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New approaches to nonlinear control of dynamical systems: Approximate linearization methods

1. Outline

* Anew nonlinear H-infinity control method for stabilization
and synchronization of underactuated surface vessels.

* At first stage local linearization of the model of the underactuated i
vessels is performed round its present operating point. =

» The approximation error that is introduced to the linearized model is due to truncation of
higher-order terms in the performed Taylor series expansion and is represented as a
disturbance.

* The control problem is now formulated as a mini-max differential game in which the control
input tries to minimize the state vector’s tracking error while the disturbances affecting the
model try to maximize it.

* Using the linearized description of the distributed generators’ dynamics an H-infinity
feedback controller is designed through the solution of a Riccati equation at each step of the
control algorithm.

 The inherent robustness properties of H-infinity control assure that the disturbance
effects will be eliminated and the state variables of the underactuated surface vessel will
converge to the desirable setpoints.

» The proposed method, stands for a reliable solution to the problem of nonlinear control and
stabilization for unmanned surface vessels exhibiting underactuation.. 2
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2. Model of the underactuated vessel

® The underactuated vessel’s model stems from the generic ship’s model, after setting
specific values for the elements of the inertia and Coriolis matrix and after reducing the

number of the available control inputs.
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2. Model of the underactuated vessel

or equivalently, one has the description F = f(i) e g(j){,
The system’s state vector is denotedas = = [CE ' Y, -z;"), u,v,T
while  f(z)eR%*! and §(%) = [§a,ds]€R®*?

while the control input is the vector V= [Tu, TT]T

— - » XI

Fig. 1. Diagram of the underactuated hovercraft’s kinematic model
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2. Model of the underactuated vessel

The system’s state vector can be extended by including as additional state variables the control

input 1, and its first derivative 1.

The extended state-space description of the system becomes
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or equivalently, one has the description 2 = f(

The extended system’s state vector is denoted as
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= [.’E, Y, L"‘~ u,v,r,z1,22

Moreover, one has f(z)eR®*! and g(z) = [ga,rgb]ERb'xz,

while the control input is the vector is @ = [, 7]
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3. Linearization of the model of the underactuated vessel

Local linearization is performed for the state-space model of the underactuated vessel, round
the operating point (x*, u*) where x* is the present value of the system’s state vector and u* is
the last value of the control input that was exerted on the machine.

The joint kinematics and dynamics model is written in the form: & = f(z) + g(z)u

where the state vector is: = = [x1, x2. 73, 74. 75,767 = [z, y. 1, u.v,7]T . and
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3. Linearization of the model of the underactuated vessel

The linearization of the vessel's model round the temporary equilibrium gives

T = Az + Bu

where
A= v.r[f(-r) +9(1‘)U] |(;zr‘.u’) =A = v.rf('r) |(.r‘,u‘)

B = Vu[f(r) +g(;l‘)u] |(z“ *) =S = g |(:r u*)

For the Jacobian matrix A = V.. [f(x) + g(x)u] |2+ ue)
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For the first row of the aforementioned Jacobian matrix one has:
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3. Linearization of the model of the underactuated vessel

For the second row of the aforementioned Jacobian matrix one has:

afs __ Ofs __ Ofz: - ooy SNy VI 5 ) [ Gy Sy o (3§ (R (i 0 ) [
B = 0, 7 =0, 3= = rgcos(ry) — r5sin(xy), = sin(xs), P = cos(xy), P = 0.

For the third row of the aforementioned Jacobian matrix one has:

Ofs _0 8 _g 8 _g 8 _g 8 _g 9.1

Oz = TV 08x:y TV Oxg Y Oxg & T Ozs ' drg

For the fourth row of the aforementioned Jacobian matrix one has:

ﬂ_o %_0 0fl:0 O fa Oaf-l d_f‘:

- = - — - - - —: : 5.
ox, Y Oz, Y Oz ' Oxg4 dxs G, Oxg z

For the fifth row of the aforementioned Jacobian matrix one has:

afs —0 9fs =0 _QL%__O Ofg = 2 afs _ B Ofs __

Oxy ) Oxa ~ ! Oxrs Y Oxa —Ig, dzs ' Dra —XIg-

For the sixth row of the aforementioned Jacobian matrix one has:

9fe _n 8fe —_ g 8fe _ g 2fs _ gﬁ:() 9fs _ )
‘,'-1-_. ] .
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3. Linearization of the model of the underactuated vessel

Parameter d, stands for the linearization error in the underactuated vessels’ model

;<:Ax+Bu+d1 @

The desirable trajectory of the underactuated vessel is denoted by

Xd =[Xd, +Xd,  Xd - Xd_ 1 Xd, » Xd, ] .

