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New approaches to nonlinear control of distributed dynamical systems: Lyapunov methods
1. Outline

® The functioning of distributed nonlinear dynamical systems in real conditions is
characterized by model uncertainty, parametric changes and external perturbations.

® Control schemes must perform simultaneously identification and stabilization of such
uncertain dynamics.

® This is a dual optimization problem since modelling errors and deviation of the
system’s state vector elements from the associated setpoints have to be minimized in
real-time.

® To achieve these objectives an initial transformation

(diffeomorphism) of the system’s dynamic model
to an equivalent linearized form, is proposed.

® The transformed control inputs consist of unknown

nonlinear functions which are identified with the use of
nonlinear regressors.

® Learning in such networks is performed through gradient algorithms in which the

adaptation rate (step for the search of an optimum) is defined by conditions for the
minimization of an aggregate energy function (Lyapunov function). 2
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1. Outline

* In each iteration of the control algorithm, the estimates of the nonlinear functions
that constitute the system’s dynamics are fed into a state feedback controller.

* It has been proven that this control approach assures the minimization of the
aforementioned energy function and thus the nonlinear system becomes a
globally asymptotically stable one.

» The proposed method can be applied to all distributed dynamical systems which
satisfy the differential flathess property.

* This is the widest class of nonlinear dynamical systems to which one can apply
optimization and control with gradient methods, while assuring the convergence
of the optimization procedure and the stability of the control loop.

* The efficiency of the proposed Lyapunov theory-based control
approach has been confirmed in several complex nonlinear
dynamical systems

* In particular, the method has been applied to the problem of
synchronization and stabilization of distributed power generators | |
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2. Differential flatness of MIMO nonlinear systems

» Differential flatness theory has been developed as a global linearization control

method by M. Fliess (Ecole Polytechnique, France) and co-researchers (Lévine, Rouchon,
Mounier, Rudolph, Petit, Martin, Zhu, Sira-Ramirez et. al)

« A dynamical system can be written in the ODE form Si(w,v.v,\./;/,...,w“) ), 1=12,...q
where w() stands for the i-th derivative of either a state vector element or of a control input
» The system is said to be differentially flat with respect to the flat output
Y o= HW,W W, WD), i =1m where Y =(Y1, Y21 Yim)
if the following two conditions are satisfied
(i) There does not exist any differential relation of the form

R(Y, Y, Yor Y)Y =0

which means that the flat output and its derivatives are linearly
independent

(if) All system variables are functions of the flat output and its
derivatives

w® =y (y,y,y,.... y7)
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2. Differential flatness of MIMO nonlinear systems

The proposed Lyapunov theory-based control method is based on the
transformation of the nonlinear system’s model into the linear canonical
form, and this transformation is succeeded by exploiting the system’s
differential flatness properties

* All single input nonlinear systems are differentially flat and
can be transformed into the linear canonical form

One has to define also which are the MIMO nonlinear systems
which are differentially flat.

» Differential flatness holds for MIMO nonlinear systems that admit static feedback
linearization.and which can be transformed into the linear canonical form through a change
of variables (diffeomorphism) and feedback of the state vector.

» Differential flatness holds for MIMO nonlinear models that admit dynamic feedback
linearization, This is the case of specific underactuated robotic models. In the latter
case the state vector of the system is extended by considering as additional flat outputs some
of the control inputs and their derivatives

* Finally, a more rare case is the so-called Liouvillian systems. These are systems for which
differential flatness properties hold for part of their state vector (constituting a flat subsystem)
while the non-flat state variables can be obtained by integration of the elements of the
flat subsystem. 5
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3. State-space modelling of MIMO nonlinear systems

3.1. Transformation of MIMO nonlinear systems into the Brunovsky form

The initial MIMO nonlinear system is taken to be in the generic form:
x = f(x,u)

It is assumed now that after defining the flat outputs of the initial MIMO nonlinear system, and
after expressing the system state variables and control inputs as functions of the flat output and of
the associated derivatives, the system can be transformed in the Brunovsky canonical form

9'31 = &9
o = @
: : =&
g1 = Ty Y2 = Ty -1
dny = J1(@) + 227 2101, (@) + oy
Yp = ®r—wy+1

