7.5.1. Tracking error dynamics under feedback control

Moreover, using again Eq. @ one obtains the tracking error dynamics

€1 fi(a f1 (z,t) g1(z,t) — g1(z, 1) K (ue,) | (dx
((?33) (f) — falz, t)) * (92(:1‘.“ - .572(1‘1)) - (1\ T) . (“ca) I (‘1‘2)
The approximation error is defined 4 = (ﬁ%g:ﬂ :ﬁ%g:g) s (igﬂ :igﬂ)u

_ _ 010 0 0 | -
Using matricesABK, 4 — (o 0 o). B=[1 0| K7_— (A}) K,
00 0 0 1 Ki K3

and considering that the estimated state vector is used in the control loop
the following description of the tracking error dynamics is obtained:

e {(ﬁ:{x}f} 750 T ey - (a4
When the estimated state vector is used in the loop the approximation error is written as
— (fi[x,_.f:l _Jﬁ[ikﬂ) o (gl [I:-Ij _'%1[%3})1;
Alxi)— piEL) g(xt) — EalE )

while the tracking error dynamics becomes e=Ade—BET6 4L B, 4+ Bw A Bd 85
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Example 3: Nonlinear control and state estimation using Lyapunov methods

7.5.2. Dynamics of the observation error

== .‘.

The observation error is defined as: & = = @ — &,

By subtracting Eq ‘ from Eq@ one obtains:

¢— &= Ale— & + Bu.+ B{[f (=9 - fl&,8)+
+lgle, 1) — gl f)|ut df — K,C(e— g

81—51 ZC(PI{E—E?:I

or equivalently:
= Ae+ Bu.+ B{[f(e.®) — f(#,8)]+ [g{e.t) — §(&.8)]u+ 4} — KL.CTE

2= TG

which can be also written as:

E={4d- K,CT\e+ Bu, + Bw+d)

=Tz
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Example 3: Nonlinear control and state estimation using Lyapunov methods
7.5. Application of adaptive neurofuzzy control to the distributed SG system
7.5.3. Approximation of functions f(x,t) and g(x,t)

Next, the first of the approximators of the unknown system dynamics is defined

ie) = (,fi{ﬁm_f} HeRY fi(8l65) € R“‘“)
fo(#]8s) 4R fo(#l8;) € RV

[T7ea i, ()

containing kernel functions ;z&-j:j{ﬁ} = RN
=illy=1pa 0%

where #A;é{ﬁj' are fuzzy membership functions

appearing in the antecedent part of the I-th fuzzy rule 87
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Example 3: Nonlinear control and state estimation using Lyapunov methods
7.5. Application of adaptive neurofuzzy control to the distributed SG system
7.5.3. Approximation of functions f(x,t) and g(x,t)

Similarly, the second of the approximators of the unknown system dynamics is defined

sy = (91818 BeR™ §1(2)8,) € RV
G2(818,) BeR¥ §o(8)8,) € R172

Ly Lo

The values of the weights that result in optimal approximation are

§ = arg ming en,, [supscu, (F(e) — £(#(87))]
95 = arg ming eno [SUPser, (9(%) — §(#]9,))]

The variation ranges for the weights are given by

My, = {8;eR™: ||8s||<ms, }
ME'EI Z{SQERh: ||S§||£m£"g}

The value of the approximation error that corresponds to the optimal values of the
weights vectors is

w = {#(e,8) = f(#187) ) + (ale¥) - 5(2167)) = 88
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Example 3: Nonlinear control and state estimation using Lyapunov methods

7.5. Application of adaptive neurofuzzy control to the distributed SG system
7.5.3. Approximation of functions f(x,t) and g(x,t)

which is next written as

w = f(o8) — F(818) + F(6185) — Flalep)) +
+ (o t) — 6(818,) + 5(&18,) — §(8189) w

which can be also written in the following form

with w= (wetw)

w, = {[f{e.8) - £(818;)] + la(e.t) — §(816,) ]} v

and

wy = {[F(#[87) — F(E89)] + [6(8, 82) — (&187)]} =

Moreover, the following weights error vectors are defined
8y = 85 — 8}

89
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Example 3: Nonlinear control and state estimation using Lyapunov methods
7.6. Lyapunov stability analysis

The following Lyapunov function is considered

V = 18P+ 1T P+ -8By + 7 tr (876, ] '

The selection of the Lyapunov function is based on the following principle
of indirect adaptive control

= "

g limy e ﬁ[ﬂ = md{ﬂ this results

s #0) =wgld)
g = into
g iMoo &(8) = a(2).