Tracking of this trajectory is succeeded after applying the control input z&*

At every time instant the control input #* is assumed to differ from the control input
appearing in @ by an amount equal to  Aw, thatis g = 44 Ay

wg = Awg+ Bur+ dy

The dynamics of the system of Eq. @can be also written in the form

¢ = Ae+ Bu+4 Bu* — Bu* 4 d @

and by denoting d; = —Bw=*+44dy as an aggregate disturbance term one obtains

= Ao+ Bu+t Bu* 4 ds @ 9



New approaches to nonlinear control of dynamical systems: Approximate linearization methods

5. The nonlinear H-infinity control

where matrices A and B are obtained from the computation of the Jacobians

8h  B8H . 81 8f1  8f . Oh

= 22 e ol B2 T2 L T |l
Ofn Bfn .. Bfn e Gfn . Ofn
B4 Bwa B%p, g Buo Sy,

and vector d denotes disturbance terms due to linearization errors.

The problem of disturbance rejection for the linearized
model that is described b ‘
v =Ax+ Bu+ Ld

y=Cu

where 2€ER", ueR™, de R? and y€ F¥ cannot be handled efficiently if the classical LQR
control scheme is applied. This because of the existence of the perturbation term 4.

In the He control approach, a feedback control scheme is designed for trajectory
tracking by the system’s state vector and simultaneous disturbance rejection, considering
that the disturbance affects the system in the worst possible manner

10
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5. The nonlinear H-infinity control

The disturbances’ effect are incorporated in the following quadratic

cost function { 7T = e
J(t) =3 fo [v" B)y)+ it |

+rul Q)ul) — p2dT ()d@))dt, r,p>0 SS=—=————=

The coefficient r determines the penalization of the control input and the weight
coefficient p determines the reward of the disturbances’ effects. It is assumed that

Then, the optimal feedback control law is given by
u(t) = —Ka(t) with K =1BTp

where P is a positive semi-definite symmetric matrix
which is obtained from the solution of the Riccati equation

ATP+PA+Q-P(iBBT— L LIT)P =0

where Q is also a positive definite symmetric matrix.

The parameter p in Eqg. (15), is an indication of the closed-loop system
robustness. If the values of p> 0 are excessively decreased with respect to r, then
the solution of the Riccati equation is no longer a positive definite matrix.

Consequently, there is a lower bound p.,,, of for which the H-infinity control problem
has a solution. 11
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6. Lyapunov stability analysis

The tracking error dynamics for the distributed power generation
System is written in the form

é6=Ae+ Bu+ILd

where in the underactuated vessel’s application example L = I€R? with |
being the identity matrix. The following Lyapunov function is considered

V= %eTPe

where ¢ = x—a, isthe tracking error. By differentiating with respect to time one obtains

V = §8TP8 + 8P8:>
=1[ded Byt LdTP4+1 eTP[Ae + Bu + Ld]=

V =3[eTAT + o BT + dTLT|Pe+
+LeTPlAe + Bu+ Ld]=

V=1TATPe+ iuTBTPe + 1dTLT Pe+
TPAe + 5 L eTPBu + 5 L eTPLd

12
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6. Lyapunov stability analysis

The previous equation is rewritten as

V =1eT(ATP + PA)e + (34T BT Pe + LT PBu)+
+(2dT LT Pe + 1T PLd)

Assumption: For given positive definite matrix Q and coefficients r and p there exists a
positive definite matrix P, which is the solution of the following matrix equation

T s 1 T 1 T
ATP+PA=—Q+ P(:BBT — 2 LLT)P @
Moreover, the following feedback control law is applied to the system

U= —%BTPe
By substituting Eq. @ and Eq. @ one obtains

V=356T[-Q+ P(3BBT — 1 LLT)Ple+
+eTPB(—1BTPe 4+ eTPLd=

13
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6. Lyapunov stability analysis

Continuing with computations one obtains

V =—1eTQe 1+ (2 PBBT Pe — wze’ PLLT)} Pe
——eTPBBTPe eft eTPLd

which next gives
V= —2eTQe - %eTPLLTPe +eTPLd

or equivalently

V — ——eTQe ; QTPLLTP8+
+%eTPLd + 1dTLT Pe

Lemma: The following inequality holds

LeTLd + +dLT Pe— 1 eTPLLT Pe<ip?d®d

14
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6. Lyapunov stability analysis

Proof : The binomial (po:— —b) is considered. Expanding the left part of the above inequality
one gets
p%a? + L2 —2ab > 0= 1p%2 + L 1 —ab>0=

ab— 52b% < 30%% = Jab+3 ab —g'bz_ 2p%a?