Tpi41 = Ty 40
Ly 42 = Ty 43

Tp—1 = @p
&p = fpl®) + Z?:lgpj(x)%é + d,
L& = [wg,++ , @)% 1S the state vector

% = [%, S ,up]T . Is the inputs vector

y= [, .57 isthe outputs vector



New approaches to nonlinear control of distributed d

3. State-space modelling of MIMO nonlinear systems

3.1. Transformation of MIMO nonlinear systems into the Brunovsky form

Next the following vectors and matrices can Thus, the initial nonlinear system can be written

be defined in the state-space form
F)=[f1(x), ... fa(01" : -
00 =[91(x), ..., gn(X)]T X=Ax+B[f(X)+g(X)u+d]
with 900 =[95 (0, - @i 0O Y=
A=diag[A,...,Ay], B=diag[By,....By]
cT = diag[Cy,...Cp], d =[dy,... dp]T or equivalently in the state space form

X = AXx+Bv+Bd
where matrix A has the MIMO canonical form, y = Cx
I.e. with elements

010 .0 where V= f(x)+g(xu
0O 01 .. 0
A=l o For the generic case of the MIMO nonlinear system
1 it is assumed that the functions f(X) and 9(X) are
00 0 .. 0J., unknown and have to be approximated by nonlinear

T regressors (e.g. neuro-fuzzy networks)
Bi =[0 0 .. 0 I}y Ci=[t 0 .. 0 O}, 7
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3. State-space modelling of MIMO nonlinear systems

3.1. Transformation of MIMO nonlinear systems into the Brunovsky form

Thus, the nonlinear system can be written in state-space form
& = Aw+ B[f(e) + g(e)u+ d]
CTe

y:
which equivalently # = Aw+ Bo+ Bd where v = fle) + ole)w
can be written as S
The reference setpoints for the system’s outputs 1.0 2 Yp ®
are denoted as  %1m: ' % and the associated tracking errors are defined as

€1 =¥ — Wm
€y = Yo — Yo

& = Yp — Ypm

E‘l [8‘1:» }eP]T
[yim> ¢ }ypm]T

ORI
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3. State-space modelling of MIMO nonlinear systems

3.2. Control law under measurable state vector

The control signal # = f(w) + g{w)% of the MIMO nonlinear system contains
the unknown nonlinear functions f(x) and g(x) which can be approximated by

J}(’def) = ®p(x)0r,  &(x|8g) = Delx)Oe

where ®4{x)= (ﬁ}(x),ﬁf(x);uﬁ?(x))r,
&) = (9 (09,0209, 47 ()
S 12 1
hus givi b (1) B e 4 (B
thus giving (Df(x)= ¢?,l(x) ¢?,2(x) ¢?:N(x)

A C I Al YR ety

while the weights vector is defined as g% = (8}, 82,... 82}
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3. State-space modelling of MIMO nonlinear systems

3.2. Control law under measurable state vector
S o e
Similarly, it holds ~ ®g(x) = (£2(x),2(x), - £X(x))"

ﬁé(x) = ( 21 (X),¢é’2(x),' s ;N(x))

thus giving g (%) ﬁ%’z(x) e ()

b= 80 €20 - 0

Y

@ EW - 4w
while the weights vector is defined as g = (62, 82, -+ ,Gg)r:

.. Y ..

However, here each row of Bg IS vector thus giving

gL 92 .. g
g o g .. g
g_ .. . e ... ...

1 2

gl B2 .. g

If the state variables of the system are available for measurement then a state-feedback
control law can be formulated as

w =g (x|8e) [~ Fx|87) + 9% + Kl e+ ] 10
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3. State-space modelling of MIMO nonlinear systems

3.2. Control law under non-measurable state vector

The control of the system x = f(x,u) becomes more complicated when the state vector x
IS not directly measurable and has to be reconstructed through a state observer. The following

definitions are used
X—7Zm: Isthe error of the state vector

@
|

L)
Il

X — Xop Is the error of the estimated state vector

g=g¢—8&={(x—2m) —(X—Xn) isthe observation error
When an observer is used to reconstruct the state vector, the control law
POs Iy R ¥ A
u =g (#6:) - FHOR) +y% — KTe+ul
By applying the previous feedback control law one obtains the closed-loop
dynamics
) = f0) + g(2)5 (@B [-F (@) + o — KTé 4w+ d=
) = f(@) + lo(e) — 6(8) + 6B (B -F(B) + of’ — KTé+ u ]+ d= |
) = [#(@) — F(&)]+ o(e) — 68 )ut o) — KTé 4wt d m
& LU

11Tt
ltholds & = @ — @y, = i = &) ﬁ)

and by substituting y('f) in the previous feedback control loop dynamics gives

| .lh' |

1
|I
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3. State-space modelling of MIMO nonlinear systems

3.2. Control law under non-measurable state vector

the tracking error dynamics

) 4+ of) = o) — KTe 4w, + [f(#) — S+
+lo(e) — 8(&)]u+ 4

or equivalently

¢= Ae— BKT&+ Bu, + B{[f(<) — f(&)+
+[g(e) — §(&)]w+ d}

=21 =O/Te

where e = [ei,‘eg,: LT with & = (e, & By e

and equivalently &=[&', &, ..., &7 with & =[&; & &, ...