By deriving the Lyapunov function with respect to time one obtains
V= —“TFi.e—l— ETP1_E—|— ETPQE-|— 2l P, E—I—
+T—i&§*ef + %w[ag 8] =

= (4 - EKT"}eJrH CUE) P&+ 48 Pi{(4 — BKT)é+ K.CTa}+
+1 14 - KCT}E+BE¢+Bd+EW}TPEE+
1‘Tp2{.[A }fc’l‘)e+5uﬂ+5d+5w}+

T
+2078; + Ltr[8, 8] =

20
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Example 3: Nonlinear control and state estimation using Lyapunov methods
7.6. Lyapunov stability analysis

The equation is rewritten as:

V=21 T{A BET)T 4 TCKT\P1e+ 36T P {{A - BEKT) e+ KO0V + wam
Sl {e (AT Ly ET+wTET+dT.ET}Pgé+

187Py{{A — K.CT)e+ Bua+ Bu + By + L 676, + 1zf*-r*['fi' By] =

which finally takes the form:

‘L"'_—*T{A EKTVTP e+22 el CKT P&+
*TP (A—BET e+ L& PR, CT et
+1 T{A K,CT TP+ iliuTer +dT) BT Pyay:
41T P (A - K CT}.9-|— 1Ty Blos 4w + d)+
P e
+?1'5'?'5' £+ gtr (6, 8]

Assumption 1: For given positive definite matrices Q1 and Q2 there exist positive definite
matrices P1 and P2, which are the solution of the following Riccati equations

(A—BEOVTP 4+ B(A-BEKTY+ @1 =0

i o BBy B P Pl SO0
—FB(E - BB P4 Q=0
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Example 3: Nonlinear control and state estimation using Lyapunov methods

7.6. Lyapunov stability analysis

By substituting the conditions from the previous Riccati equations into the derivative of the
Lyapunov function one gets:

V= {(4- BETYTE 4 Py{d - BET) 64 eTCKT Pié4

+2&7 (A - K0T R -|-P2{A K, cﬂ‘%}a}p
+ETPEE{%+ z a,} R 5“‘5‘; + Tir[f, 8]

h:i||—|-

or: Vo= _%ATQ1§+ ETCHTP B— lET{QE PQE{_ i —EE'BTPE}E'F
-|—ETPQEI[‘?.¢Q+ a4 ._qg get E'Tﬂ_f g ﬁ’.r*[ﬂ Eg]

e The supervisory control term 4, consists of two terms:u, and .

1.
ua. — TPQB -+ Aua,
=
where assuming that the measurable elements of vector © € are {€1,€3.- - . €k},

the term AU, Is given by

P11€1 + P13€3 + - - - + P1r€r
. P13€1 + P33€3 + - - - + P3k€p
—%TPQB+Aua:—1 P13€1 T P33€3 P3k€k

P1k€1 + P3r€3 + - - - + Prk€r
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Example 3: Nonlinear control and state estimation using Lyapunov methods
7.6. Lyapunov stability analysis

e The control terl up. |s given by

Up — — [(pr)T(Pz B)]_l (PzB)TCIX.Zplé

Ua s an H-infinity control used for the compensation of the approximation error w and

the additive disturbance d.

Its first component —1:7P,B  has been chosen so as to compensate for the term

lng,—é-[-};;;.,.a which appears in the previously computed function about "V .

By including also the second component Au, onehasthat s is computed

based on the feedback only the measurable variables {(;,1‘@3'. o .} out of the
complete vector {é;.é4.--- .6} c |

1 E . . T ol C e
Eq. u,=——& PyB+ Au, finally rewritten as  ug = —1é' PoB + Au,.

7

e b s a control used for the compensation of the observation error (the control term
has been chosen so as to satisfy the condition

93
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Example 3: Nonlinear control and state estimation using Lyapunov methods
7.6. Lyapunov stability analysis

The control scheme is depicted in the following diagram

Controlier | P Spp— |
i o WO . ERX
1 M =g ,ﬂ.trll.hﬁﬁ"éj * = iTxeh 'H_E__.-'
: * L‘_—:.I:llr.llil-‘—

|t —||.|'-‘£|:|!|r|.|'ﬂl|"|.|'-‘2ﬂr.\?,‘:.l'1|"
I I'{E-H"I_‘ [}
T
| AE el e - e
I

&

L J
S . J -
: //— N

A
—.-__,_

By substituting the supervisory control term in the derivative of the Lyapunov function
one obtains