The following substitutions are carried out: & = d and b = TPL,
and the previous relation becomes

1dTLT Pe 4 $eTPLd — SyeT PLIT Pe<ip?d’d

Eq. @ IS substituted in Eq.@ and the inequality is enforced, thus giving

O

V< —1eTQe+ 1p%d7d

Q

Eq. @ shows that the H-infinity tracking performance criterion is satisfied.

The integration of V from O to T gives

fo V(Ha< = 3y llelBdt + 362 f ||d||2ds:»
OV(T) + fy llelldt<2v(0) + o* fy 4%t
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6. Lyapunov stability analysis

Moreover, if there exists a positive constant Jif; > 0  such that

fo ldl|?ds < My
then one gets

fo llel Gdt < 2V(0) + " My

Thus, the integral f§°||e||2th is bounded.

Moreover, V(T) is bounded and from the definition of the Lyapunov function V it becomes
clear that e(t) will be also bounded since

e(t) € Q. = {e]e” Pe<2V{0) + o? My}
According to the above and with the use of Barbalat’s Lemma |
one obtains: =

This completes the stability proof.

16
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7. Robust state estimation with the use of the H-infinity Kalman Filter

A discrete-time description of the linearized state-space model of the vessel is assumed.
The H-infinity Kalman Filter, for the model of the underactuated vessel, can be
formulated in terms of a measurement update and a time update part

Measurement update:
D(k) = [I — W (k)P~ (k) + CT(k)R(k)~'C(K)P~ (k)]
K(k)= P~ (E)D(E)CT (k)R(k)~!
J"( }u') — .i'- (’-' ) + I\.( ’t') [!/(k) — (-'.I-'_(}\')]

Time update:

= (k+1) = A(k)x(k) + B(k)u(k)
P=(k+1)= A(k)P~(k)D(K)AT (k) + Q(k)

where @ is sufficiently small to assure positive definiteness for the covariance matrix

P=(k) — oW (k) + CT (k) R(k)~1C (k)

One can measure only a subset of the state variables of the vessel's model (e.g. cartesian
coordinates) and can estimate through filtering the rest of the state vector elements.

Besides the filter can be used for sensor fusion purposes. 17
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8. Simulation tests

» The nonlinear H-nfinity control scheme is tested through simulation examples

Linearization ofthe USV’s
kinematic and dynamic model

;= A + Bu+ Ld
A = Vf.‘ ‘(_t"_u‘):B = V‘fu ‘(I.:ul)

4,B,L

Solution of the algebraic
Riccati equation

ATPspa+o-PBeT - _pTyp=y
. 2

p
2
'y + e H-infinity u=Ke Nonl:)r;t:::dly’g\a,mlcs X
—(s j— controlgain - iy
> k=-LpTp
= 7 x= f(x.u)

Fig. 2: Diagram of the control scheme for the underactuated vessel

It can be noted that the H-infinity algorithm exhibited remarkable robustness to
uncertainty in the model of the distributed power generators which was to approximate
linearization. 18
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8. Simulation tests
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8. Simulation tests
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8. Simulation tests
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8. Simulation tests
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8. Simulation tests
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9. Conclusions

» The problem of trajectory tracking control of underactuated
unmanned surface vessels has been solved with the application
of a nonlinear H-infinity (optimal) control method.

* Anew nonlinear feedback control method for underactuated
vessels has been developed based on approximate linearization
and the use of H-infinity control and stability theory.

* The first stage of the proposed control method is the linearization of the distributed power
generators’ model using first order Taylor series expansion and the computation of the
associated Jacobian matrices.

» The errors due to the approximative linearization have been considered as disturbances
that affect, together with external perturbations, the distributed power generators’ model.

« At a second stage the implementation of H-infinity feedback control has been proposed.
Using the linearized model of the vehicle an H-infinity feedback control law is computed at
each iteration of the control algorithm, after previously solving an algebraic Riccati equation.

« The known robustness features of H-infinity control enable to compensate for the errors
of the approximative linearization, as well as to eliminate the effects of external perturbations.

» The efficiency of the proposed control scheme is shown analytically and is confirmed
through simulation experiments. 24