A state observer is designed as:

é=Aé— BKTe+ K,[e1 - CT4

gy = s 12
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4. An application example of optimization-based control

4.1. Dynamics of the tracking error

Without loss of generality consider a two-input MIMO system:

By applying differential flatness theory, and in the presence of
disturbances, the dynamic model of the system comes to the form

#y = f1(e, 1) + g1(e, Hu+t d
&3 =f2($>t)+92($}t)u+df2 @

The following control input is defined:

-1 "
-(GE8)"(@-(42D)- (D ()
* (éQ(m?t) : &g f2(w>t) KT o Yag ;
where: [w, #.,]7 is arobust control term that is used for the compensation

of the model’s uncertainties as well as of the external
disturbances

and: & =[8.%,,£_1,&] s the feedback gain

Substituting the control input @ into the system @ one obtains

(3) = () (560) (BE3) (@)-(Ba)- ()
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4. An application example of optimization-based control

4.1. Dynamics of the tracking error

Moreover, using again Eq. @ one obtains the tracking error dynamics
€1y _ ﬁ{){,f)—jﬁ{&!) gl{x>!)_él(x}:) - Klr e d)
(éz) - (J‘i(x}f) —fs(x,z)) * (gz(x,z)—gz(x,:))“ (zg i O et

The approximation error is defined as:

s f(x}t)_-fi{x}!) Q(x}f)_é (X,i’) 7
e (f;(x,!) —,ﬁ{x;t)) E: (gz(x,f) - é;(m))

Using matrices A,B,K, and considering that the estimated statevector is used in the
control loop the following description of the tracking error dynamics is obtained:

A -AGDY | (a&x-aE)N | s
ﬁle(x,!) —jé(i, :)) - (gg(x,z) = g;(ﬁ,;)) +d}

When the estimated state vector is used in the loop the approximation error is written as

= f(x,f)—f(i’,i’) g (}'{,i’)—é (‘%}t)
" (f;(x,f) = f%(i’,f)) T (g; (x8) — é;(i,t)> 3

while the tracking error dynamics becomes

é=Ae—BKré+Buc+B{(

&=Ae—BKT64 Bu,+Bw4Bd
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4. An application example of optimization-based control

4.2. Dynamics of the observation error

- A

The observation error is defined as;: & = = @ — &,

By subtracting Eq ‘ from Eq@ one obtains:

¢— b= Ale— & + Buo+ B{[f (&,9) — f(&, )+
+lo(e,t) — §(&, D]w+ d} — K ,CT (e 8)

&1 —é-l =CT(8—§)

or equivalently:
s = A2+ Buo+ B{[f(e.9) - f(8,8)]+ lo(e,?) — 6(8,8)Ju+ d} — K,CTs
gy =CTz

which can be also written as:

e=(A- K,CT)e+ Bu. + Bw+d)

2y =CTz

15
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4. An application example of optimization-based control

4.3. Approximation of the unknown system dynamics

Next, the first of the approximators of the unknown system dynamics is defined

HOE (é{élb’f) peR fi(l6s) € RD“)
Fo(#[6r) 4R fr(#)6;) e R¥<

Tl (45)

containing kernel functions ¢?5(£) = T T e ()
=1 llg=1pa, 0%

where ,“'A;f(é) are fuzzy membership functions

appearing in the antecedent part of the I-th fuzzy rule 16
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4. An application example of optimization-based control

4.3. Approximation of the unknown system dynamics

Similarly, the second of the approximators of the unknown system dynamics is defined

? §2(%|0,;) 2 R¥*1 §o(8]0,) € R*?

