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Nonlinear control and filtering for USVs and AUVs

| . Outline

e Autonomous navigation of USVs and AUVs relies on the solution of
the associated nonlinear control and state estimation problems

e The main approaches followed towards the solution of nonlinear
control problem are as follows: (i) control with global linearization
methods (ii) control with approximate (asymptotic) linearization
methods (iii) control with Lyapunov theory methods (adaptive control
methods) when the dynamic model of the USVs and AUVs is unknown

e The main approaches followed towards the solution of the nonlinear
state estimation problems are as follows: (i) state estimation with
methods global linearization (ii) state estimation with methods of
approximate (asymptotic) linearization

e Factors of major importance for the control loop of USVs and AUVS,
In autonomous navigation problems, are as follows (i) global stability
conditions for the related nonlinear control scheme (ii) global stability
conditions for the related nonlinear state estimation scheme (iii) global
asymptotic stability for the joint control and state estimation scheme
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Il . Nonlinear control and state estimation with global linearization

.

e To this end the differential flatness control theory is used W e

e The method can be applied to all nonlinear systems which
are subject to an input-output linearization and actually such
systems posses the property of differential flatness

e The state-space description for the dynamic model of the USVs and AUVs is
transformed into a more compact form that is input-output linearized. This is achieved
after defining the system'’s flat outputs

e A system is differentially flat if the following two conditions hold: (i) all state variables and
control inputs of the system can be expressed as differential functions of its flat outputs (ii)
the flat outputs of the system and their time-derivatives are differentially independent,
which means that they are not connected through a relation having the form of an ordinary
differential equation

e With the applications of change of variables (diffeomorphisms) that rely
on the differential flatness property (i), the state-space description of the
USVs and AUVs is written into the linear canonical form. For the latter
state-space description it is possible to solve both the control and the state
estimation problem for USVs and AUVs, and to achieve autonomous navigation..




- Nonlinear control and filtering for USVs and AUVs
lll . Nonlinear control and state estimation with approximate linearization

e To this end the theory of optimal H-infinity control and the theory of
optimal H-infinity state estimation are used

e The nonlinear state-space description of the USVs and AUVs undergoes

approximate linearization around a temporary operating point which is
updated at each iteration of the control and state estimation algorithm

e The linearization relies on first order Taylor series expansion around the temporary
operating point and makes use of the computation of the associated Jacobian matrices

e The linearization error which is due to the truncation error of higher-order terms in the
Taylor series expansion is considered to be a perturbation that is finally compensated by

the robustness of the control algorithm
e For the linearized description of the state-space model an optimal H-infinity controller

is designed. For the selection of the controller’s feedback gains an algebraic Riccati
equation has to be solved at each time step of the control algorithm

e Through Lyapunov stability analysis, the global stability properties of
the control method are proven

e For the implementation of the optimal control method through the
processing of measurements from a small number of sensors in the
USVs and AUVs, the H-infinity Kalman Filter is used as a robust

state estimator
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IV . Nonlinear control and state estimation with Lyapunov methods

e By proving differential flatness properties for USVs and AUVs and by
defining the associated flat outputs, a transformation of the USVs and AUVs
state-space model into an equivalent input-output linearized form is achieved.

e The unknown dynamics of the USVs and AUVs is incorporated into the
transformed control inputs of the system, which now appear in its equivalent
input-output linearized state-space description

e The control problem for USVs and AUVs of unknown dynamics in now turned into a
problem of indirect adaptive control. The computation of the control inputs of the system is
performed simultaneously with the identification of the nonlinear functions which constitute
its unknown dynamics.

e The estimation of the unknown dynamics of the USVs and AUVs is performed through
the adaptation of neurofuzzy approximators. The definition of the learning parameters
takes place through gradient algorithms of proven convergence, as demonstrated by
Lyapunov stability analysis

e The Lyapunov stability method is the tool for selecting both the gains of the stabilizing
feedback controller and the learning rate of the estimator of the unknown system’s
dynamics

e Equivalently through Lyapunov stability analysis the feedback gains of the state
estimators of the USVs and AUVs are chosen. Such observers are included in the control
loop so as to enable feedback control through the processing of a small number of sensor
measurements
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Example 1: Nonlinear control and state estimation using global linearization
1. Control of a 3-DOF underactuated USV

® The nonlinear model of the underactuated vessel is a differentially flat one. This
model cannot be subjected to static feedback linearization, however it admits dynamic
feedback linearization which means that the system’s state vector is extended by
including as additional state variables the control inputs and their derivatives.

® Next, using the differential flatness properties it is also proven that this model can

be subjected to input-output linearization and can be transformed to an equivalent
canonical (Brunovsky) form. Based on this the design of a state feedback controller
Is carried out enabling accurate manoeuvring and trajectory tracking.

® The Derivative-free nonlinear Kalman Filter is used as

disturbance observer for dynamically identifying model
uncertainty and external perturbation terms. .

® This nonlinear filter consists of the Kalman Filter’s recursion on the linearized
equivalent model of the vessel and of an inverse nonlinear transformation based on
the differential flatness features of the system which enables to compute state
estimates for the state variables of the initial nonlinear model.

® The redesign of the filter as a disturbance observer makes possible the estimation
and compensation of additive perturbation terms affecting the vessel’s model.
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Example 1: Nonlinear control and state estimation using global linearization
2. Model of the underactuated vessel

* The underactuated vessel's model stems from the generic ship’s model, after setting

specific values for the elements of the inertia and Coriolis matrix and after reducing the
number of the available control inputs.

* The state-space equation of the nonlinear underactuated vessel is

. i BRI X and y are the cartesian coordinates of the vessel
& = ucos(¢) — vsin(v) -
Y = usin(y) + veos() W is the orientation angle
AT s g . .
, =1 u is the surge velocity
U=vUT+ Ty
D = —u-r — Bu v is the sway velocity
T =Ty r is the yaw rate

The control inputs are the surge force r,and the yaw torque r,

The underactuated vessel’s model is also written in the matrix form

[ \ / ucos() — ‘L"S'i'll('ljﬁ)\ ( 8 8
) 00

T
Y usin(v) + veos()

8 r T
| ur T30 (T,)

N R
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Example 1: Nonlinear control and state estimation using global linearization
2. Model of the underactuated vessel

or equivalently, one has the description T — f(j}) + g(z)v

i

The system’s state vector is denotedas = = [L"L', Yy, T,LJ, u, v, -?‘] =
while  f(z)eR%*! and §(&) = [Ja,d]ER%
while the control input is the vector U = [Ty, T?-]T

= - . ) > X

Fig. 1. Diagram of the underactuated hovercraft's kinematic model 8



Nonlinear control and filtering for USVs and AUVs

Example 1: Nonlinear control and state estimation using global linearization

2. Model of the underactuated vessel

The system’s state vector can be extended by including as additional state variables the control
input 1, and its first derivative 1.

The extended state-space description of the system becomes

/]
(5
W
U
v
7'.

\is)

or equivalently, one has the description

The extended system’s state vector is denoted as 2 = |z, y, V¥, u, U, T, 21, 2o

\

ucos() — vsin(v)
usin(v) 4+ vcos(v)

r

VT + 24
—ur — [v

0

Z2

0

)

z=f(z)+g(z)v

(OO
00
00
00 T
00 .

01

00
\10

Moreover, one has f(z)eR®*! and g(z) = [0 g e BP72,

while the control input is the vector is @ = [7,,, T,
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Example 1: Nonlinear control and state estimation using global linearization
3. Outline of differential flatness theory

» Differential flatness theory has been developed as a global linearization control
method by M. Fliess (Ecole Polytechnique, France) and co-researchers .

- A dynamical system can be written in the ODE form  Si(w,w,w,...,w(®), i=12,..,q
where ,( stands for the i-th derivative of either a state vector element or of a control input

» The system is said to be differentially flat with respect to the flat output

Vi = <P(W,W,W,---,W(a)), i=1,....,m where Y= uLY2 - Ym)

if the following two conditions are satisfied

(i) There does not exist any differential relation of the form

Ry, %, ¥, yP) =0
which means that the flat output and its derivatives are linearly independent

(ii) All system variables are functions of the flat output

and its derivatives o o oo o
w =1/)(y;y;y;---erL)
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Example 1: Nonlinear control and state estimation using global linearization
3. Outline of differential flatness theory

The proposed Lyapunov theory-based control method is based on the
transformation of the nonlinear system’s model into the linear canonical *
form, by exploiting the system’s differential flathess properties

 All single input nonlinear systems are differentially flat and
can be transformed into the linear canonical form

One has to define also which are the MIMO nonlinear systems
which are differentially flat.

» Differential flatness holds for MIMO nonlinear systems that admit static feedback
linearization.and which can be transformed into the linear canonical form through a change
of variables (diffeomorphism) and feedback of the state vector.

» Differential flatness holds for MIMO nonlinear models that admit dynamic feedback
linearization, This is the case of specific underactuated robotic models. In the latter
case the state vector of the system is extended by considering as additional flat outputs some
of the control inputs and their derivatives

* Finally, a more rare case is the so-called Liouvillian systems. These are systems for which
differential flatness properties hold for part of their state vector while the non-flat state variables

can be obtained by integration of the elements of the flat subsystem. 11
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Example 1: Nonlinear control and state estimation using global linearization
4. Differential flatness of the model of the underactuated vessel

The flat output is the vector of the vessel’s cartesian coordinates, that is

Y = [y1,y2] = [z, Y]

It holds that
i = usin(v) + u-cos(w)-1 + veos() — v-cos(Y)U
Moreover, it holds that

T+ Bz = cos(V) (1 — v + Bu) + sin('z_,r'})(—uuir — v — [v)

i + By = cos(v)(0 +uth + Bv) + sin(¥)(—vi + i + Pu)

i = ucos(v) — u-sin.('z;"’)-u} — vsin(y) — l»‘-COS('d’)Lf? ‘ '

Using Eq.@ and Eq.@ , and after computing that

wp+v+pv=ur—ur—pv+Bv=>0
v—vY+Pu=vr+74 —vr+ PBu=71,+ Pu

one obtains that i183 _ cos(w)0+sin(v)(ru+Bu)
#+Bz  cos(¥)(Tu+Bu)—sin(y)0 @
g ’, .' T
a;f_::—d-’i =tan(Y)=vY = itan (%ﬁ) 12



Nonlinear control and filtering for USVs and AUVs

Example 1: Nonlinear control and state estimation using global linearization
4. Differential flatness of the model of the underactuated vessel

Through Eq. @ it is proven that the state variable @ (heading angle
of the vessel) is a function of the flat output and of its derivatives.

From Eq. @ one also has that

(& + B)* + (§ + BY)* = (Tu + Bu)?

Moreover, it holds that

(% + Bx) = (ucos(v) — vsin(w))ecos(V)(Ty + Bu) @
Y(y + By) = (usin(v) 4+ veos(v))sin(v) (1, + Pu)

while using Eq.@ and after intermediate computations one finally obtains

#(i + B) + (i + ) = u(ru + Bu)  (6)

which finally gives

_ #(i+83)+y(i+BY) (7) =]
V (E+BE)2+(i+BY)2
It also holds that

13
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Example 1: Nonlinear control and state estimation using global linearization
4. Differential flatness of the model of the underactuated vessel

yr — iy = (usm(u';) + veos())(tcos(1) — usin(v)) —
vsin(1) — veos(b)) — (ucos() — vsin(v))(usin(v) +
ucos(v)y + veos(1h) — vsin(v)y)

which after intermediate computations and substitution of the
derivative variables gives

yZ — &f = v(fu + Ty)
From Eq. and Eq.@ one gets

e Y — i
\ (E4B%)2+ij4BY)> @

From the state-space equations it holds that

r— i

and using Eq. one also has that r is a differential function of the flat output 14
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Example 1: Nonlinear control and state estimation using global linearization

4. Differential flathess of the model of the underactuated vessel

This can be also confirmed analytically. Indeed from Eq @ it holds

cos?(W)+sin®(W)d _ (4 +8¢)(E+81)—(§+8y) (c*)+65) @

cos*(1)) - (i+51)"

which also gives — ¥ _ @ +8Y)(E+82)—(i+89)(«P +8%) @
cos?(¥) (Z+pz)2

while also using that malg e tan?(y) + 1 @

- ot s (i+8)°
one obtains that  COs™ ) = G1B)2+ (5153

Thus, from Eq. @ and Eq. one has

9y (Y3 4 8Y) (&4-8)—(§4-89) (2P 4 Bi) @
r = =7 = cos%() (Z+Bx)2

Equivalently, from the extended state-space equations of the system one has that 15
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Example 1: Nonlinear control and state estimation using global linearization
4. Differential flatness of the model of the underactuated vessel

(E+Bx)+u(y+By) }

{\/(r+3:c> +(i+81)?

