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• A new nonlinear H-infinity control method for stabilization

and synchronization of underactuated surface vessels.

• At first stage local linearization of the model of the underactuated

vessels is performed round its present operating point.

• The approximation error that is introduced to the linearized model is due to truncation of

higher-order terms in the performed Taylor series expansion and is represented as a

disturbance.

• The control problem is now formulated as a mini-max differential game in which the control

input tries to minimize the state vector’s tracking error while the disturbances affecting the

model try to maximize it.

• Using the linearized description of the distributed generators’ dynamics an H-infinity

feedback controller is designed through the solution of a Riccati equation at each step of the

control algorithm.

• The inherent robustness properties of H-infinity control assure that the disturbance

effects will be eliminated and the state variables of the underactuated surface vessel will

converge to the desirable setpoints.

• The proposed method, stands for a reliable solution to the problem of nonlinear control and

stabilization for unmanned surface vessels exhibiting underactuation..

1. Outline
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2. Model of the underactuated vessel

• The underactuated vessel’s model stems from the generic ship’s model, after setting 

specific values for the elements of the inertia and Coriolis matrix and after reducing the 

number of the available control inputs.

ψ is the orientation angle

u is the surge velocity

v is the sway velocity

r is the yaw rate

The control inputs are the surge force τu and the yaw torque τr

The underactuated vessel’s model is also written in the matrix form
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or equivalently, one has the description

2. Model of the underactuated vessel

The system’s state vector is denoted as

while and

while the control input is the vector

Fig. 1. Diagram of the underactuated hovercraft’s kinematic model
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The system’s state vector can be extended by including as additional state variables the control 

input τu and its first derivative ሶ𝜏u.

2. Model of the underactuated vessel

The extended state-space description of the system becomes

or equivalently, one has the description

The extended system’s state vector is denoted as

Moreover, one has and

while the control input is the vector is
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3. Linearization of the model of the underactuated vessel

Local linearization is performed for the state-space model of the underactuated vessel, round 

the operating point (x∗, u∗) where x∗ is the present value of the system’s state vector and u∗ is 

the last value of the control input that was exerted on the machine. 

The joint kinematics and dynamics model is written in the form:

where the state vector is: and

and using the state variables notation one gets the description
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The linearization of the vessel’s model round the temporary equilibrium gives

3. Linearization of the model of the underactuated vessel

where

For the Jacobian matrix

=

=

For the first row of the aforementioned Jacobian matrix one has:
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3. Linearization of the model of the underactuated vessel

For the second row of the aforementioned Jacobian matrix one has:

For the third row of the aforementioned Jacobian matrix one has:

For the fourth row of the aforementioned Jacobian matrix one has:

For the fifth row of the aforementioned Jacobian matrix one has:

For the sixth row of the aforementioned Jacobian matrix one has:
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Parameter d1 stands for the linearization error in the underactuated vessels’ model

The desirable trajectory of the underactuated vessel is denoted by

Tracking of this trajectory is succeeded after applying the control input

At every time instant the control input is assumed to differ from the control input

appearing in by an amount equal to , that isA

B
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The dynamics of the system of Eq. can be also written in the formA

and by denoting as an aggregate disturbance term one obtains

C

D

T
ddddddd xxxxxxx ],,,...,,,[

987321


1dBuAxx 


A

3. Linearization of the model of the underactuated vessel
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5. The nonlinear H-infinity control

where matrices 𝐴 and 𝐵 are obtained from the computation of the Jacobians

and vector 𝑑 denotes disturbance terms due to linearization errors.

10

The problem of disturbance rejection for the linearized

model that is described by

where cannot be handled efficiently if the classical LQR

control scheme is applied. This because of the existence of the perturbation term 𝑑.

In the 𝐻∞ control approach, a feedback control scheme is designed for trajectory

tracking by the system’s state vector and simultaneous disturbance rejection, considering

that the disturbance affects the system in the worst possible manner
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The disturbances’ effect are incorporated in the following quadratic

cost function

The coefficient 𝑟 determines the penalization of the control input and the weight

coefficient 𝜌 determines the reward of the disturbances’ effects. It is assumed that

11

5. The nonlinear H-infinity control

Then, the optimal feedback control law is given by

with

where 𝑃 is a positive semi-definite symmetric matrix

which is obtained from the solution of the Riccati equation

where Q is also a positive definite symmetric matrix.