The values of the weights that result in optimal approximation are

8? = arg mmg,emgf [Supaeua(f(w) = f(@w,f))]

g — @ryg mm«?g.eMog [Sup&e Ug{g(w) - §(é|39))]
The variation ranges for the weights are given by

My, = {8s€R": ||8¢||<ms,}
My, = {8,€R": [|8,][<mag,}

The value of the approximation error that corresponds to the optimal
values of the weights vectors is

w=(#(e,8) - f(&]85)) + (a(e,2) - §(2185)) v

17
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4. An application example of optimization-based control

4.3. Approximation of the unknown system dynamics

which is next written as

w=(F(nt) - Fol8r) + F(ol8s) - felep) +
+ (a(e 1) — 5(8185) + 8(£18,) — 6(al8y))

which can be also written in the following form

with w= (Ws+w)

w, = {[f(e.) — f(218,)] + [o(w, %) — §(816,)]} v

and
wy = {[/(8187) — F(2189)] + [4(&, 85) — 6(8182)]}w

Moreover, the following weights error vectors are defined

8 =85~ 67

and these denote the distance of the weights vectors from the values that provide
optimal model estimation

It will be shown that these weights are updated through a gradient method 18
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5. Convergence proof for the optimization method

The following Lyapunov (energy) function is considered:

V=21TP 24 LT Pra+ 52 eTe + 5 tr[STBQ]

The selection of the Lyapunov function is based on the following principle
of indirect adaptive control

£ 1 limy_yes #(2) = w4(?) this results i
e - int 1m 2(t) = wglt
T — w(t) _ w{t) Into t—poo () d()

By deriving the Lyapunov function with respect to time one obtains:

1 ;T_ 1 i G
+’Y¢ Sf 8-f 1 Totr{gg 89] =

= 3{(4- BKT)8+K CTe\TPé+ 16TP{(A— BKT)é+ K,CTa)+
+5 LI{A - KC@)8+Buc+Bd+Bw}TPQe+
+3_TP {{4- KC@)8+BET{¢+Bd+Bw}+

+ L5784 Lerf3, 5] =

19
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5. Convergence proof for the optimization method

The previous equation is rewritten as: \

V=21 T(A BENT 4 TCKT ) Pia4+ 167 P {(A - BKT)e 4+ K,CTe}+
+2{&7(4 - KC’?’)T+uTBT+wTBT+dTBT}PQe+
12TP{(4 - KC“’)e+Buc+Bw+Bd}+ 18’*"8 + ‘t:»[& 8,] =
WhICh finally takes the form:
V= —*T(A BKTYTPR 4 1 3° eTCKT P é+
“TP (4 - BKT)e+1 DK, c’f’e+
+1 éT(A KOT)TP28+1( T+ wT 4+ dT)BT Fyet
+3e7P(A - Kcﬂ’)e+ 'TPQB(u¢+w+d)+

+3 3T3f+ 1w[a 8,]

Assumption 1: For given positive definite matrices Q1 and Q2 there exist positive definite
matrices P1 and P2, which are the solution of the following Riccati equations

(A— BKTYTPj+ P(A—BK")4+ Q1 =0

(A= K,CTY Py Py(4d - K,CT)-
~PB(2 - )BT P+ Qa=0
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5. Convergence proof for the optimization method

By substituting the relations described by the previous Riccati equations into the derivative
of the Lyapunov function one gets:

V=16"{(A- BKT)TP, + Pi(A - BKT)}é+ e"CKT Pié+
'T{(A K05 P+ PiA-K C’T)}}e+

+eTPQB(u¢+ w+ d) + - fﬂ’ef + o tr(8, 6]

or: V=-17Q,6 +ETCKTP 8- 1e7{Q, - BB(2 —T)BTPQ}‘H'
FEPB(vet wt &+ 258 + Len[d, 5]

The supervisory control term 1. consists of two terms u, and wy

The first term %4 IS

1
o —;"_TPQB + Au,

where assuming that the measurable elements of vector ¢ are {51,63-. e

21
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5. Convergence proof for the optimization method

The term Ay, issuch that

P11€1 + p13€3 + -+ - + P1k€k
. 3€ D33€3 + -+ + P3LEL
—%—TPQB-FAU-QZ—% P13€1 + P33€3 + ** * + P3k€k

---------

P1k€1 + P3k€3 + * ** + Prk€k

s IS an H, control used for the compensation of the approximation error zy and the
additive disturbance 4 (the control term w, has been chosen so as to satisfy the condition

The previolis relation finally stands for a product between the measurable state vector
elements {€1.€3," - ,€x} and the elements of matrix P, which is obtained from the
solution of the previous Riccati equation.