Tii = U — VT Ty, =

_ Y& y® (@4 Bd) —a® (§+8y)—B(Ey—id)
\/(5,3.4_3@2.;.(3','.;.,33;,)- (£+B)*+§+B8y)?
which after intermediate operations gives Ty = E{:f—l_ﬁ?}:y{%_kﬁ?ji @
\ (E+82)%+(i+8Y)

Finally, using that the control input T, = 7 this implies also that T

is a differential function of the flat output

The above can be also shown analytically

Ty = T=pTp =

y'Y (@+48z)—z™ (§j+89)+8(y P i—a®) §)— 82 (P -y P i)
[(-’r+dfr) +(y+dy) 2]- @
[v® (@+B2)—=°(§+8Y)—B° (Zy—ijz)]

[(I+3-T) +(y+8y)=]*

{(& + Bz)(z®) + B&) + (4 + BY) (¥ + Bi)}

Thus it is confirmed that the model of the underactuated vessel is a differentially flat one 16
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Example 1: Nonlinear control and state estimation using global linearization
5. Flathess-based control of the underactuated vessel '

Next, it will be shown that a flatness-based controller can be developed for
the model of the underactuated vessel. It has been shown that it holds

& = ucos() — usivn.(uf:)zf) — vsin(Y) — veos(P)h=i = (vr +
Tu )cos(lp) —usin(Y)r — (—ur — Bv)sin(v) —veos(V)r= =
Tuc0s(V) + Prsin(y)

By differentiating once more with respect to time and after intermediate operations one finally

obtains
) = 7, cos()) — 'rusin(t")r—f—
+B(—ur — pv)sin(v) + Bvcos()r

Similarly one has

ij = usin(v) + ucos(V) + veos(v) — vsin(l,'J)L.'=>g°j = (vr+
Tu ) St (V) + ucos(Y)r + (—ur — Bv)cos(y) — vsin(v)r=1y =
TuSin(v) — Bvecos()

By differentiating once more with respect to time and by using the state variables of the
extended state-space model z; = 7, and zo = 7, one finally obtains

(3) = 2981N (y)) — 71008(1,1'")7‘ + .BUTCOS(QI’)"'
—{—620005( )) + PBusin(y)r

17
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Example 1: Nonlinear control and state estimation using global linearization

5. Flathess-based control of the underactuated vessel

Eq. Is differentiated once again with respect to time, so as the control input 7r to appear

e = [“2zsin(V)r — 2icos(Y)r? — Burfsin(v) —

,3217*31'?1(1;9) — ﬁu-rgms(t_i}} + Bursin(v) — Iﬁgvsin(gi}) — @
B2urcos(v) — Buricos(¥) + BPurcos(v) — Pursing] +
[cos(V)]|Ty + [— zlsm( ) — Busin(v) + Bvcos(v)]T,

Using a Lie algebra-based formulation Eq. @ Is written in the form

mtd} = L}yl . 3 LgaL leu + LgbLfler @

where Lfyl = —2zsin(Y)r — zicos(¥)r? — PBurlsin(y) —
Bzyrsin(y) — Jur cos(v) + BPursin(v) — BPvsin(y) —
B%vrcos(1) — Burcos(v) + Brvrcos(v) — Bur?siny

Ly, Lfyl = cos(¥)

L96L§y1 = —z18tn(v) — Busin(vy) + Bvecos(v)

18

Eq. Is differentiated once again with respect to time, so as the control input 7y to appear
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Example 1: Nonlinear control and state estimation using global linearization
5. Flathess-based control of the underactuated vessel

This gives

y = [727"005(1,6)—717’23271( )+ Bur sm(?,/')—l-Berszn(w)
Bur?ecos()] — Bvr cos() — Bzyrcos(v) + Bur?sin(y) —
Burcos(v) + B2vcos(y) — Brursin(yv) + zorcos(¥)] +
[sin(¥)]|Tu + [21c08(V) — Busin(¥) — Bucos(V)|T,

which after using a Lie algebra-based formulation is written as

y{4) = L?@’Q F LgaLinfu + Lgb L?‘yQTr @

where Lfyg = [wreos(zb) — z1r2sin(v) + Bur?sin(y) —

(¥
,5’21:7'3271(1,)) Bur? cos(u)] Bur?cos(v) — Bzyreos(V) +
Bur’sin(y) — Burcos(v) + B2vecos(v) — Bursin(v) +
zorcos(1)], and

L, Lfyg = sin (1))

LgbLiyg—zlccrs( ) — Busin(v) — Bucos())
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Example 1: Nonlinear control and state estimation using global linearization

5. Flathess-based control of the underactuated vessel

Consequently, the aggregate input-output linearized description of the system becomes

(l»'(j) — Liji'yl = Lga LSleu e Lgb Lz‘ylﬂ
y@ = Liys + Ly, Liyatu + Lg, L3yor @l

while by defining the new control inputs

vt = Liy1 + Lo, Lyyr#u + Lg, Lyy17r
i . {

vo = L%ys + Ly, LysTu + Lg, L yoTy
f f f

one gets L‘L‘H}

(8]

For the dynamics of the linearized equivalent model of the system the following new state

variables can be defined
T 214 = ;17(3) @

y 224

I
~-

211 =T 212
221=Y =232=

21,3
2,3

|
.

20
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Example 1: Nonlinear control and state estimation using global linearization
5. Flathess-based control of the underactuated vessel

and the state-space description of the system becomes
2= Az + Bv

_ ol — A
or equivalently

; 01000000\ /2 00
(21’1 (00100000 /1’1\ (00

21,9 21,

2"1,3 00010000 213 00
2:’1,4 . 00000000 214 110
e | = lo0000100] Lz 100
2:'2,2 00000010 222 00
5.4 00000001 | | 203 00
\s2s/ 00000000/ \sas/ \01/

while the associated meastirement eaiiation is

(z;n)z(moooooo) 214
£

5 00001000

Wl
22,4 24
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Example 1: Nonlinear control and state estimation using global linearization
5. Flathess-based control of the underactuated vessel

A suitable feedback control law for the linearized system is

k(2 — 2a), and vg = g0 A?( @ —yg”) — K3( — dia) -
k3(9 — 9a) — k1(y — ya)

One can compute again the control input that is finally applied to the model of the
underactuated vessel. It holds that

o= f+ Mp
where the following matrices and vectors are defined:
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Example 1: Nonlinear control and state estimation using global linearization
5. Flathess-based control of the underactuated vessel

For the linearized equivalent model of the system it is possible to perform state estimation
using the Derivative-free nonlinear Kalman Filter.

Before computing the Kalman Filter stages, the previously defined matrices A,B and C
are substituted by their discrete-time equivalents4,, B, and C,.

This is done through common discretization methods. The recursion of the filter’s algorithm
consists of two stages:

Measurement update::

K(k) = P—CT[P—CTP + R
2(k) = 5~ (k) — K (k)[C4B(k) — Ca5— (k)]
P(E) = P~ (k) — K (k)C,P~ (k)

Time update::

P~ (k+1)=ATP(k)As + Q(k) @
27 (k+1) = As2(k) + Bqu(k)

Moreover, using the inverse transformations described by Eq. @ @ @ ‘

one obtains estimates for the state variables of the initial nonlinear system. 23
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Example 1: Nonlinear control and state estimation using global linearization
6. Disturbances compensation with the use of Kalman Filtering

It is assumed that the input-output linearized equivalent model
of the system, is subjected to disturbance terms which express =
the effects of both modelling uncertainty and of external perturbations. —

Thus one has
(D) i g ‘
TS =y

Yyt =vg +dy

It is considered that the disturbance signals are equivalently represented by their time
derivatives (up to order n) and by the associated initial conditions (however, since

disturbances are estimated with the use of the Kalman Filter, finally the dependence on
knowledge of initial conditions becomes obsolete). It holds that

d‘&n} i fd1 &En} o fdg

The state vector of the system is extended to include as additional
tate variables the disturbance inputs and their derivatives. Thus one

obtains ~ . ~ "
Zda1=d1 zZiga=di 243=ds 244 =d>

Thus, the extended state-space description of the system becomes: 24
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Example 1: Nonlinear control and state estimation using global linearization
6. Disturbances compensation with the use of Kalman Filtering

It is assumed that the input-output linearized equivalent model
of the system, is subjected to disturbance terms which express =
the effects of both modelling uncertainty and of external perturbations. =~ = =

Thus one has
(D) i g ‘
TS =y

Yyt =vg +dy

It is considered that the disturbance signals are equivalently represented by their time
derivatives (up to order n) and by the associated initial conditions (however, since

disturbances are estimated with the use of the Kalman Filter, finally the dependence on
knowledge of initial conditions becomes obsolete). It holds that

=t &= 1o

The state vector of the system is extended to include as additional
tate variables the disturbance inputs and their derivatives. Thus one

obtains ~ . ~ "
Zda1=d1 zZiga=di 243=ds 244 =d>

Thus, the extended state-space description of the system becomes: 25
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ample 1. Nonlinear control and state estimation using global linearization

6. Disturbances compensation with the use of Kalman Filtering

(21,1\ (OIOOOOOOOOOO\ (;:1’1\ (0000\

210 001000000000 |21 0000

213 000100000000 | 213 0000

214 000000001000 | 214 1000

21 000001000000 | 221 0000 Foy
f22|_[000000100000][ [222]|,]0000 Tr
2.3 000000010000/ | 223 0000 || fa
2.4 000000000010 | 224 0100 \fa,
Zd.1 000000000100 | zan 0000

Zd.2 000000000000 | za2 0010
243 000000000001 | z43 0000

\sa4/ \000000000000/ \254/ \0001)

and the measurement equation becomes
71,1 1000000000
z2.1 0001000000

where  ze = [21,1,21,2,21,3,21,4, 22,1, 22.2,22.3, 22,4, 2d.1,2d.2,2d,3;2d 4]

Thus, the extended state-space description of the system becomes: 26
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xample 1: Nonlinear control and state estimation using global linearization

6. Disturbances compensation with the use of Kalman Filtering

ie i Aeze + BET’E
meas __
s f s

Ze

For the extended state-space description of the system one can design
a state estimator of the form

% = AoZe + Bove + K (2% — C,3.)

~mMeas
~ -
ée m— Coze

where for matrices A, and C, itholds A, =A and C, = C while for matrix B, it holds

000100000000
000000010000
000000000000
000000000000

o
Qg
I

Again the Kalman Filter recursion provides joint estimation of the non-measurable state
vector elements, of the disturbances’ inputs and of their derivatives.

Prior to computing the Kalman Filter stages, the previously defined matrices A,B and C are
substituted by their discrete-time equivalents A, , B.q and C,,. 27
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Example 1: Nonlinear control and state estimation using global linearization

6. Disturbances compensation with the use of Kalman Filtering

The recursion of the filter’s algorithm consists of two stages. Thus, one has
Measurement update::
K(k) =

Pe_Cg; [PE,_CedTPe + Re]_l
8,(k) = 52(K) = K(k){Cepze(k) — Cogie= (k)]
P.(k) = P~(k) — K (k)C.. P~ (k)

e €d" e

Time update::

Pr(k+1)= edTPe(A) Ay + Qe(k)

Zo (k+1) = Ae Ze(k) + Be,ve(k)

For compensating the disturbances effects, the modified control input _
that is applied to the system is

v = :1: — k(2 — ) k3 (& —iq) — Lgl,(.fb—'ld) ki(x—
zg4) — «11 and vy = c(z ) — k@ — 4§ — K3(& — §a) —
k3 (9 — 9a) — i (y — va) —

~d,2-

28
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Example 1: Nonlinear control and state estimation using global linearization

7. Simulation tests

In simulation tests It has been observed that in all cases the nonlinear feedback
controller succeeded fast and accurate tracking of the reference setpoints.

The Derivative-free nonlinear Kalman Filter enabled estimation of the non-measurable
variables of the system’s state-vector which were needed for the implementation of

the feedback control scheme

Reference path 1: Trajectory tracking for states
X,y of the underactuated hovercraft

04 ....... TR .
%‘ 02 ..'...“: ......................
ohd fE e R
-02 - -
10 2 3 40
time

Reference path 1: Estimation of disturbance inputs
using the Derivative-free non-linear Kalman Filter
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Example 1: Nonlinear control and state estimation using global linearization

7. Simulation tests
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7. Simulation tests

Reference path 4: Tfajectory tracking for
states x,y of the underactuated hovercraft
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8. Conclusions

® Anonlinear control method has been developed for the

underactuated model of an unmanned surface vessel, based on
differential flathess theory and on a new nonlinear filtering method
under the name Derivative-free nonlinear Kalman Filter. First,

it was shown that the vessel’s model is differentially flat. B

® Dynamic extension has been used. The system has been augmented by
considering as additional state variables the control inputs and their derivatives.

® By applying dynamic extension and differential flatness properties, the

vessel's model has been transformed into a linear form. Moreover, using the
linearized model of the vessel, a state feedback controller has been designed.

® Next, to estimate the non-measurable state variables of the vessel and to

identify additive disturbance terms that affected he system, the Derivative-free
nonlinear Kalman Filter was redesigned as a disturbance observer.