V= —1TQé+ TCKTPie— 1T Qo+ 1‘TPEEETP28—%ETPEEETPEH
+&TF, B, + &7 Py Buy 4 &7 By B(w 4 d) + 2 E“TE';+ t’-f*[ﬁ'

g F] 94
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Example 3: Nonlinear control and state estimation using Lyapunov methods
7.6. Lyapunov stability analysis

or equivalently e —4 16T 0,8 — _éTQEE_ JEETPQEETPQH
+&T Py Blw + ) o E'TS °F —w[.ﬁ' ag]

Besides, about the adaptatlon of the weights of the neurofuzzy network
it holds
Sf_&f—.f};:&f 6, = 8,—6r =16,
and also :
By = —m®(#)T BT Rz
8, = — o B(&)TBT PyeeT

By substituting the above relations in the derivative of the Lyapunov function one obtains

V=187,

h:-I-l-

oa —;EETPEEETPEE+ ETBalw + d)+
+3r (-2 P BO(&)(8; — 81+
+ { ot [t Po BO(&)(8, — 4]

or
V= 2878 — 287 Q02 - —;EETPEEBTP e+ BT Bya(w + d)+
(= }'T;PEE‘I’{ &)(6s — 85 )+
o tr[ue’ FaB(§(2]0,) — &(2[87)] 95
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Example 3: Nonlinear control and state estimation using Lyapunov methods
7.6. Lyapunov stability analysis

Taking into account that = € B**' and " PB(§(=|8,) — &(=|8)) € B2

Onegels o 1sTgus - 387Qu8 - a8 P,BBTPyet BT Ry At
+ 1 (—70)ET B BO(2)(85 — 63)+
+a(— “yo)tr ¥ PaB{a(216,) — §(2162)) s
Since e By B{§(#165) — 5(#]0%))ne BT
't holds tr(e7 BB (6(w18,) — b(al85)) =

= el Py B{§{»|8s) — w|02))w

Therefore, one finally obtains

V= —187Q8 - 187QqE - _;EETPQEETPQH BT Byefw + d)+
o (—)ET B BO(#)(8 — 8+
-I—,%ﬂ —TE}ETPEB{ﬁ{ﬁ|Hg} - é{%lﬁ'ﬁ}w

Next, the following approximation error is defined

wa = [f(2]83) — F(218,)] + [5(2187) — §(8184)]=
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Example 3: Nonlinear control and state estimation using Lyapunov methods
7.6. Lyapunov stability analysis .

Thus, one obtains

V=108 - 187Qe - LT R, BBT R+
+ETPya(aw + d) + 27 Pa B,

Denoting the aggregate approximation error and disturbances vector as
g = + r:g—l— T
the derivative of the Lyapunov function becomes
V = —387Q16 — 327 Que— 7@ P,BET Pye+ & Py Bu

which in turn is written as

V=-16T¢ 86— 1872 — 2T P, BETPyet
—|—%éTPE'EU1 + %'Eﬂ-l ETPE'E

Lemma: The following inequality holds

L=

ETPEE'EU-_I_ -+ %W?ETPQé == ﬁETPEBETPQE

1.2 T
55,#911111“1 97
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Example 3: Nonlinear control and state estimation using Lyapunov methods
7.6. Lyapunov stability analysis

Proof:
The binomial  {ga— 28>0  Is considered. Expanding the left part of the above
inequality one gets

p2m2+ L _Dah = 0=
18t b2 —ab>=0
T RT Bl e
ab — sigb? = 1p%a* =
2ab+ Tab— ﬁg’bg < 1l

By substituting & = and b = &' FuE  one gets

i BT e+ 38T PyBun — 028 P, BBTPyE
< 1otwiwy

Moreover, by substituting the above inequality into the derivative of the Lyapunov

function one gets

g 1 | 1 -
V< - 58 Que - 55 Qb it
J‘V
PR : V= —L‘.TJT[Q}_E'—|—l 2e0T
which is also written as =75 QF’ 1 Hh

M o

&) [ ]
with &= ( ):— Q = ( Di QE) — dmg[[;;?'h[;}'g]
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Example 3: Nonlinear control and state estimation using Lyapunov methods
7.6. Lyapunov stability analysis

Hence, the .. performance criterion is derived. For sufficiently small 2 the inequality will
be true and the &_. tracking criterion will be satisfied. In that case, the integration of "V from O
to T gives

Ve < ~fTIEIPd + 3o ol ek =
2VT) = 2V(0) < - [TIBI b + 2 ol Pk = |
2V(T) + ST B o < 2V(0) + ] o120 i