The control term 1w is given by

wy, = —[(P,B)T(P,B)|"'(RB) CK] Pé

@3 IS a control used for the compensation of the observation error (the control term # has
been chosen so as to satisfy the condition  zTp g, — —eTCKT P&,

22
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5. Convergence proof for the optimization method

The optimization-based control scheme is depicted in the
following diagram

Controller | E g System N
— wime_vnl & u . N
P - e kT T 3 -/ 4 X =) —Z
’ |

_H U= —Lb‘”&&-x:a

L s (s e e

Observer

.
LR " P
e=Ae-BK e+ K [e -CTe]
(4}

B

j‘(:r.r)

-~

Adaptation

Ll

'l

By substituting the supervisory control term in the derivative of the Lyapunov function
one obtains
V=-187Q.64+ 8TCKT P& — 187 Q24 17 B, BBT Py - ﬁgéTPQBBTPQa-F
- - - .‘.T_
+2TPyBu, + 2T Py Buy + 2T B, B{w 4 d) + %Sﬁ’ef + ?—;tr[ag 8,]
23
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5. Convergence proof for the optimization method

or equivalently

Besides, about the adaptation of the weights of the neurofuzzy

approximator it holds -

81- =83‘—8?=8J‘ 39.=89—3;‘=

- A =T
+e"PB(w + d + Aug) + =-07 05 + —-tr[0, 0]

8,.

A gradient-based update is applied to the approximator’s weights

85 = - ®(#)TBT R2
8, = —y2®(&)TBT Pyeu®

Gradient-based
optimization

The gradient update scheme is defined in a manner that assures that the first derivative

of the Lyapunov function will remain negative, and thus the Lyapunov function will be

monotonously decreasing.

By substituting the above relations in the derivative of the Lyapunov

function one obtains

v

1

Y2

e'Qeé — 558" LBBTPé +

BT Pyé(w +d + Aug) + 2(—71)eT P.B®(2) (0 — 0F) +

é!

(—vo)tr[uel PyB(g(2)0,) — g(2

0,)]

24
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5. Convergence proof for the optimization method

To continue with the convergence proof for the proposed optimization method it is taken

into account that

w e B2 and BTPB(4(«|8,) — §(«|82)) € R1*?
one gets

V = -1&TQé - -~TQ2e — 328" P,BBTPyé +

L (—y2)trleT PyB(d(16,) - 4(2103))u

Since e P B(§(#]9,) — §(#(8%))ue BT

it holds tr(2T BB (§(w|8,) — &(x|82)2) =
—-TPQB(Q{‘”WQ) 9(‘0'8*))“

Therefore, one finally obtains

V. = —3&TQié — 36TQeé — 32¢"RBBTPé +

BT Pyé(w +d + Aua) + =(—m1)eé" PaB®(2)(0; — 07) +
—(—12)e" P,B(g(2|0,) — g(2(6}))u

Next, the following approximation error is defined

wa = [F(8]87) — /(2185)] + [6(816}) — §(818)]

BT Pyé(w + d-+ Aug) + L (—1)e" B8 ()0 — 05) +
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5. Convergence proof for the optimization method

Thus, one obtains

V= —3e7Q,é sé! P,BBT Pyé+
+BTPge(w + d - Aua) + GTPQBUJ

Denoting the aggregate approximation error and disturbances vector as
wy =w+d+ w, + Au,
the derivative of the Lyapunov function becomes

V =—387Q1é - 387Que — ;%" P,BBT Pye+ &7 PyBuny

which in turn is written as

V= —187Qu8 - 187Q,é— 1, i P,BBT 5t
+187 PBuy + 10T BT p,3

Lemma: The following inequality holds

18T P,Bw, + 1w BTP,2 - —;5 e' P, BEBTP,z

PR
< Fp0wy W

26
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5. Convergence proof for the optimization method

Proof:

The binomial (pa-%b)? >0 is considered. Expanding the left part of the above
inequality one gets
plal 4 ;13:62 —Dab>0=
70°0° + b —ab 2 0=
ab — %962 < 1ptat =
%ab+ %ab— %;bg < %—p"’aQ

By substituting & =4 and b = &Z 7B one gets

lw] BT Rz + 187 Py Buy — 728" B, BBT P,z

g By O

Moreover, by substituting the above inequality into the derivative of the Lyapunov
function one gets i
55

s g 1
V< — 58 Qué - 587 Qud+ 5pluiws

which is also written as . i
V<-— 5

ith %
wit T (Z) g (%1 52) = diag|@1, Q2]

BETQE+ %p2w$w1

27
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5. Convergence proof for the optimization method