® This algorithm consists of the standard Kalman Filter applied on the linearized
equivalent of the system and of an inverse transformation that is based on
differential flatness theory which computes estimates on the initial nonlinear system.
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1. Control of a 6-DOF AUV

* A nonlinear control and filtering is proposed for Autonomous Underwater Vessels
(AUVs) based on differential flatness theory and on the use of the Derivative-free
nonlinear Kalman Filter.

« First, it is shown that the 6-DOF dynamic model of the AUV is a differentially flat
one. This enables its transformation into the linear canonical (Brunovsky) form and
facilitates the design of a state feedback controller.

» A problem that has to be dealt with is the uncertainty
about the parameters of the AUV’s dynamic model,
as well external perturbations which affect its motion.

« To cope with this, it is proposed to use a disturbance observer which is based on
the Derivative-free nonlinear Kalman Filter. This filtering method consists of the
standard Kalman Filter recursion applied on the linearized model of the vessel and of
an inverse transformation based on differential flatness theory, which enables to
obtain estimates of the state variables of the initial nonlinear model of the vessel.

« The Kalman Filter-based disturbance observer enables the simultaneous
estimation of the non-measurable state variables of the AUVs and of the perturbations.
By estimating disturbances, their compensation is also achieved through suitable
modification of the feedback control input.
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2. Kinematic and dynamic 6-DOF model of the AUV
Kinematic model of the AUV

The inertial reference frame is OXYZ

The body-fixed reference frame is O’xyz
0 Y

The velocities transformation from the body-fix?éd reference frame to the inertial
reference frame is given by

o= Jq8y with o= [ 5 E-]T a5 i 2, 'EJ,_'EU]T @
; (I:c:s[qﬁ]ms{uﬁ'} —sin{ecos( @) + cos(eh)sin D ein(d)  sin(d)sinld) + cos(y)ons (F)sdnl ) )
t 34

stnldicos(8)  cos(dloos(@) + sin{ @) sin(Deinld)  —cos(dlsin(d) + sin{Dsinld)cos(d)
—sin{ ) cos( @) sinl 4 cos(Heos )
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2. Kinematic and dynamic 6-DOF model of the AUV

Kinematic model of the AUV

Inertial reference frame

State vector
@ = [y, 20" = [, 9 2, 8,8, 47
Cartesian coordinates Euler angles
vy = [, 4 27 2y = [, 8, )T
Velocities vector _
2 = [i'l:. iE]T = [i:- ¥, 'QEIEH '-Lj} QIHT

Linear velocities Angular velocities

x1 = [x,y,2]" x; = [6,0,9]"
forces and torques vector
= [Fy, Py Fou T, T ToJT
forces torques

T = [Fﬂ-‘-:-F‘h':-FE’lT Wil == [TﬂH-T’y% TE]T

Body-fixed reference frame

Velocities vector
= ['3"*"1:- Hﬂ]T = [H} W, By ':E:-T]T

Linear velocities  Angular velocities
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2. Kinematic and dynamic 6-DOF model of the AUV

Kinematic model of the AUV

Moreover, the following transformation holds between angular velocities expressed in the
inertial and in the body-fixed frame

1o = Jowuz where

1 sin(¢itan(d)  cos(d)tan(d)
Ja=]0 cosl ) —sin(¢) @
0 sin(¢)/cos(d) cos(¢)/cos(d)

Therefore, between the velocities in the body-fixed frame and in the inertial reference
frame the following aggregate transformation holds

O-6G D0 <

where  a= [, i-«“-*z]T = [u, o, 2,9, g, ’-"]T is the velocities vector n the body-fixed frame

and & = [&1, ig]T = [&, z 2, ¢, 8, fﬂi]T is the velocities vector n the body-fixed frame
36
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2. Kinematic and dynamic 6-DOF model of the AUV

Dynamic model of the AUV

The dynamic model of the AUV representing an equilibrium in forces and torques is
where Mppi+ Crelv)v =TrE @
Mpr ig the inertia matrix of the AUV,

Crp(v) is the Coriolis and centrifugal forces matrix,

w= [u, i-i*z]T = [og v, w,p, 4, ’-"]T iz the velocities vector in the body-fixed reference frame

T = [FE} Fogy Foy T Ty, Tz]T is the vector of external forces and torques exerted on the AUV

The inertia matrix Mgpp is given by

e 0 0 0
0 m 0 — T
. 0 0 m mya
Mrp = 0 —mZe Mg E,
M 0 —Mzg  —luy
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2. Kinematic and dynamic 6-DOF model of the AUV

Dynamic model of the AUV

The elements of the inertia matrix of the AUV are:

Iw, Iy, I, are inertia matrices

oy, fwz, [yz are inertia products

g = [EG:- [2lep 3'-'3'] are the coordinates of the AUV's center of mass

The Coriolis matrix of the AUV is given by

Cre =
0 0 0 mYad + Far) —milwgg — W) —mf{wgr + )
0 0 0 —mlycr +w) misgr + eap) —miygr — )
0 0 0 —magp — ) —melaag + ) —miray +yag)
—myeg +rar)  miyept+ w) mlagp — ) 0 —lypg — Loz + Lo Tyav + Togp — Iyg
g g — w) —m(zar + vap) milBeg +u) Tyeg+ fozp — Lo 0 Tozr + Tayg + Lap
r{war + ) milyar — u) —mlrap +yaq) —lwr—Jlewp— Lng Teav+lewg— Lop 0
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2. Kinematic and dynamic 6-DOF model of the AUV
Dynamic model of the AUV

The motion of the AUV is also affected by the inertia of the fluid that surrounds it:

TA:—MAEJ—GAI:EJ:IEJ @

This means that a force / torque is developed against the motion of the vessel and it
varies proportionally to the vessel’s acceleration.

The above inertia matrix M, is given by

Ay 00 0 0 0N

0 M. © B 7 B

0 0 4ss 0O 0 0
Ma=1 g 0 0 Adgg 0 O

e 0 0 @ Az 0

l.\ 0 i 0 0 1] Ass
and the above Coriolis matrix C, is given by

1] 0 0 1] ;4.3315'_1 —Agg'ﬂ\
(] 0 ( — Aszm 0 Ai1w
o, = 0 0 ( Aggt‘ _Aiiu 0
4= U Azzw —Agpu U Ager  —Ageq
— Azzw 0 Apr —Agsr 0 Ayap

\ Azen —dyyu U Agsg  —Awp U 39
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2. Kinematic and dynamic 6-DOF model of the AUV

Dynamic model of the AUV

The model is completed by the vector of a force / torque which resists to the motion of the
underwater vessel and which is proportional to its velocity

ToL = —D{u)w where
el 0 0 0 0 0
Flops|#] 0 0 0 0
| oo 0 Zjwpwlw| O 0 0
2= % 0 0 Kkl 0 0
0 0 0 0 Mygglal O
0 0 0 0 0 Niaalr |

Q = R . 5
Kpafe = %IZ?G#'[D . 09) iy = %FEE'G‘?
Vo = §V3C,00°,09 Mg = §V3C,
Elwlw = EF?G}I{QDQ}QDG}I N"’"""' = 'E—,T-’T?G;,

where Cay Coyy Coy Cpy Cay O are constants

p is the specific mass of the water and V is the volume of the submerged vessel
40
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2. Kinematic and dynamic 6-DOF model of the AUV
Dynamic model of the AUV

There are also torques and forces which are exerted on the vessel and which are due to
the vessel's weight and lift force. Using that in the inertial reference frame these forces are

E = .FS'E"V and 7 = T,
the forces in the body-fixed frame are
fw =IO, 0 W and  fm=-J7'[0,0, BT
and taking that the associated distance vectors from the origin are

ra = [2a, v 2at and rgp = [¢g,um, 28]"

the generated torques are computed in the body-fixed frame are

T = raX fw and T =g Xifn

By applying one more transformation on the aforementioned vector, with the use of J, the
forces and torques due to the effects of weight and lift are finally expressed in the inertial
reference frami

41
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2. Kinematic and dynamic 6-DOF model of the AUV
Dynamic model of the AUV

Thus, due to the effects of the resistive forces and torques
which are generated by the surrounding fluid one has the dynamics

Mpred+ Cre(v)v =Ta+ DL+ TwE+T @
T4 = =M a9 — T4lele, pr = —Dfwjw  forces/ torques resisting the vessel’s motion
Two = —4y forces/ torques due to weight and lift effects

forces/ torques defining the vessel’s propulsion

By substituting Eq @ and Eq ‘ Into Eq. @ one obtains the aggregate dynamics

(Mzs + Ma)s+ (Cro (o) + Calw))o+ Diehs + g7 = 7

where M =Mgpp+ Ma. Is the aggregate inertia matrix

Ol = Crp o)+ Calw) Is the aggregate Coriolis matrix
Thus, the dynamic and the kinematic models of the AUV are finally writte
Mo+ Cot Diolo4 gy =7

n=J{n)v

42
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3. Differential flathess of the 6-DOF model of the AUV

Usingthat »=J 'gorw =Ry Eq. can be written as
Wit Gt Dt osm=- (1)

where n has been defined in the inertial reference frame , while it holds

'ij'=[m_ty:_.ﬁ:_qﬁ':_ﬁ':_@]TJfl?f:MRJ.:’_E’:MR_FSH andﬁ.:ﬂﬁ:

Moreover, by defining the inverse matrix M-1= ] one obtains

i+ N-C4 N-D(5)i+ Negs(n) = No7 @

Moreover, using the state vector elements notation

the dynamic model of the AUV becomes
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3. Differential flathess of the 6-DOF model of the AUV

and using that

f(Zi=1,---,6 arethe row elements of vector f = N-C+ N-D{f)n+ N-ge(n)

N2, %:fl,r:f-:ﬁ; are the rows of matrix N = -1

one obtains  #1 = 3 o+ f1(E) = Ny (207
.Elfg = #4q .Efq—l— fg{gjl = NE{E:'T
By = g by + (2 =

.- nEr @
Br = Rz bs 4 falZ) = Nol 27
Fao=#1n B+ Js(E) = Ng(Z)r
#11 = 212 B+ JelZ) = Ne( 0T
Next, by denoting the flat output of the system as ¥ = [31_} Bz, Hg, e Hg, .E-H].
it holds that &2 = &1, #4 = &3, & = &5, & — &7, #10 = & and 210 = 213
and 2= 00000 z=0100000F
z.;:[EJEJ'l '3'3'3]}’_' ;:-3=[EJEJEJ'1 EJ':J]}_’
20 = [I:JIIJEIEI'lEJ]'Ir’ zz:[ﬁﬁ[ﬁﬂﬂli]}’

Consequently the state vector elements given above can be written as differential functions
of the flat output Y . 44
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3. Differential flathess of the 6-DOF model of the AUV

Moreover, from Eq, @ one has

#1=v1=—F1+ N7 H=w9=—Fo+ NoT
e =95 = — S+ NaT  #r=wqg=—Ja4+ Ny7
dg = w5 = —fs+ NegT  #pp =9 =—Jfo+ NeT

Therefore, one has

#1 —J1 Myt
3 —Ja Myt
ds | _ | —fe| | Bem
Py —fa Nat
¥ =g Ngt
#11 —fa Ngt

which is equivalently written as

Bo = —Fu{ B+ Nr=>1 = N~ Yé0 + Ful 2)
=7 = M(% + fa( Z)) @

Consequently, the control inputs of the 6-DOF AUV model can be also written as functions
of the flat output and its derivatives. Therefore, the AUV model is a differentially flat one.
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4. Flathess-based control of the 6-DOF AUV

By exploiting the previously proven differential flatness properties of the AUV it will be shown
that a stabilizing feedback controller can be designed for the AUV model.
®.

Using Eq. @ one has

wi=—J14+ N7 we=—fo+ NoT
wy = —fa+ Nam  wg=—fa+ Nu7
wg = —f14+ N7 owg = —Jf1 4+ NyT

or equivalently

o= —fo+ Nr=r=N"Yo+ fa=7r=Mv+ )

This means that if the transformed control inputs v are computed so as to assure asymptotic
tracking of the AUV’s reference setpoints, one can also find the real control inputs which should
be exerted on the AUV for succeeding this objective.

According to the above, the dynamic model of the AUV can be written into the canonical
(Brunovsky) form

.$I1=.$g & = T4 B = #4 4 = @
wE = g g = Yz = g fg = Uy
#9 = &o Mo = %5 &1 = #1810 = g
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4. Flathess-based control of the 6-DOF AUV
which also takes the state-space form ¥ =AF + BV @

or equivalently one has the following state-space description for the system

& 010000000000 /2 000000
4 000000000000/ { 2 0 g
4y 000100000000 | 2 000000

B 000000000000 | | 2 010000/ {o

b 000001000000 | 2 000000/ [ »

s | |ooooooo00000]| | 2 ooio00]| | e

s | = loooooootooo0|| e |Tloooooo] ],

4 000000000000/ | 2 oool1o00]| | es

4 000000000100/ | 2 000000/ \w,
i 000000000000 | | 240 000010
d1q 000000000001 | | 2, 000000
#19 000000000000/ %2 GRG0
&y
#a
&3
while the measurement #1 ég?ggggggggg #4
. . Ha 5
equation is | |ooocotoon0000]]
2wl T looocooto0000] | &
e 000000001000/ | 2
e 000000000010/ | 2
#10

fal 47
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4. Flatness-based control of the 6-DOF AUV

Thus, using differential flatness theory the AUV’s model has been written in a MIMO
linear canonical (Brunovsky) form, which is both controllable and observable.