The parameter ρ in Eq. (15), is an indication of the closed-loop system

robustness. If the values of ρ> 0 are excessively decreased with respect to r, then

the solution of the Riccati equation is no longer a positive definite matrix.

Consequently, there is a lower bound ρmin of for which the H-infinity control problem

has a solution.
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6. Lyapunov stability analysis

The tracking error dynamics for the distributed power generation

System is written in the form

where in the underactuated vessel’s application example with I

being the identity matrix. The following Lyapunov function is considered

where is the tracking error. By differentiating with respect to time one obtains

12
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The previous equation is rewritten as

6. Lyapunov stability analysis

Assumption: For given positive definite matrix Q and coefficients r and ρ there exists a

positive definite matrix P, which is the solution of the following matrix equation

Moreover, the following feedback control law is applied to the system

By substituting Eq. and Eq. one obtains

G

H
H G

13
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6. Lyapunov stability analysis

Continuing with computations one obtains

which next gives

or equivalently

Lemma: The following inequality holds

I

14
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6. Lyapunov stability analysis

Proof : The binomial is considered. Expanding the left part of the above inequality

one gets

The following substitutions are carried out:

and the previous relation becomes

Eq. is substituted in Eq. and the inequality is enforced, thus giving

J

J I

Eq. shows that the H-infinity tracking performance criterion is satisfied.

The integration of from 0 to T gives

K

K



V

15
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6. Lyapunov stability analysis

Moreover, if there exists a positive constant                    such that

then one gets

Thus, the integral is bounded.

According to the above and with the use of Barbalat’s Lemma

one obtains:

Moreover, V(T) is bounded and from the definition of the Lyapunov function V it becomes

clear that e(t) will be also bounded since

16Τhis completes the stability proof.
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7. Robust state estimation with the use of the H-infinity Kalman Filter

A discrete-time description of the linearized state-space model of the vessel is assumed.

The H-infinity Kalman Filter, for the model of the underactuated vessel, can be 

formulated in terms of a measurement update and a time update part

where is sufficiently small to assure positive definiteness for the covariance matrix

One can measure only a subset of the state variables of the vessel’s model (e.g. cartesian 

coordinates) and can estimate through filtering the rest of the state vector elements.

Besides the filter can be used for sensor fusion purposes.

Measurement update:

Time update:
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8. Simulation tests

• The nonlinear H-nfinity control scheme is tested through simulation examples

18

Fig. 2: Diagram of the control scheme for the underactuated vessel

It can be noted that the H-infinity algorithm exhibited remarkable robustness to

uncertainty in the model of the distributed power generators which was to approximate

linearization.
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8. Simulation tests

Tracking of the reference trajectory (red line) in the 

x − y plane by the unmanned surface vessel (blue line),
Convergence of the state variables x1 = x, 

x2 = y and x3 = ψ to the reference values 

Convergence of the state variables of the vessel 

x4 = u, x5 = v and x6 = r to the reference values

Control inputs u1 and u2 

exerted on vessel

Path 1
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9. Conclusions

• The problem of trajectory tracking control of underactuated

unmanned surface vessels has been solved with the application

of a nonlinear H-infinity (optimal) control method.

• A new nonlinear feedback control method for underactuated

vessels has been developed based on approximate linearization

and the use of 𝐻-infinity control and stability theory.

• The first stage of the proposed control method is the linearization of the distributed power

generators’ model using first order Taylor series expansion and the computation of the

associated Jacobian matrices.

• The errors due to the approximative linearization have been considered as disturbances

that affect, together with external perturbations, the distributed power generators’ model.

• At a second stage the implementation of 𝐻-infinity feedback control has been proposed.

Using the linearized model of the vehicle an H-infinity feedback control law is computed at

each iteration of the control algorithm, after previously solving an algebraic Riccati equation.

• The known robustness features of H-infinity control enable to compensate for the errors

of the approximative linearization, as well as to eliminate the effects of external perturbations.

• The efficiency of the proposed control scheme is shown analytically and is confirmed

through simulation experiments.
24