It is assumed that there exists a positive constant ,, >0 suchthat =~ %+ —

o Nl || = D,

Therefore for the integral J'fHEH%dﬁ one gets

[ 111 < 270 + 4
Q
Thus, the integral g || E||% 9 is bounded and according to Barbalat's Lemma

limyyeaelt)=10

929
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Example 3: Nonlinear control and state estimation using Lyapunov methods
7.7. Simulation tests

The dynamic model of the distributed SGs was taken to be completely unknown, while the
state vector could be partially measured

setpoint 1

1 L 1 1 1 1
8 10 12 14 16 18 2
t(sec)

1 1 1 1
3 10 12 14 16 18 20
t (sec)

time

setpoint 2

| DO S . S S S

5 ;
8 08k -----uw---

6

8 10 12 14 16 18 20
t{sec)

06

3

05

045
U

06

DR |t s 22 e it it R B e S R g st

| L R S T & L ORI e S e R R e

£i| l:a 1i5 0 100

04
U
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Example 3: Nonlinear control and state estimation using Lyapunov methods
7.7. Simulation tests

setpoint 3

c
[y
ul (p.u)
o«
o

c
[
ul (p.u.) u,
= © ‘ .
- 3

05 1 1 1 1 1 1 1 1 :
4 6 8 10 12 14 16 18 20 5 10 15 2
b tiseo)
1 08 r .
st ~05%
Wy 4 U, * ; z
ik 2 ; :
05 1 1 1 1 1 1 1 1 1 f : |
2 4 6 8 W 122 14 1% 1B 2 065 i | i
tisee) 5 5 2 101

time tir‘}gﬂa
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Example 3: Nonlinear control and state estimation using Lyapunov methods
7.7. Simulation tests

setpoint 5

0.55 T T T
3 08, e
¢ s
wl & 0Tf e

06

u1 (p.u)
=
u‘!

1 1 1 1 1 1 1 1 I | |
4 6 8 10 12 ¥ 16 1© 20 0_150 5 10 15 |
tsec)

05,
0

I 05 . . .

(1)2 &

SOTfee

05

1] T AR SeRrr

1 T S S S N S

tisec)

setpoint 6 time time

ul (pu.y

tsec)

~+
|

tisec) 102
time
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Example 3: Nonlinear control and state estimation using Lyapunov methods
7.7. Simulation tests

Table I: RMSE of the power generator’s state variables

parameter W1 w1 w9 wo

RMSEFE; 0.0035 | 0.0002 | 0.0034 | 0.0002
RMSE, 0.0123 | 0.0545 | 0.0118 | 0.0602
RMSE5 0.0035 | 0.0020 | 0.0035 | 0.0020
RMSE; 0.0031 | 0.0020 | 0.0026 | 0.0020
RMSE; 0.0034 | 0.0003 | 0.0033 | 0.0002
RM S FEg 0.0035 | 0.0003 | 0.0033 | 0.0002

The tracking accuracy of the control method was remarkable despite the fact that
(i) the dynamic model of the systems was completely unknown,

(i) only output feedback was used in the implementation of the control scheme.

It has been also confirmed that the transient characteristics of the control
scheme are quite satisfactory

The proposed optimization-based modelling and control method is
of generic use and can be applied to a wide class of nonlinear dynamical
systems of unknown model

103
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Example 3: Nonlinear control and state estimation using Lyapunov methods
7.8. Conclusions

e A solution to the problem of model-free adaptive control for
distributed synchronous generators has been proposed

e |t was proven that the dynamic model of the distributed SGs is a
differentially flat one. The flat outputs of the model were taken to be the
rotor’s turn speed and the currents of the secondary (control) winding of the stator.

e By proving differential flatness properties for the distributed SGs
the transformation of its model to the linear canonical form was achieved.

e In this new linearized description the control inputs comprised
nonlinear terms which were related to the system’s unknown dynamics.

e These terms were dynamically identified with the use of neurofuzzy
approximators. These estimates of the unknown dynamics were used in turn in the
computation of a feedback control input, thus establishing an indirect adaptive
control scheme.

e It was also assumed that only the output of the distributed SGs could be directly
measured and that the rest of the state vector elements of the machine had to be
computed with the use of a state-observer.

e The stability of the control loop was proven with the use of Lyapunov analysis. 104
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8. Final Conclusions

e Methods for nonlinear control and state estimation in electric

power systems have been developed

e The main approaches for nonlinear control have been: (i) control with global linearization
method (ii) control with approximate (asymptotic) linearization methods (iii) control with
Lyapunov theory methods (adaptive control) in case that the dynamic model of the

electric power system is unknown

e The main approaches for nonlinear state estimation are: (i) nonlinear state estimation with
methods of global linearization (ii) nonlinear state estimation with methods of approximate

(asymptotic) linearization
P
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