After being written in the linear canonical form the AUV’s state-space equation comprises

subsystems of the form
R '3':1:-“":-5'

For each one of these subsystems a controller can be defined as follows

%z?;.fi_kdi{?ji—é‘fi}—kpi{yfi_gﬁi}}'32:1;.-..-;.5

The tracking error dynamics becomes €t ka;€i +hpei =0 i=12,....6

By selecting the feedback gains so as the characteristic polynomials
p(s) =s®+kgs+k, i=12..,6

to have poles in the left complex semiplane it is assured that

gimei(t)zo i=1,2,...,6

Once the transformed control inputs vector pe R has been computed,
one can use Eq. (25) to find also the torques and forces vector v = 14 {» + f.]
that should be exerted on the UAV so achieving setpoints tracking.
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5. Disturbances compensation with Derivative-free nonlinear Kalman Filtering

Next, it is assumed that the AUV’s model is affected by additive input dlsturbances
thus one has g e E‘H g e o dg :
53=@3+f3§3 #a @4+£§4

s =ws+ds  Hy = ve+de
The system’s dynamics can be also written as -

#1 = #a, # —@1+fi1_ Bz = 4, ¥4 = 0+ do

5—35336—@34—&3:3? ¥, #3 —@4+'5*':4:_ @

g = #py B = ?Ja-l-d-ﬁ: B11 = #49, #10 = ¥ + g

Without loss of generality, it is assumed that the dynamics of the disturbances terms are
described by their second order derivative, i.e.

'J‘é:fﬂfi:- '3-'=1:-'“:-|5'

Next, the extended state vector of the system is defined so as to include disturbance terms
well. Thus one has the additional state variables

#13 = #1a = £‘§1 18 = -533; #1e = da By = tilz BN ﬂ‘ﬁz

$19=f3§3 32|:|=£53 $21=da 322=f3i':4 $23=d4 324—551-4

#og =ds Mg =dg Mor=dg Mg =dg Mg =dg = ﬂgs 49
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5. Disturbances compensation with Derivative-free nonlinear Kalman Filtering

Thus, the disturbed system can be described by a state-space equation of the form

.E'J‘ = zﬁlf.#f -+ Ef@

TLEds
gy = Cray

011 1 Oyxos
Oyxqz 1 Oyxqy
Oz 1 Opxos
U1x15 1 01x14
iws 1 Oixog
Diw1e 1 Ogsend
O1wr 1 Oioo
Oppar 1 Oyye
Oiwa 1 Oyxag
Uix24 1 Uixs
Dix1r 1 Diwas
Uixﬂ? 1 Uixﬂ
D11z 1 Opsete
Uix14 1 Uixis
0430

A= oiers 1 s
Dix1r 1 Oixo
D130
Oix1s 1 Oqag
Owon 1 Dy
01%30
Do 1 Oyur
Oppaz 1 Oy
D130
U1x95 1 le4
Diwoe 1 Oiwg
0430
O1os 1 Oquq
Oyxos 1

01X3D

where Ay 539730 By {3078 and O B30,

leﬁ

Uixi
Uixﬁ
Uixﬂ
Uixﬁ
DixS
leﬁ
Disy
Dixﬁ
O1xs
018)(6

Oixs

I:]1)-(4
UixE
Dixi

lel

013z
O13q
O1xe
O1a
O1x10

04 ot
01x25
01x23
Uix?i
D119

&)

50
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5. Disturbances compensation with Derivative-free nonlinear Kalman Filtering

The dynamics of the disturbance terms &i} %

of the associated disturbances’ estimator.

r

--,6  are taken to be unknown in the design

Defining A4, B, and Oy, the discrete-time equivalents of matrice As, By and ¢y respectively,

one has the following dynamics:
.ﬁllf =}_1f=§rf+.érf=ﬂ+ff{$?m£—ii}ﬁf} @

where €0 |s the state estimator’s gain. The associated Kalman Filter-based disturbance

estimator is given by:

measurement update:

K(k) = P~(RCT [Ca P~ (k)CT + BRI
85lk) = &7 (k) + K(R)[272° (k) — Cady (k)]
P(k) = P~(k) — K(k)CaP~ (k)

To compensate for the effects of the disturbance forces it suffices to use in the control loop the

modified control input vector

@1—&1

-
'Elg—dg
‘-";'3—&3
Ugq — dg

F-
vg — dg

Py — dg

or o =

W — 3
vy — H1g
vz — 19
Ug — #29
ug — Hog
vg — Hog

time update:

P (ke +1) = Aa{k) P(k) A7 (i) + QUk)
Bk +1) = Aglk)2¢ (k) + Balk)o(k)
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6. Simulation tests

Reference path 1

The proposed flatness-based
controller enabled fast and
accurate tracking of the reference
path

The Derivative-free nonlinear
Kalman Filter, designed as a
Disturbance observer enabled
estimation and compensation
of disturbances

(b) projection of the AUV’s trajectory on the xy plane 52
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6. Simulation tests

Results about tracking a 3D trajectory, having as projection in the xy-plane a circular path
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the rotational motion of the AUV

(LA U PO JOOM 1
5 W 15 2w 2% X 0 F 4
Ige)

] 1 1 I I 1 1 1
0 5 m 15 2 2 W F W
Igee)

(b) Position and velocity along the y-axis
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6. Simulation tests
Results about tracking a 3D trajectory, having as projection in the xy-plane a circular path
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6. Simulation tests

Reference path 2

The proposed flatness-based
controller enabled fast and
accurate tracking of the reference
path

N &
e N\ / :\‘ The Derivative-free nonlinear
Kalman Filter, designed as a
- BRI N R Disturbance observer enabled
{ -/ estimation and compensation
VY i/ of disturbances
oA ; /

(b) projection of the AUV’s trajectory on the xy plane >S5
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6. Simulation tests

Results about tracking a 3D trajectory, having as projection in the xy-plane an 8-shaped path
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6. Simulation tests

Results about tracking a 3D trajectory, having as projection in the xy-plane an 8-shaped path

1 L 1 1 1 1 1
1 5 m 15 W 5 X F W
1ty

(a) Position and velocity along the z-axis

1 1 1 1 1
I5 W 5 @ F
Ity

1 1 1 1 1
5 2 2= @ ® 40
g

(a) Rotation angle 6 and associated angular

speed

5 1 1 1 1 1
1 5 I 15 I 5
e

i
kI

1
k]

H

(b) Rotation angle ¢ and associated

angular speed

e

T T T R S T
5 m 15 W 3 W B W

(b) Rotation angle y and associated angular
speed
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8. Conclusions

* It was proven that the dynamic model of the 6-DOF AUV is a differentially flat one.
Next, by exploiting the differential flatness properties of the model, its transformation
into the linear canonical form has been succeeded.

* For the linearized equivalent description the AUV’s dynamics the design of a state
feedback controller became possible. Moreover, to compensate for modelling
uncertainties and external perturbations which affected the AUV’s control loop it was
proposed to use the Derivative-free nonlinear Kalman Filter as a disturbance
observer.

* This filter consists of the Kalman Filter recursion on the linearized equivalent model
of the AUV and of an inverse transformation, based again on differential flathess
theory, which enables to obtain estimates of the state variables of the initial nonlinear
AUV model.

By estimating in real-time the AUV’s perturbation inputs, the Derivative-free
nonlinear Kalman Filter enabled the compensation of these disturbance terms and the
improvement of the robustness of the AUV’s control loop.

» Finally, the performance of the proposed nonlinear
control scheme for AUVs has been confirmed through
simulation experiments.
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1. Control of a 3-DOF underactuatd USV

* Anew nonlinear H-infinity control method is proposed for
stabilization and synchronization of underactuated surface vessels.

« At first stage local linearization of the model of the underactuated *
vessels is performed round its present operating point.

* The approximation error that is introduced to the linearized model is due to truncation of
higher-order terms in the Taylor series expansion and is represented as a disturbance.

* The control problem is now formulated as a mini-max differential game in which the control
Input tries to minimize the state vector’s tracking error while the disturbances affecting the
model try to maximize it.

 Using the linearized description of the vessel’s dynamics an H-infinity feedback controller is
designed through the solution of a Riccati equation at each step of the control algorithm.

* The inherent robustness properties of H-infinity control assure that the disturbance
effects will be eliminated and the state variables of the underactuated surface vessel will
converge to the desirable setpoints.

* The proposed method, stands for a reliable solution to the problem of nonlinear control and

stabilization for unmanned surface vessels exhibiting underactuation..
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2. Model of the underactuated vessel

®* The underactuated vessel’s model stems from the generic ship’s model, after setting
specific values for the elements of the inertia and Coriolis matrix and after reducing the

number of the available control inputs.

& = ucos(v) — vsin()
Yy = usin(y) + vcos()

s
U= vr-+ Ty
v =—u-r— B
F=T,

The underactuated vessel’s model is also written in the matrix form

Z
i
(0
U
v

\*/

u is the surge velocity

v is the sway velocity

ris the yaw rate
The control inputs are the surge force 1, and the yaw torque T,

ucos() — vsin(v )\
usin(v) + veos(v)
g
i
—ur — v

o)

00
/00\
00
10

01/

x and y are the cartesian
coordinates of the vessel

Y is the orientation angle
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2. Model of the underactuated vessel

or equivalently, one has the description F = f(j";) + g(i)@
The system’s state vector is denotedas = = [ﬂ:, Yy, “I,LJ, u, v, -T'] i

while  f(z)eR%*! and §(Z) = [Ja,d]ER%
while the control input is the vector ' = s :F_'?-]T

— ) — 3 k’l

Fig. 1. Diagram of the underactuated hovercraft’s kinematic model 61
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2. Model of the underactuated vessel

The system’s state vector can be extended by including as additional state variables the control
input 1, and its first derivative 1.

The extended state-space description of the system becomes

T ucos(v) — vsin(v 00
e
(8 00

U r
- vr + 24 00
g —ur — [v T100 (

7 0 01
z z 00
\22/  \ o /) \1o

or equivalently, one has the description 2 = f(z) 4+ g(z)v

The extended system’s state vector is denoted as 2 = |z.y., U, u, v, T, 2. zg]T

Moreover, one has f(z)eR®*! and g(z) = [0 g e BP72,

while the control input is the vector is @ = [7,,7,] .
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3. Linearization of the model of the underactuated vessel

Local linearization is performed for the state-space model of the underactuated vessel, round
the operating point (x*, u*) where x* is the present value of the system’s state vector and u* is
the last sampled value of the control inputs vector.

The joint kinematics and dynamics model is written in the form: & = f(x) + g(x)u

where the state vector is: = = [r1,x2. 3, 4. 75, 76T = [z, y. ¢, u,v,7]T . and

veos(v) — L-'S'i'n.(u'r)\ ( 0 O\
usin(y) + veos() 0 0
r 0
f(z) = - 9z) =11 o
—ur — Bu 0 0

N0 \0 1)

racos(x3) — rssin(r3) (0 0\
rasin(xy) + rscos(xy) 0 0
- e 5 1D 0
f(.T) T T5T6 g(‘l ) O 1 0
—T4Tg — Py 0 0

\ 0 / Uy o3
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3. Linearization of the model of the underactuated vessel

The linearization of the vessel’'s model around the temporary equilibrium gives

T = Az + Bu

where
A =V, [f(z) + g(x)u] |(ge ue) A =V f(T) |(z0 v

B =Vu[f(z) + g(z)u] |(z+ usy =B = 9() |(z* u*)

For the Jacobian matrix A= Vr[f(;r) g g(.r)u] |(I._‘u.)

(afl 0fy ofr .. (')fl\
81‘-] 81‘-2 81‘3 8'.1‘-8
af2 Ofa 08f2 .. 0f2
— ox, Oxa Oxg Oxe
dfe Ofs 8fe . aff;)
01?1 81‘2 6’1‘3 6'178

For the first row of the aforementioned Jacobian matrix one has:

9h _ . 8L _ 24 _

81‘] - ’ 8.1‘2 o

afi o1

o Y a
y Bz = —Tasin(z3) — rscos(z3), or. = c0s(x3), 55 = —sin(xs3), E,i—; = 0.
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3. Linearization of the model of the underactuated vessel

For the second row of the aforementioned Jacobian matrix one has:

af'.)_o %_0 f)fz

ar1 dr2 =~ ! Ozs

= x4c08(xr3) — r58in(xy), 3—5‘1 = sin(xs3),

Bf: ooty (B
s — cos(xra), Doy — 0.