Hence, the H., jerformance criterion is derived. For sufficiently small p the inequality will
be true and the H_. racking criterion will be satisfied. In that case, the integration of "V from O
to T gives

Jo VBt < 31| BIPdE+ o2 e | =
2V(T) ~ 2V(0) < - —(TB |5 dt + o2 fo AR
2V(T) + f5 ||BIBdt < 2V(0) + & 7 [loa |2t

It is assumed that there exists a positive constant £, > 0 such that

Jo llews[2d < M,

Therefore for the integral S | E||%8% one gets
0 @

[ 1Bt < 2710 + 71
0

Thus, the integral f:oHE”Qth is bounded and according to Barbalat’s Lemma

lims e () =0

and thus global asymptotic stability is also shown for the control loop. 28
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6. Case studies on robotic and electric power systems

6.2 The model of distributed power generators

The dynamic model of the distributed power generation units is assumed to be that of
synchronous generators. The modelling approach is also applicable to PMSGs (permanent
magnet synchronous generators) which are a special case of synchronous electric

machines. :

W = —%(w‘ —wp) + 3—3(13771 — Pe)

5 turn angle of the rotor P. active electrical power of the machine
w o turn speed of the rotor P - mechanical power of the machine

Wy - synchronous speed D damping coefficient

J moment of inertia of the rotor § electromagnetic torque

The generator’s electrical dynamics is:

E:] — ﬁo(Ef — E,)

E, s quadrature axis voltage of the generator

T, isthe direct axis open-circuit transient time constant

Ef isthe equivalent voltage in the excitation coil

©

g IS the quadrature-axis transient voltage (a variable related to the magnetic flux)

29
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6. Case studies on robotic and electric power systems

6.2 The model of distributed power generators

The synchronous generator’s model is complemented by a set of algebraic equations:

/ ’
E, = izz E,— (za— xd);f’ cos(AS)
= >3

I, = Yesin(A))
dx>

q x

-

where: I e o i ol 13;12 = -’17:i + 7 + 2L
x4 : direct-axis synchronous reactance I4 and I, :direct and quadrature axis currents
T reactance of the transformer V. :infinite bus voltage
x, :direct-axis transient reactance Q. : reactive power of the generator
z; transmission line reactance V; ¢ terminal voltage of the generator

30
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6. Case studies on robotic and electric power systems

6.2 The model of distributed power generators

From Eq@ and Eq. @ one obtains the dynamic model of the synchronous generator:

d =w —wp
s D : : 1 IVE'I
w-——Q—J(w—wo)+c~02J

n(A0)

Tdys

-

E, = 1E + -2 ”dvcos(Ao)+T - Ey

q -

Moreover, the generator can be written in a state-space form:

i = (@) + g(a)u

. < T
where the state vectoris == (Ad Aw E_) and

while the system’s output is y=h(z)=0—10g 31
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6. Case studies on robotic and electric power systems

6.2 The model of distributed power generators

The interconnection between distributed power generators results
into a multi-area multi-machine power system model

Load A

s\r\

Load B

3-area multi-machine system

1

2-area multi-machine system

G

The dynamic model of a power system that comprises n-interconnected power generators is

0i = wi — wo

» l)r Prni
w; = —57-(wi — wo) + wogz-—
2
pa A 2 Ny el Y PR
A I 1 Td;—Tq, , 17
EQi - TZI EQi + Tdo,‘ '-1':1 - ‘/;1' COS(A(SQ) + Tdoi Efz 32

1 — 1
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6. Case studies on robotic and electric power systems

6.2 The model of distributed power generators

The active power associated with the i-th power generator is given by:

/ 2 ’ . ! - ~ ~
Pe,», = G-i-iqu' + Eq.iz.,;:l‘j¢,iquGijSlZ"n'((>i — Oj — Q’,’j)

The state vector of the distributed power system is givenby 5 = [;vl, z2, ... ,J;n]T

!

where zt = [z}, 2}, 23T with 21 = A§ 25=Aw; and z3=F;

Next, differential flatness is proven for the model of the stand-alone synchronous
generator.