For the third row of the aforementioned Jacobian matrix one has:

2 —0,88=0,2 =02 -0, =0,3L=1
Iy ¥ E

i ' H.I'ﬂ__:_l ' :’:]:r:g SES ! &31 = ' Ei'x;, o ! I!':.?.Tﬁ

For the fourth row of the aforementioned Jacobian matrix one has:

Ofs o 24 g 2. 8k i BB 9fa

fjfl ) f).l'g ) 6)13 f);r‘,

For the fifth row of the aforementioned Jacobian matrix one has:

ofs _- Ofs __ afs Ofs .- : afs - @ Ofs o =
dry O’ Oxra = ) Oxrs = Y dxs ¢ Gy Bxs ) Bxe Ig.

For the sixth row of the aforementioned Jacobian matrix one has:

s _n 8fs _n 8fe _ g 8fe _n Bfe _n 2fe _ .

8ry ! Odrq = ! dxrg Y Oxy Ozs ' Ozg
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3. Linearization of the model of the underactuated vessel

Parameter d, stands for the linearization error in the underactuated vessels’ model

x =Ax + Bu +d; @

The desirable trajectory of the underactuated vessel is denoted by

Xqg = [xdl,xdz,xd3, . ,xd7,xd8, xdg]T
Tracking of this trajectory is achieved after applying the control input #.:*

At every time instant the control input #* is assumed to differ from the control input #:
appearing in @ by an amount equal to A« thatis g = 44 Ag

g = g+ Bur 4+ dy

The dynamics of the system of Eq. @can be also written in the form

# = Ae+ Bu+4 Bu* — Bu* 4 d @

and by denoting d; = —F«*+44dy as an aggregate disturbance term one obtains

= A+ But Bu* 4+ ds @ 66
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4. The nonlinear H-infinity control

where matrices A and B are obtained from the computation of the Jacobians

8 8h . 84 8fs 8 0 8fy
shooh .. A ofh off . &
A e w2 [lewd B BB R e WD [lewn)
8fn  Bfn .. Bfn O Bfn .. Bfn
e ) it Fug Suo St

and vector d denotes disturbance terms due to linearization errors.
The problem of disturbance rejection for the linearized
model that is described by

= Ar+ Eu+ Ld
pr=lm

where €87, we ™, deA? and y€ H¥ cannot be handled efficiently if the classical LQR
control scheme is applied. This because of the existence of the perturbation term 4.

In the He control approach, a feedback control scheme is designed for trajectory
tracking by the system’s state vector and simultaneous disturbance rejection, considering

that the disturbance affects the system in the worst possible manner
67
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4. The nonlinear H-infinity control

The disturbances’ effects are incorporated in the following quadratic

cost function
J(t) = gfo [y )y )+ S
+ral (u(t) - P2dT(d@)dt, rp>0  EEeS

The coefficient r determines the penalization of the control input and the weight
coefficient p determines the reward of the disturbances’ effects. It is assumed that

Then, the optimal feedback control law is given by

u(t) = —Ke(t) with K =1pTp

where P is a positive semi-definite symmetric matrix
which is obtained from the solution of the Riccati equation

ATP+PA+Q—- P(1BBT - LLIT)P =

where Q is also a positive definite symmetric matrix.

Parameter p in Eg. (15), is an indication of the closed-loop system robustness. If
the values of p> 0 are excessively decreased with respect to r, then the solution of the
Riccati equation is no longer a positive definite matrix. Consequently, there is a lower
bound p,,,, of for which the H-infinity control problem has a solution.
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5. Lyapunov stability analysis

The tracking error dynamics for the unmanned surface vessel
IS written in the form

6= de+ Bu+Ld

where in the underactuated vessel’s application example L = I € R® with |
being the identity matrix. The following Lyapunov function is considered

V = %ETPE

where & = x—x; Is the state vector’s tracking error

V =1é"Pet LePi=
V = L[Ae + Bu + Ld|TP + LT PlAe + Bu + Ldj=

V =1[eTAT + wT BT 4+ dTLT|Pe+
+ieTPlde + Bu+ Ld]=

V=1cT4TPe 4+ Lo BT Pe+ LdT LT Pey
%ETPAE + %ETPBH + %ETPL&'
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5. Lyapunov stability analysis

The previous equation is rewritten as

V =1c"(4TP + PA)e + (v BT Pe + Lo PBu)+
+(1dT LT Pe + LT PLd)

Assumption: For given positive definite matrix Q and coefficients r and p there exists a
positive definite matrix P, which is the solution of the following matrix equation

ATP 4+ PA=-Q+ P(%BBT — ;%LLT)P @
Moreover, the following feedback control law is applied to the system

P —%E"TPE

By substituting Eq. @ and Eq. @ one obtains

V=1T[-Q+ P(2BBT — > LLT)Ple+
+eTPB(—1BT Pe) + ¢l PLd=
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5. Lyapunov stability analysis

Continuing with computations one obtains

V =—1eTQe+ 1T PBBT Pe — 54 eTPLLT Pe
_1,TPBRTPe + TPLd

which next gives
V =—%eTQe— sxeT PLLTPe+ T PLd

or equivalently

1 TQE— 1 el PLLT Pedt
+1ETPL.::!+ 1dTIT Pe

Lemma: The following inequality holds

LeTld+ LdLTPe — 1 eT PLLT Pexip?d®d
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5. Lyapunov stability analysis

Proof : The binomial I:f;'r:tf— %E:':IE is considered. Expanding the left part of the above inequality
one gets '
pal+ S8 —2ab > 0= %Jﬂgﬂ-2+ﬁgl§2—ﬂ-b:_} 0=
ab— z=b% < 10%% = Lab+ tab— ﬁgbz < 2p%a?
The following substitutions are carried out: @ = d and b= TP
and the previous relation becomes

LdT LT Pe + T PLd — S5eT PLLT Pe<}p?dTd @
Eq. @ IS substituted in Eq.@ and the inequality is enforced, thus giving

V< — 1eTQe+ 1p%d7d

Q

Eq. @ shows that the H-infinity tracking performance criterion is satisfied.

The integration of Vfrom O to T gives

A A FETRr
fo Vit)dt= . 2o llellads + %Fgfniudugdﬁ:"
W(T)+ fy llellgat=2V(0) + o™ fy Ild]| "4
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5. Lyapunov stability analysis

Moreover, if there exists a positive constant Jf; = 0  such that

fo Nldl|?dz < My
then one gets

Jo llelfgdt < 2V(0) + o* My

Thus, the integral f;ﬂHEH%ﬂﬁ is bounded.

Moreover, V(T) is bounded and from the definition of the Lyapunov function V it becomes
clear that e(t) will be also bounded since

e(t) € (U = {e|e? Pe<OV(0) + o2 M4}

rrrrr

According to the above and with the use of Barbalat’s Lemma |
one obtains: =

I ene(t) = 0.

This completes the stability proof.
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7. Robust state estimation with the use of the H-infinity Kalman Filter

A discrete-time description of the linearized state-space model of the vessel is assumed.
The H-infinity Kalman Filter, for the model of the underactuated vessel, can be
formulated in terms of a measurement update and a time update part

Measurement update:
D(k)=[I —0W(k)P~ (k) + (_""(l.-)H(Ag)‘1(_'(A'|)1-"(I:)]“
K(k)= P~ (k)D(E)CT (K)R(k)~!
(k) =z~ (k) + K(k){u(k) — Cx— (k)]
Time update:
2= (k+ 1) = A(k)z(k) + B(k)u(k)
P~(k+1) = A(k)P~(k)D(k)A" (k) + Q(k)

where # is sufficiently small to assure positive definiteness for the covariance matrix

P~(k) — oW (k) + CT (k)R(k)~'C(k)

One can measure only a subset of the state variables of the vessel's model (e.g. cartesian
coordinates) and can estimate through filtering the rest of the state vector elements.

Besides the filter can be used for sensor fusion purposes.
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7. Simulation tests

* The nonlinear H-nfinity control scheme is tested through simulation examples

Linearization ofthe USV's
kinematic and dynamic model

x=dAx +Bu+1Ld
A — Vf.\' (In?ul):B = Vfu :(Inru;

)

4,B,L

A

Solution of the algebraic
Riccati equation

ATPpipavo-PlmT - Ty =0
r 2p*

p
X i ¢ Heinfinity u = Ke Nonllr;eardzgsmics ¥
—»G\ control gain of the - g
: o
K=-—BTp .
a r x= f(x.u)

Fig. 2. Diagram of the control scheme for the underactuated vessel

It can be noted that the H-infinity algorithm exhibited remarkable robustness to
uncertainty in the model of the distributed power generators which was to approximate
linearization. 75
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7. Simulation tests

Path 1

Tracking of the reference trajectory (red line) in the
x — y plane by the unmanned surface vessel (blue line),

-

T T
I N
L] 5 0 15 .| = kY % q
e (sec
T T T T T T T
1 1 1 i i 1 ;
0 5 ® X5 ¥ F 4
e (s
L T T T T T T T

1 1 1 1 1
0 15 il 5 kY k] q

Convergence of the state variables of the vessel
x4 = u, x5 = v and x6 =r to the reference values

1
{
T T
2 i i
0 5 10 5 20 30 35 40
time {sec
2 T ! !
poob T b R T P ]
2 i i i i i i i
0 5 10 1 20 30 35 40
time (sec)

Convergence of the state variables x1 = x,
x2 =y and x3 = y to the reference values

-1 T T T
- 1 1 1 1 I 1 1
1] L] 1 15 a il kil % 4
ime sz}
X T
- e
-} ._.E.._
2 I 1 I 1 I 1 I
)] 1 i kil -] k1] £} 4
e e

Control inputs ul and u2

exerted on vessel
76



Nonlinear control and filtering for USVs and AUVs
EXample 3: Nonlinear control and state estimation using approximate linearization

7. Simulation tests

Path 2 S
E I g ; W " : llﬁ xls :’lﬁ : zls 3'0 3ls 40
Tracking of the reference trajectory (red line) in the Convergence of the state variables x1 = x
x — y plane by the unmanned surface vessel (blue line), x2 =y and x3 = y to the reference values
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7. Simulation tests
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/. Simulation tests
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8. Simulation tests
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8. Conclusions

» The problem of trajectory tracking control of underactuated USVs 3
has been solved with a nonlinear H-infinity (optimal) control method. :

* Anew nonlinear feedback control method for underactuated
vessels has been developed based on approximate linearization
and the use of H-infinity control and stability theory.

» The first stage of the proposed control method is the linearization of the unmanned
surface vessel using first order Taylor series expansion and the computation of the
associated Jacobian matrices.

» The errors due to the approximative linearization have been considered as disturbances
that affect, together with external perturbations, the distributed power generators’ model.

« At a second stage the implementation of H-infinity feedback control has been proposed.
Using the linearized model of the vehicle an H-infinity feedback control law is computed at
each iteration of the control algorithm, after previously solving an algebraic Riccati equation.

« The known robustness features of H-infinity control enable to compensate for the errors
of the approximative linearization, as well as to eliminate the effects of external perturbations.

» The efficiency of the proposed control scheme is shown analytically and is confirmed
through simulation experiments. 81
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1 . Control of a submarine’s diving

¢ A nonlinear H-infinity (optimal) control method is developed
for the problem of simultaneous control of the depth and
heading angle of an autonomous submarine.

e This is a multi-variable nonlinear control problem and its solution
allows for precise underwater navigation of the submarine.

e The submarine’s dynamic model undergoes approximate linearization around a
temporary operating point that is recomputed at each step of the control algorithm.

e The linearization procedure is based on Taylor series expansion and on the
computation of the submarine’s model Jacobian matrices.

e For the approximately linearized model, the optimal control problem is solved
through the design of an H-infinity feedback controller.

e The computation of the controller’s gains requires the solution of an algebraic
Riccati equation, which is repetitively performed at each step of the control method.

e The stability properties of the control scheme is proven through Lyapunov
analysis. It is shown that that the control scheme is globally asymptotically stable.
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2 . Problem statement

The multivariable model of the submarine’s dynamics has as outputs

the depth of the submarine "

The pitch angle of the submarine ¢

and as inputs

the deflection angle of the hydroplanes at the front part of vessel 0B
the deflection angle of the hydroplanes at the rear part of the vessel §S

The objective is to achieve control of the submarine’s diving through the for the solution
of the associated nonlinear optimal control problem 83
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3. Dynamic model of the submarine

The dynamic model of the submarine is written as:

wit) = Ejﬁi (&) + oo Zy + m Y US(H) + ﬁ;g{m

+f*'ﬁﬂ aﬁuﬂs” 85(8) + g+ Znle, 9)

'{ﬁ}—%’f {ﬂ+LgI {3'+—‘*-r'5"[]' @

M i gl z et
—fff—ﬁﬁ'il‘ T os+ T B“Hﬁ% (w, 4)

w18 the veloclty along the z-axis, of the body-fixed frame

fo 15 the depth of the wessel measured in the inertial coordinates gystem,
15 the pltch angle
2 = 0 iz the rate of change of the pitch angle.

dF 1= the hydroplane deflection in the bow 1::13,11‘-5j
g 13 the h}rdrc:-plane deflection in the stern

E.:,g, Md are l::c:-unded dlsturbance 1111::111;5 due fo 2ea. currents

f.-?{w; al, qu{ﬂh ti‘::' are diturbance inputs representmg the veszel's cross-How drag

[l = [/, denotes the z-axis (forward) velocity of the vessel, 84
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3 . Dynamic model of the submarine

Indicative values of the parameters of the submarine’s dynamic model are:

Table!i]

Parameters of the Submarine’s dynamic model
Parameter Value Parameter Value Pararneter Value
Z,, = —0.0110 7. = —0.0075 Zy = —0.0045
Ty = —0.0002 Tip =—00025 || Zss=—0.0050
M., = 0.0030 M, =-0.0002 || M,=—0.0028
M, = —0.0004 Mg = 00005 | M,,=—0.0028

I, = 56867 104 L = 286h m = 1.52-10%lug
Zy— Zp = —1.5t U = 8.43fs o = 2.0slug /ft®
L=I,—Mg || m=2m/(oI®)) | my=m'—17,

These can be obtained directly from the design characteristics of the vessel or indirectly

through an identification procedure in the sense of nonlinear least squares or nonlinear
Kalman Filtering

Even in the case that the values of these parameters are known within uncertainty

ranges the proposed control method is sufficiently robust to compensate for such a type
of model imprecision .

The proposed nonlinear optimal control assures stability of the control loop under

parametric changes and and unknown external perturbations.. 85
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3. Dynamic model of the submarine

The dynamic model of the submarine can be written in matrix form:
2l fw{'w:-'g:- Q:-ﬂ) @
. | = + E
(Q) (fﬁ'{w:-'g:- Q:-ﬁ:' 7

where the control input vector is: == [§B{#) §5()]%

and is generated by electric actuators that rotate the hydroplanes. Therefore the control
input describes actually voltage or current signals that define the turn angle of the rotor
of these electric actuators.

In this description:

g h e ) + 2 00+ SEG0 + 2 4 2

0.85p L3
El ﬁ s 2 =4
Fal o, 8, @, 1) {ﬂ_'_ Lﬂr {H__,_.g +M§?_Ble{ﬁ +ﬁ§’?+ﬂ£ (e, )

while for matrices M and E, 1t holds

f 5%[?2 5§U2

= ! 1 _E‘::'Lxm@ B, = mgL mgL
—Mu(LI, ) 1 m'EBU?  MEsUT

L2J, L2y,
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3. Dynamic model of the submarine

It holds that the depth of the vessel measured in the inertial reference frame and the
velocity w of the submarine along the z-axis of the body-fixed frame are related as follows:

b= weos(8) — Ussin(f)=
h = weos(8) — wsin( 88 — U,c0s(8)6=
h = teos(8) — w@Qsin(8) — UQeos(8) @

From the above relation one can compute about the diving speed of the vessel:

w = (eos (0)~1)(h + Unsin(8) (5

Moreover, from Eq @ one has:

ﬂ;’ =3 I:’E;'_J} g, Q:-t:' + Boy 1 + Boyatio @
Q — f-f"(w:-'g:- Q:-t} o Bﬂgiui 63 BC‘EEME

Substituting Eq. @and the first row of Eq. @ into Eq@ one gets

'?II' = [fw I:’U_,l} '5':- Q:- t) e Bﬂiiui -+ Bﬂ'iz HE]GDS ('5':' _ (h+i'35?;?;(9]} QSEH ('5':' - UDQGGSI:SJ @
87
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3. Dynamic model of the submarine

Next, by d ting- : ¢
o Y EERY fw I:t"-'l:- SI:- Q:--"-L’:I = ghl:h:- Il1b2':- EI:- 5'}?_':}

fgl:’b'_l} E}Q:-t:l = Q‘,gl:h-} "f:-":- E} é} t:l

And by substituting this relation in Eq. @ together with Q = é one obtains:

h=gnlhh, 6, 8 t)eos(d) — ':EJri”Sﬁ?{gﬂésin{Ej — Upbeos(6)+
+Boy cosi @) s + Bo,,cos(8) uz

& = go(R, h,8,6,t) + Boy s + Bogtiz
Then, by defining the state vector = = [k, h, 8, 6]7

iy thm}t:llﬂG'Sl:Eg:]—m4t§:§;§m3]$43iﬂiﬂgj—U@$4EGS|:$3:| 4 Boiwe Bois g
dz ) B':'Ei BC‘EE L2

gelx,t)

From Eq. one finally arrives at the MIMO state-space description of the submarine

G =G+ GEs 2290 o

88
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4. Approximate linearization of the submarine’s dynamics

Using the previous description of the submarine’s dynamics given in Eq. one has that

9r(Z,E) _ 1 —Zé&)L/m'3 - |
(Qe(m,t)) . (_‘,’Ua_‘([}[;‘—l) ; )

Zwtl iy (t) + (Z +m ) U6(t) + —2=28 4 7 (w,Q)

Lmg O"pL3mé
Herw <>+—9<> PRIREEEl(8) + sy + Ma(2,Q)

The effects of the wave and currents forces and of hydrodynamic forces are considered
as disturbances and are not given explicitly in the model of the submarine’s dynamics.

By grouping coefficients the previous equation given in Eq. can be written as

gn(z,t)\ _ (my1 mi2\ (a1 a m{r—g)[l?z-i-UoSin(l’-s)] @
go(z,t) ] \ma1 mao by bs T4

and by performing additional operations between coefficients one has

gn(z,t) - [ P13 P12> m[l?2+(/'708i'71(1?3)]
go(z,t) P21 P22 T4

89
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4. Approximate linearization of the submarine’s dynamics

According to the above, the AUV’s model is written in the generic form:

(2) = (B + (52D us + (52 wx @)

or equivalently e -
X1 [ Xp ] [ 0 0
x| |F1(x) + G11(x)  G12(x) ul]
3.(,'3 - X4 0 0 Uy
N F2(x)] 1Ga1(x)  Gaa(X).
[ X4

where one has that

T . ')—:“(_-‘rl in . T =
Fy(z) = p“m(mz + Upsin(zs)) + pioTqy — =2 CO;f;Z§IS)l?4S‘Z-72.($3) — Upzy8in(zs)
Fy(2) = pa1gazay (22 + Uosin(zs)) + paaza @

while it also holds that

G“(II‘-) = 3011008(173) Glg(l’.) = B()l-zCOS(l?g)
G21(x) = Boai Gaz2(z) = Boaa 90
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4. Approximate linearization of the submarine’s dynamics

Next, the Jacobian matrices of the submarine’s dynamic model are computed. For the

Jacobian matrix Y7 one has:

aF1 aFy oF' dFi\
ox oxo oz oz,
aFs OF5 OFo dF5
- dxq oxo ox4
Ve F = AFy  AF4 dFS ng
oz dxo
OFy dFy d é‘) 0 /
dx oxo dxg oxy
For the Jacobian matrix V.G, one has:
9G 1, 9G4 9G 1, 9G 11
(o dxo Jxs dxy
G 21 G 21 G2 G 21
¥2 | o dx dxo Oz S
VeGi1=| 68. 862 862 064
ax dxo Jxs Oxa
96 41 9G 44 9G4 9G 44
(91‘1 8I2 ()1‘3 81‘1
For the Jacobian matrix V.G2 one has:
3G 12 G112 HG12 0G 12
Oz Oxo Oxa Oz 4
a0, 22 0(;'_)_3 (9(;22 0(10 2
- ax dxa ox Hx4
VoGo = | 58L 662, 66 90
0x, Oxo Oxg Oz,
Gy 0G5, 8Gyp 06Gas
ax Jxa Oxa Hx4
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5. Design of an H-infinity controller for the submarine’s model

As explained, the system’s dynamic model undergoes linearization round its present operating

point (x*,u*), where x* is the present value of the submarine system’s state vector and u* is the
last sampled value of the control inputs vector..

Thus one arrives at the approximatelv linearized descrintion of the system:

¥=Ax+Bu+d

where d, is the linearization error due to truncation of higher-order terms in the Taylor

series expansion and 4 . -
A= [V.I‘F + V:Girur + v.r(-".-'.’u‘.?] |(1“.u‘} @

In a similar manner, one has that
B= qu + VUC']'Ul + vuc"ﬁu‘l:‘ |(_.r.“.u‘): [GIC"Q]

After linearization round its current operating point the system’s model

IS written as
o= Ao+ Bud dy @

Parameter d, stands for the linearization error in the system’s model

At every time instant the control input %* is assumed to differ from the control input
appearing in @ by an amount equal to s thatis e = 41 Ay L

i B @ 92
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5. Design of an H-infinity controller for the submarine’s model

The dynamics of the system of Eq. @can be also written in the form

# = Ae4+ Fut Bu* — Ba* 4 oy @

and by denoting d; = —F=*+44dy as an aggregate disturbance term one obtains

b B Bkl
By subtracting Eq. from Eq.@ one has

#— g =Ale — 20 + But ds — do @

By denoting the tracking error as £ = #— &4 and the aggregate disturbance term as
,j =i the tracking error dynamics becomes

¢ = Ae 4+ Budd

93
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5. Design of an H-infinity controller for the submarine’s model

The initial model of the submarine is assumed to be in the form

r=if (. 0) HeRT neR™
where the linearization point is defined by the present value of the system’s
state vector and the last sampled value of the control inputs vector

(o™, et y=(xlt), ud —T.])

The linearized equivalent of the system is described by

¢ = Ax + Bu+ Ld xcR" ucR™, deh*

where matrices A and B are obtained from the computation of the Jacobians

8fH B8H . 8 8f  8A . Bf
shooh .. A of of .. B

d= |7 2 D | leey B |2 P 7| leew)
8fn  Bfn . Bfn Afn  Ofa O
&y Huwa iy, g Ha s LT

and vector d denotes disturbance terms due to linearization errors.

¥=-Ap Byt Ld
y=Cx 94
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6. Lyapunov stability analysis

The tracking error dynamics for the submarine’s model is written in the form

6=Ae+ Bu+ILd @

where in the case of the considered submarine model L=1€R* with | being the
identity matrix. The following Lyapunov function is considered

V= %ETPE

where & = —%3 Is the state vector’s tracking error

V =1lde+ Bu+ LdTP + 1eTPlde + Bu + Ldj=

V =37 AT + T BT 4+ dT LT Pe+
+1eTPlAe + Bu+ Ld]=

Vo— %ETATPE el %HTBTPE 4 %GETLTPE—I—
%ETPAE + %ETPBH + %ETPLGT
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6. Lyapunov stability analysis

The previous equation is rewritten as

V =1T(4TP + PA)e + (2uTBTPe + LeTPBu)+
+(1dT LT Pe + LeT PLd)

Assumption: For given positive definite matrix Q and coefficients r and p there exists a
positive definite matrix P, which is the solution of the following matrix equation

ATP+PA=-Q+P((BBT — LLLT)P

Moreover, the following feedback control law is applied to the PEM fuel cells model

2 = —%E"TPE
By substituting Eq. and Eq. one obtains

V =1eT[-Q + P(2BBT — LLLT)Ple+
—}—GTPB(—%BTPE) + el PLd=

96
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6. Lyapunov stability analysis

Continuing with computations one obtains

V=-1TQe+1eTPBBT Pe — SLeTPLLT Pe

2p?

—1eTPBBT Pe + ¢TPLd

which next gives

V =—3eTQe— gzeT PLLTPe+ T PLd

Vs —%ETQE == #ETPLLTPE—I—
+ieTPLd+ LdT LT Pe @ *

Lemma: The following inequality holds

or equivalently

$eTLd + $dIT Pe — 5L:eT PLLT Pe<ip®d"d
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6. Lyapunov stability analysis

Proof : The binomial l:;:?'r:tf— %E?:IE Is considered. Expanding the left part of the above inequality

one gets
pal+ S8 —2ab > 0= %Jﬂgﬂ-2+ﬁgl§2—ﬂ-b:_} 0=

ab— z=b% < 10%% = Lab+ tab— ﬁgbz < 2p%a?

The following substitutions are carried out: & = dand b = TPL
and the previous relation becomes

()

$dTLTPe + $eTPLd — LpeT PLLT Pe<tp?dTd
Eq. @ IS substituted in Eq.@ and the inequality is enforced, thus giving

Ve — 1e7Qe+ 1p%d7d

®)

Eq. @ shows that the H-infinity tracking performance criterion is satisfied.