In state-space form one has:
Ty = T

s D /.y Prn @Wo V.s v <
Ty = —553L2 T Wo5T — 355 s x3sin(zry)

/
. 1
r3 = ——7
3 Td o IdS

1 Tg— 1
x3 + - ——4Vscos(z1) + 7-u

The flat output is takento be y = x4

Itholdsthat z1 =y ao=9y andfor zi#xnm,

P ve ' 9 BB
Wosg7 —Y—37Y
wp Vg 3
57 —r—sin(y)
Tads

I3 =

, or 3 = fa(y, 9, ¥) 33
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6. Case studies on robotic and electric power systems

6.2 The model of distributed power generators

while for the generator’s control input one has

uw=Ty,[i3 + , T3 Tl m‘;:—jivscos(:vl)], or

u—fb(y Y, 1)

Consequently, all state variables and the control input of the synchronous generator
are written as differential functions of the flat output and thus the differential flatness
of the model is confirmed.

By defining the new state variables ¥1 =Y, ¥2 =19, ys =y

the generator’s model is transformed into the canonical (Brunovsky) form:

o 0 1 0\ [y 0
gp]l=10 0 1) lw]+(0]v
U 0 0 0/ \uys 1

with ’_v=fc(y,z'/,ii)_+_gc(y,z'/,_ii_)u where

wol‘

and 9:(¥,9,9) = oI T n(y)

/.9 1
+5% —;—Fdrxg,sm(y) — 577

‘/

T}io z‘;;g 1V/, cos(y)sin(y)—

— Yo

57 7 3cos(y)y 34
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6. Case studies on robotic and electric power systems

6.2 The model of distributed power generators

Differential flatness can be also proven for the model of the
n-interconnected power generators

The flat output is taken to be the vector of the turn angles of the
n-power generators

y = [yl,ud, - ,yP] or y = AGL, A2, A"
For the n-machines power generation system it holds

o "l 0L, . OFTE. A
xl_yaxl_yaxl_ya“'vxl

L

=Aw —y Aw _y (EQ Aw _93’...
Moreover, it holds
.’172 2[?] .172 + wo .P

[Gul’s + 37323 1]¢z[$30z33m(371 - ’L’J1 — ;)]

or using the flat outputs notation

i = — Bt + P
_;J [G"x3 +$3Z_} 1]#1[17](;1_78?’"’(1/ _y] _aU)]
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6. Case studies on robotic and electric power systems

6.2 The model of distributed power generators

constant variable

From Eqg. and forone i=1,2,-.--.n has a system of n equations which can be
solved with respect to the variables iz5,1=1,2,---.n

Actually, all variables .1:'3 can be expressed as differential functions of the flat outputs

yi, =1, 2.~ ;n

and thus one has gy = Fas (U022 Y™

Moreover, from

EQ?':_

i

1 : 1 xdi_m:ii 7 , y . 1
Td,-EQi—*_Tdm Tdy, ‘siCOS(AOz)-{—TdOiEf

one can demonstrate that the control inputs  U; =E; can be expressed as differential

functions of the flat outputs ', i=1,2,---.n

Consequently, all state variables and the control inputs of the distributed power system
can be expressed as differential functions of the flat outputs, and the system is a
differentially flat one.

36
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6. Case studies on robotic and electric power systems

6.2 The model of distributed power generators

Next, the external mechanical torque P,,; is considered to be time-varying
The effect of this torque is viewed as a disturbance to each power generator

In such a case for a model of n=2 interconnected generators one obtains the
input-output linearized dynamics

v - - i ooi
23 =a'(x) +bi'qrur + ba'goup +d* where z.=6 =
and

. - - .
a' = (33 )2ah + @%[Gnls +~’l‘3z] 1,550 3Gijsin(zi — o] — au5)]—

/

< . a 7 s xr f_I P 3
35, (Gl + Tj1 @3 Cujsin(al — @1 — oiy)(— -4 + (g o Vascos(al)] -
G 1 ") Idi_‘r:ii V. bS
~3J; 321 1,ji ijsin(a} — o] — aij)(— T’ a4 ‘*‘( P — s;€os(x1))—

' ) %] o Yand
32_} 1]751'1’302.1008(‘1;1 I’{ Qi ‘TQ QJ J’3Z] 1_7;&11’301]008(‘11 — &7 — X4y ):LQ

and i wo 2 n J ) "2 J e
b = —37:[2Guiah + ) ;1 jxi03Gijsin(a] — @1 — 04|~

: S 1

bb = —;—ﬁGigszn(;E"l —a? — CYz'Q)—Td z

while 7% _ _ Diwp pi wo i
= WP + 57, P

m
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6. Case studies on robotic and electric power systems

6.2 The model of distributed power generators

For the two interconnected generators (i=1,2) one has the linearized dynamics
3=z
% =23 | . N
ié = a’(fL’) - blzglul - bz'gz'qu +d'