The integration of Vfrom O to T gives

o S T o B
fo Vigdi< — 1f0 |lel|gdt + 302 5 |14 dit=

1]

e T3
WA(T) + fy llellgae=2vi0) + o* fy |la]|*
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6. Lyapunov stability analysis

Moreover, if there exists a positive constant Jf; = 0  such that

then one gets

f;‘:’||e||i—;.d.t < DV(0) + o My

Thus, the integral f;ﬂ||e||%r:£ﬁ is bounded.

Moreover, V(T) is bounded and from the definition of the Lyapunov function V it becomes
clear that e(t) will be also bounded since

e(t) € (U = {e|e? Pe<OV(0) + o2 M4}

According to the above and with the use of Barbalat’s Lemma one obtains:

I ene(t) = 0. 09
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7. Robust state estimation with the use of the H-infinity Kalman Filter

e The control loop has to be implemented with the use of information provided by a small
number of measurements of the state variables of the submarine’s model

e To reconstruct the missing information about the state vector of the submarine’s model it is
proposed to use a filter and based on it to apply state estimation-based control .

e The recursion of the H-infinity Kalman Filter, for the submarine’s model, can be
formulated in terms of a measurement update and a time update part

Measurement D(k) = [I oW ()P~ (L)+CT(A}R(A} LC(k)P~ (k)] !
update K (k) = r.AA)D(A_}CT(A)R( )
(k) = & (k) + K(k)[y(k) — Cz~ (k)]

Time 2= (k + 1) = A(k)x(k) + B(k)u(k )
update P~(k+1) = A(k)P~(k)D(k)AT (k) + Q(k)

where it is assumed that parameter 0 is sufficiently small to assure that the covariance matrix

-1 .
P (k) — OW(k) + CT(k)R(k)~1C(k)

Is positive definite 100
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/. Simulation tests

® The performance of the proposed nonlinear H-nfinity control scheme for the submarine’s
model is tested throuah simulation:

Linearization of the submarine's
dynamic model

.v.r=.4.\'-'-Bu+L¢;‘
A=NF, ;(_\-'.u"\’B =V, ]

. ,‘
x u)

4.8, L

Solution of the algebraic
Riccati equation

ATP+ P4 +Q-P(lBBT—31—,LLT)P:O
z :

P
+ e Anfini = Nonlinear dynamics X
Sl oo ik e of the su(:)ymanne
_,‘\/ s \f_, cor\tml1 gain IS SR~
; K=--8"p .
= ¥ x= f(x.u)

Fig. 1 Diagram of the nonlinear optimal control for the diving submarine

With the use of the proposed H-infinity control method, fast and accurate tracking of the
reference setpoints of the submarine’s model state variables was achieved 101
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7. Simulation tests

* Qut of the 4 state variables of the autonomous submarine only 2 where considered to
be measurable. These were the submarine’s depth h and the its heading angle 6
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/. Simulation tests

e The use of the H-infinity Kalman Filter as a robust state estimator allows for implementing
feedback control based on a small number of sensors and measuring equipment of the

submarine
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7. Simulation tests
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had to be repetitively solved at each step of thecontrol method.
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7. Simulation tests

¢ Unlike global linearization-based control methods the proposed nonlinear optimal control is

applied directly on the nonlinear dynamical model of the submarine and does not require the
computation of diffeomorphisms (change of state variables)
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7. Simulation tests

e The computation of the feedback control signal follows an optimal control concept and retains
the advantages of linear optimal control in terms of accuracy of tracking and moderate control

inputs variation
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7. Simulation tests

e Despite modeling errors induced by the approximate linearization of the Taylor series
expansion the proposed control method exhibits significant robustness
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8 . Conclusions

e Anonlinear optimal (H-infinity) control method has been
developed for the control of the submarine’s diving model.

e The dynamic model of the submarine has undergone
first approximate linearization around a temporary operating
point which was redefined at each iteration of the control algorithm

eThe linearization point (equilibrium) consists at every time instant of the present
value of the state vector of the submarine and of the last value of the control inputs
vector exerted on it.

e The linearization was based on Taylor series expansion and on the computation of
the associated Jacobian matrices. The approximation error was considered to be a
disturbance that had to be compensated by the robustness of the control method.

e For the approximately linearized model of the submarine an H-infinity (optimal)
feedback controller has been designed.

e The stability features of the submarine’s control loop were proven through
Lyapunov analysis.. , it was proven that the control loop satisfies also conditions for
global asymptotic stability.
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1. Control of a submarine’s diving

e Adaptive fuzzy control based on differential flatness
theory for multivariable control (dive-plane control) of AUVSs.

e The dynamic model of the submarine, with state variables the vessel’s depth and its
pitch angle, is a differentially flat one. This means that all its state variables and its
control inputs can be written as differential functions of the flat output and its derivatives.

e By exploiting differential flatness properties the system’s dynamic model is written in the
multivariable linear canonical (Brunovsky) form, for which the design of a state
feedback controller becomes possible.

o After this transformation, the new control inputs of the system contain unknown
nonlinear parts, which are identified with the use of neurofuzzy approximators.

e The learning procedure for these estimators is determined by the requirement the first
derivative of the closed-loop’s Lyapunov function to be a negative one.

e Moreover, the Lyapunov stability analysis shows that H-infinity tracking
performance is succeeded for the feedback control loop and this assures improved
robustness to the aforementioned model uncertainty as well as to external perturbations.

e The efficiency of the proposed adaptive fuzzy control scheme isconfirmed through
simulation experiments. 109
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2. Problem statement

The multivariable model of the submarine’s dynamics has as outputs

the depth of the submarine "
The pitch angle of the submarine 6

and as inputs

the deflection angle of the hydroplanes at the front part of vessel 6B
the deflection angle of the hydroplanes located at the rear part of the vessel 85

0

The objective is to succeed multivariable nonlinear feedback control for the
submarine’s model, without prior knowledge of the vessel’s kinematic or dynamic model
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3. Dynamic model of the submarine

The dynamic model of the submarine is written as:

it) = Zu(t) + 224+ m)USE) + LA

+E*55’H IB )+ =2 E”H 65(2) + %%Lr-l— Zalw, q)

{ﬁ)—u’ o (®) + BTy + 22 )4 ©

M o gl z nd
—ﬁEﬂ—Lg; SB(t)+ a5 )+ 2 v o 3ﬂ+—urnﬁ‘i§; + My (w, g)

w18 the veloclty along the z-axis, of the body-fixed frame
fo 15 the depth of the wessel measured in the inertial coordinates gystem,
8 12 the pitch angle

=8 15 the rate of change of the pitch angle

dF 1= the hydroplane deflection in the bow 1::13,11‘-5j
g 13 the h}rdrc:-plane deflection in the stern

E’Jd, Md are b::-unded dmturbanu:e 1111::111;5 due bo E.EELI currents

Zalaw, q), M, tﬂ are digturbance inputs representing the vessel's crose-fow drag

U7 = U, denotes the w-axis (forward) velocity of the vessel, b
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3. Dynamic model of the submarine

Indicative values of the parameters of the submarine’s dynamic model are:

Tahle I 1]
Parameters of the Submanne’s dynamic model [1]
Parameter Value Parameter Value Parameter Value
Z,, = —0.0110 7, = —0.007% Ty = —0.0045
Zy = —0,0002 Zep =—00025 | Z4=—0.0050
M, = 0.0030 M, =—00002 | M,=—00025
M, = —0.0004 M;p = 00005 || M, =—0.0025
I, = 56867 104 L = 236ft m = 152-10slug
Zy— Zp = —1.H5t 7 = 8.45fKs o = 2.0slug /ft3
I, =1I,— My mo=m/(pL?)) | my =m' — 2y,

These can be obtained directly from the design characteristics of the vessel or indirectly

through an identification procedure in the sense of nonlinear least squares or nonlinear
Kalman Filtering

However, since adaptive control is a model-free control method, there is no need about
prior knowledge of these parameters’ values..

Adaptive control assures stability of the control loop under unknown dynamic model

parameters and unknown external perturbations and disturbances .. 112
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3. Dynamic model of the submarine

The dynamic model of the submarine can be written in matrix form:
2l fw{'w:-'g:- Q:-ﬂ) @
. | = + E
(Q) (fﬁ'{w:-'g:- Q:-ﬁ:' ¥

where the control input vector is w = [§B(#) §5(#)]T

and is generated by electric actuators that rotate the hydroplanes. Therefore the control

input describes actually voltage or current signals that define the turn angle of the rotor
of these electric actuators.

In this description:

Folw, 6,@8) N _ e ﬁz“'ilw—irf?mwé'iler@ + segey + Zolw
(f&'{fﬁ-’{w:. 'El:- Q:— ﬁ:‘) B M,

'iﬁl“rw w(t) + o 6() + el 22 o(r) +ﬁ%+*"’f 'i*‘-“ﬂﬂ'
while for matrices M and E, 1t holds

f 5%[?2 5§U2

= ! 1 _E‘::'Lxm@ B, = mgL mgL
—Mu(LI, ) 1 mispu? M asUR

L2J, L2y,
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3. Dynamic model of the submarine

It holds that the depth of the vessel measured in the inertial reference frame and the
velocity w of the submarine along the z-axis of the body-fixed frame are related as follows:

b= weos(8) — Upsin(8)=
h = 1iicos(d) — wsin(68)8 — U,cos(8)8= @
h = teos(d) — wQsin(8) — U.Qeos(8)

From the above relation one can compute about the diving speed of the vessel:

w = (eos (0)~1)(h + Unsin(8) (5

Moreover, from Eq @ one has:

ﬂ;’ =3 I:’E;'_J} g, Q:-t:' + Boy 1 + Boyatio @
Q — f-f"(w:-'g:- Q:-t} o Bﬂgiui 63 BC‘EEME

Substituting Eq. @and the first row of Eq. @ into Eq@ one gets

'?II' = [fw I:’U_,l} '5':- Q:- t) e Bﬂiiui -+ Bﬂ'iz HE]GDS ('5':' _ (h+i'35?;?;(9]} QSEH ('5':' - UDQGGSI:SJ @
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3. Dynamic model of the submarine

Next, by d ting 5 ¢
o Y EERS fw I:t"-'l:- SI:- Q:--"-L’:I = ghl:h:- Il1b2':- EI:- 5'}?_':}

fgl:’b'_l} E}Q:-t:l = Q‘,gl:h-} "f:-":- E} é} t:l

And by substituting this relation in Eq. @ together with Q=6  one obtains:

h=gnlhh, 6, 8 t)eos(d) — ':thiDS‘T:E{Eﬂ 8sin(d) — Updeos(8)+
+Boy cosi @) s + Bo,,cos(8) uz

6 = go(h, h,8,8,t) + Boy s + Bogtiz

Then, by defining the state vector o = [k, &, 8, 8]7

(mi) _ (ga(m}tjms(xg] — Mtg:f;:f“}m sin{eg) — Ugm4r:as(mg}) 4 (ggu gﬂm) (Hi)
. Oay Qan o

g8 (2, t)

From Eq. one finally arrives at the MIMO state-space description of the submarine

(2) = (o) s (e oclaty () (9)

115



Nonlinear control and filtering for USVs and AUVs
Example 5: Nonlinear control and state estimation using Lyapunov methods

4. Differential flathess of the submarine’s dynamic model

Next, by denoting the flat output of the submarine as:

y = [24, EB]T = |%, 'Q]T
it can be proven that the submarine’s dynamic model is a differentially flat one

This means that all its state variables and its control inputs can be expressed as differential
functions of the flat output

From Eq. @ one gets o =, and T4 = 'i‘gl which means ‘

2y = [1 0]

Again, from Eq.@ one gets x4 = [0 1]%

()= (58 28) (@) G
= Jal, 1 1)

z: = fa':;;;- @

Eq. and Eq. @ confirm that the submarine’s model is a differentially flat one. 116

which means
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4, Differential flatness of the submarine’s dynamic model

The differential flatness property of the submarine’s model is important because it means that
the vessel’s model can be transformed into the MIMO linear canonical (Brunovsky) form
through a change of its state variables (diffeomorphism)

By defining the new state variables of the vessel

Y1 = X1, Y2 = Y1 Y3 = X, Y4 = Y3

and by defining the transformed control inputs of the vessel

ty = File,t) + g1t + gtz @
to = fala,t) + go1ty + Goztis

one obtains the linearized and decoupled state-space model of the submarine

i 01 0 0y /u 0 0

| |0 0 0 0| |z 1 0] (o @
g;rg_moolng“UU(wz)

s 00 0 0/ \z 0 1

for which the design of a state-feedback controller is possible
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5. Design of a stabilizing feedback controller for the submarine

For the transformed state-space model of the vessel

i 001 0 0\ [y 0 0
o 00 0 0] [ 1 0
4|~ o oo 1| |lw|T|o o
iy 00 0 0/ \u 01

It is considered that the complete state vector is measurable
¥ = [h:- II1L1:- Iﬁ:- Iﬁ]

Then, to succeed tracking of the reference setpoint

ye = [yl y8,y& y4T = [xd xd, x4, x4

the feedback control inputs should be chosen as

v =y — ki —yH) —ki(yi —yD)

v, = y§ —ki(ys — y$) — k2(ys — y$)
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5. Design of a stabilizing feedback controller for the submarine

By substituting Eq. Into Eq. @ one obtains the

tracking error dynamics for the submarine

.e.l + kcliél + kzl,el =0 .éz + kczléz + kgez =0 @

. . . — d — d
where the tracking error is defined as €1 = Y1 = V1, €2=Y3 )3

By selecting the feedback control gains kb, k; i =12 so as the characteristic polynomials

p1(s) = s% + kgs + k3, po(s) = s* + ks + k;

to have roots explicitly in the left complex semiplane, it is assured that

lime; (t) =0 i=1,2

t—oo

Finally, the feedback control input that is actually exerted on the submarine is .

(x,t) (x, )\ " fi(x,t)
@=Gnin meo) @-Gao) @ .
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6. Differential flathess of the autonomous submarine

» Differential flatness theory has been developed as a global linearization control
method by M. Fliess (Ecole Polytechnique, France) and co-researchers.

- A dynamical system can be written in the ODE form  S;(w,w,w,...,w®), i=12,...,9q

where w®stands for the i-th derivative of either a state vector element or of a control input

» The system is said to be differentially flat with respect to the flat output

yi=<p(w,w,w,...,w(“)), i=1,....m where y=000Y2Ym)

if the following two conditions are satisfied

() There does not exist any differential relation of the form

Ry, y,y,....,y#)=0

which means that the flat output and its derivatives are linearly independent

(if) All system variables are functions of the flat output and its derivatives

W(l) — l/)(y,y,y,___,y(yi)) 120
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6. Differential flatness of the autonomous submarn

The proposed adaptive control method is based on the transformation of the vessel’s
model into the linear canonical form, and this transformation is achieved by exploiting
the system’s differential flatness properties e

* All single input vessel models are differentially flat and
can be transformed into the linear canonical form

One has to define also which are the MIMO vessel models which are differentially flat.

« Differential flatness holds for MIMO vessel models that admit static feedback
linearization and which can be transformed into the linear canonical form through a
change of variables (diffeomorphism) and feedback of the state vector. This is the case
of the submarine's model

« Differential flatness holds for MIMO vessel models that admit dynamic feedback
linearization, This is the case of underactuated vessel models In the latter case
the state vector of the system is extended by considering as additional flat outputs
some of the control inputs and their derivatives

* Finally, a more rare case is the so-called Liouvillian systems. These are systems for which
differential flatness properties hold for part of their state vector while the non-flat state variables

can be obtained by integration of the elements of the flat subsystem. 121
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7. Design of an adaptive controller for the submarine’s model = 7 e

For the differentially flat MIMO model of 351 =fi(x,t) + g1(x,)u + gl,l
the submarine one has the dynamics X3 = £,00t) + g (6, u + d

N ..d N T
The following control input is considered u = [%M t)] {[xz] _ fl(x' O _ [K1T] o+ [ucll
92(x,t) X3 £,(x, 1)

A

where f and g stand for estimates of the unknown nonlinearterms f and
These estimates are provided by neurofuzzy approximators or other nonlinear regressors
This results in tracking error dynamics of the form

A A A -1
(A— BKye + Bu, + B(| 1O~ @O [gl(x, 0= g:(x t)] [g1<x, )

e = u+ d}
£,000) = 0] Lg2(xt) — g2(x, )1 Lga2(x, t)
where matrices A,B,K are definedas [0 1 0 0 0 0
_loo o O]B:ll 0 KT:[Kf K3 K Ki]
0 0 0 1| 0 0|’ K? K? K? K?
0 0 0 0 0 1
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7. Design of an adaptive controller for the submarine’s model

The nonlinear regressors (neurofuzzy approximators) consist of the kernel functions
and weights functions. Unlike SISO systems, in the case of MIMO dynamics the kernel

and weights functions are not represented as vectors but take the form of matrices.
Thus one has:

A

Fxl8) =06,  and  g(x16,) = @y(x)6,

Kernel and weights functions for the approximation of the nonlinear dynamics f:

/') 9t .. 9N ()
2,1 2,2 2,N
— (x “(x (x
() = |07 () 070 000 of = [0} 6 ... )]
o) 9t ... oM (x)

Kernel and weights functions for the approximation of the nonlinear dynamics g:

0t @) .. o (x) (03, 04 ... 6F
2,1 2,2 2,N

@y00 = |90 (005 (O 0y ) 0,=|02 O 0 O
n,1 n,2 nN - s - -
Vg () g7 (x) ... @y (X)
g g g Ogn Ogn -+ Oy
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7. Design of an adaptive controller for the submarine’s model

The weight functions of the neurofuzzy approximators are learned through an adaptation
procedure that is determined by Lyapunov stability analysis for the submarine’s model.

The following quadratic Lyapunov function is defined:

1% 1TP+15T5+ 1t[5T5]
=—e'Pe+— —tr
2 Zylff 2y, g”g

e:  state vector tracking error

Or = 67 — 0f: Difference of the weights from the value that succeeds exact estimation of f

6, =0, — 65 Difference of the weights from the value that succeeds exact estimation of g
Diff - btains: & = Lo7 1.« 1>~ 1 .
Ifferentiating one obtains: VvV = e Pe + € Pe + Zef 0r + Ztr[eg 4]

The associated tracking error dynamics is:

~ ~

. A A .
& = (A—BK™)e + Bu, + pf| 10 L% t)‘ N Igl(x, 0= 16 0) Igl(x, ol I
frlxt) — L) 192060 = g2(x, )1 1g2(x, 1)

The effect of modelling errors is denoted by:

W= lfl(x. t) — fi(x, t)‘ N [gl(x, £) — g1 (x, t)] [Ql(x, t)]
fo(x,0) = fo(, )] L9206 8) = g2(x, )1 Lg2(x, t)

-1
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7. Design of an adaptive controller for the submarine’s model

Thus one obtains the following tracking error dynamics:
e = (A— BKTe + Bu, + B(w + d)

The first derivative of the Lyapunov function becomes:

- 1 ~ 1 ~
V= E{eT(A — BK)T + uIBT + (w + d)TBT}Pe + EeTP{(A — BKT)e + Bu, + B(w + d)}

+15T5+1t[5T5]
— —tr
Y, o % Y

and after intermediate terms substitution one obtains:

A | 1 1 ~
V= EeT{(A — BK)TP + P(A— BKT)}e + EZeTPBuC + EZBTPe(W +d)

1>~ 1 =~ -~
+—070; +—tr[6]6,]
V1 V2

Assumption 1: the positive definite and symmetric matrix P is chosen as solution of the
Riccati equation:

2 1
_ TN\T _ Ty _ — ——\RBT =
(A—BK")'P+P(A—BK") PB(r pz)B P+Q=0
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7. Design of an adaptive controller for the submarine’s model

. . . 1 .
Using as supervisory control input — uc=——B"Pe one obtains:

-1 2 1 1 ~
V=5e"(-Q+PB(- - ?)BTP}e +e"PB{~=B"Pe} + BTP(w + d) +

1~~~ 1 -
+— Hf Hf +— tr[Hg 9g]
V1 V2

which can be written in the form:

I./——l TQe — —— TPBBTPe + T PB(W + d +15T5 +it 676
= 2eQe 2pze ete (w+d) - 97 6 yzr[gg]
Next, substituting: 5f = éf — éj: = éf and 5g = ég — ég = ég
ie: éf = —y;®(x)TBTPe and ég = —y,®(x)TBT Peu”

the following form of the derivative of the Lyapunov function is obtained:
° 1 1 ~
V= —EeTQe — z—pzeTPBBTPe +eTPB(w +d) +

1 1
- (e PBRC) (0 = 07) + - (=y2)tr[ue PBO(x) (6 — 6;)]
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7. Design of an adaptive controller for the submarine’s model

Taking into account that u € R?*! and  e"PB(g(x|6,) — g(x]|6;)) € RY?

the following form is obtained for the Lyapunov function derivative :

1 1 ~
EeTQe — z—pzeTPBBTPe +eT’PB(w +d) +

1 1 A A
+=- (=72)eT PBRC)(E; — 67) + - (~y2)tr[e” PB(g (x16,) — 9(x165))u

V=-—

and since e"PB(g(x|6,) — g(x|6;))u € R™! it holds that
V= —LeTQe— = eTPBBTPe + eTPB(w + d
=—ze Qe—zpze ete w+d)+

1 1 A A
o (—v1)e" PBD(x)(6; — 67) + . (—v2)e" PB(g(x6,) — g(x165))u

Using the following description for the model approximation error:

wa = [f(x|6F) = f(x|0p)] + [g(x167) — g(x]6F)]u
the equation of the Lyapunov function derivative becomes:
1

° 1 ~
V= —EeTQe — Z—I)ZeTPBBTPe + eTPB(w + d) + eTPBw,
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7. Design of an adaptive controller for the submarine’s model

and denoting the disturbances and modelling error terms as: w; =w + d + w,

. 1 1
one has: V=--e"Qe—--=e"PBB"e +e"PBw,
2 2p
or: V= —leTQe — ieTPBBTe +16TPBW + lWTBTPe
2 22 2 1homt
Next the following inequality is used:
: 1 r 1 rpr 1 7 Tp, < L oar
Lemma: It holds that € Pw, +§WlB Pe—z—pze PBB' Pe S Spiwiwy

Proof:

The binomial {pa— 16 = U is considered. Expanding the left part of the above

: : F
inequality one gets
pla? + b —2ab> 0= 1pa’ 4 550 —ab > 0=
ab — sisb? < 1p2a% = Lob4 Lab— 502 < 1p2a? i
320 D PG = 00T 00 T 5 al S 500 memean

By substituting & =, and b =3 B, E  one gets

i BT e+ 38T PyBun — 028 P, BBTPyE
AR R &
= oFpuly uh
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7. Design of an adaptive controller for the submarine’s model

By substituting Eq. @ into the relation of the derivative of the Lyapunov

function gives:
. 1 1
VS—EeTQe+Ep2W1TW1

This is the H-infinity tracking performance criterion which means that for bounded disturbance
and modelling error the control law results in very small bounded tracking error:

It is noted that, by choosing the attenuation coefficient p to be sufficiently small, the right
part of Eq. can be always made to be upper bounded by zero.

In such a case the asymptotic stability condition is clear to hold..

The minimum value of p for which a solution of the Riccati Eq exists, is the one that
provides the control loop with maximum robustness.
2

Moreover, if j llw1]l| dt <M, one has the following integral:
0

T

T T T T
. 1 1
[ v@de <=5 [lle@izde + 507 [ 1wl Pde = 20 + [ llelde < 2v(0) + 0 [ 11wl Pde
0 0 0 0 0

and from Barbalat’s Lemma one has that

. lle]|3dt < 2V (0) + p*M
which means that: Of @ w

which confirms again that the tracking error vanishes 129
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8. Simulation tests

* In the simulation tests, the dynamic model of the submarine was considered to be
completely unknown and was identified in real-time by the previously analyzed
nonlinear regressors (neurofuzzy approximators)

* The estimated unknown dynamics of the system was used in the computation of

the control inputs (generated by the electric actuators of the hydroplanes) which were

finally exerted on the submarine’s model.
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8. Simulation tests
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9. Conclusions

* By exploiting the differential flatness properties of the MIMO nonlinear model of
the submarine the system was transformed into the linear canonical (Brunovsky)
form. For the latter description the design of a feedback controller was possible.

* Moreover, to cope with unknown nonlinear terms appearing in the new control
inputs of the transformed state-space description of the submarine, the use of nonlinear
regressors (neurofuzzy approximators) has been proposed..

* These estimators were online trained to identify the unknown
dynamics of the system and the associated learning procedure
was determined by the requirement the derivative of the system’s
Lyapunov function to be a negative one.

» Through Lyapunov stability analysis it was proven that the closed loop satisfies the
H-infinity tracking performance criterion, and this assures improved robustness
against model uncertainties and external perturbations.

* The computation of the control input required the solution of an algebraic Riccati
equation. Suitable selection of the attenuation coefficient p in this equation assures
asymptotic stability and provides maximum robustness.

* The proposed flatness-based adaptive fuzzy control method is generic and can be
applied to a wide class of vessels, such as surface vessels or AUVSs.
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V. Final conclusions

e Methods for nonlinear control and state estimation for autonomous
navigation in USVs and AUVs have been developed

e The main approaches for nonlinear control have been: (i) control with global linearization
method (ii) control with approximate (asymptotic) linearization methods (iii) control with
Lyapunov theory methods (adaptive control) in case that the dynamic or kinematic model
of the USVs and AUVs is unknown

e The main approaches for nonlinear state estimation are: (i) nonlinear state estimation with
methods of global linearization (ii) nonlinear state estimation with methods of approximate
(asymptotic) linearization
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