Z% = (’L)+bl g1uq +bz gguz-{—d2
or in matrix form 23 = fa(z) + Mu+d
where zZ3 = [Z%,Z%]T, u = [ul,uQ]T and JZ [Jl, (iQ]T
1 1
and (2 )) ; (bl g1 b 92)
(x . M= . .
fal®) = ( %(x) bi’g1 ba’go
Setting, v = f.(x)+ Mu+ d one obtains
5 0 1 0\ /= 0 )
Bl =(0 0 1] |z3]+ (0] @ +d)
34 0 0 0/ \2 1

38
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6. Case studies on robotic and electric power systems

6.2 The model of distributed power generators

For the model of the 2-area distributed power generation
system it holds that

3

1,(1% = fi(z,t) + g1(@, t)u + dy
3

2%y = fa(x,t) + go(@, t)u + d

By denoting Xy = Xpqs Xy = Xu1, X5 = X121

X2 — X2,1’ X5 = X2,1, X6 = X2,1

the Brunovsky (canonical form) of the distributed power
system is obtained

x| J01 00 0 0fx] [0 0

: where

x2| 10 0100 0fx| |00

%|_[00 000 0x| |1 0]y v s g (0 G
x| |00 001 0% 10 0]y vl:fl(x)+(illlll(x)u1 +?3112 (X)u2
.| 00000 1|x| |00 272 210751+ 92210082
| 100000 0fx| |01

* For the 2-area distributed power system differential flatness properties hold and one can
apply the control scheme analyzed in Sections 3 and 4. 39
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7. Simulation tests

The dynamic model of the distributed power generators was taken to be completely unknown,
while the state vector could be partially measured
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7. Simulation tests

setpoint 3

1

(11| SRREEE TR PORRR R PR SRR

09 A e N e et Soai : :
3 . .
1 e o s : i
2 07 u & 85 g ¢
1 s : ;
1 l 1

r
-
=Y
=}
[

g4 ¥ 05 8 § 5§ § 4
0 14 1® 18 20 045

8 10 12 14 1% 18 20 045
. tisec)

time

[¥]
EN
@

W,

o
o

(SR

=

o

o -

al

[l SRR REREE R (X EEEEE SRR
- L

>

=

(=]

-~

o

14

c
[y
ul (p.u.) u,
! o & ‘ .
3 4

2 4 6 8 W 2 W4 6 18 20 045

time tiffie

i



New approaches to nonlinear control of distributed dynamical systems: Lyapunov methods

7. Simulation tests
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7. Simulation tests

7.2 Optimization-based modelling and control of a distributed power generators

Table I: RMSE of the power generator’s state variables

parameter W1 w1 w9 wo

RMSFE; 0.0035 | 0.0002 | 0.0034 | 0.0002
RMSE, 0.0123 | 0.0545 | 0.0118 | 0.0602
RMSE5 0.0035 | 0.0020 | 0.0035 | 0.0020
RMSE; 0.0031 | 0.0020 | 0.0026 | 0.0020
RMSE; 0.0034 | 0.0003 | 0.0033 | 0.0002
RM S FEg 0.0035 | 0.0003 | 0.0033 | 0.0002

The tracking accuracy of the control method was remarkable despite the fact that
(i) the dynamic model of the systems was completely unknown,
(i) only output feedback was used in the implementation of the control scheme.

It has been also confirmed that the transient characteristics of the control
scheme are quite satisfactory

The proposed optimization-based modelling and control method is
of generic use and can be applied to a wide class of nonlinear dynamical
systems of unknown model
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8. Conclusions

* A Lyapunov theory-based method of assured convergence and
stability has been developed. The method is suitable for modelling +
and optimization-based control in a wide class of nonlinear systems

* By exploiting the differential flatness properties of the MIMO
nonlinear model of the dynamical systems this was transformed
into the linear canonical (Brunovsky) form. For the latter description
the design of a feedback controller was possible.

* Moreover, to cope with unknown nonlinear terms appearing in the new control
inputs of the transformed state-space description of the system, the use of nonlinear
regressors (neurofuzzy approximators) has been proposed..

* These estimators were online trained to identify the unknown
dynamics of the system and the associated learning procedure

was determined by the requirement the first derivative of the control
loop’s Lyapunov function to be a negative one.

» The computation of the control input required the solution of two
algebraic Riccati equation.

* Through Lyapunov stability analysis it was proven that the closed loop satisfies the
H-infinity tracking performance criterion, while also an asymptotic stability
condition has been formulated. 44



