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I . Outline

● Autonomous navigation of USVs and AUVs relies on the solution of

the associated nonlinear control and state estimation problems

● The main approaches followed towards the solution of nonlinear

control problem are as follows: (i) control with global linearization

methods (ii) control with approximate (asymptotic) linearization

methods (iii) control with Lyapunov theory methods (adaptive control

methods) when the dynamic model of the USVs and AUVs is unknown

● The main approaches followed towards the solution of the nonlinear

state estimation problems are as follows: (i) state estimation with

methods global linearization (ii) state estimation with methods of

approximate (asymptotic) linearization

● Factors of major importance for the control loop of USVs and AUVs,

in autonomous navigation problems, are as follows (i) global stability

conditions for the related nonlinear control scheme (ii) global stability

conditions for the related nonlinear state estimation scheme (iii) global

asymptotic stability for the joint control and state estimation scheme
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II . Nonlinear control and state estimation with global linearization

● To this end the differential flatness control theory is used

● The method can be applied to all nonlinear systems which

are subject to an input-output linearization and actually such

systems posses the property of differential flatness

● The state-space description for the dynamic model of the USVs and AUVs is

transformed into a more compact form that is input-output linearized. This is achieved

after defining the system’s flat outputs

● A system is differentially flat if the following two conditions hold: (i) all state variables and

control inputs of the system can be expressed as differential functions of its flat outputs (ii)

the flat outputs of the system and their time-derivatives are differentially independent,

which means that they are not connected through a relation having the form of an ordinary

differential equation

● With the applications of change of variables (diffeomorphisms) that rely

on the differential flatness property (i), the state-space description of the

USVs and AUVs is written into the linear canonical form. For the latter

state-space description it is possible to solve both the control and the state

estimation problem for USVs and AUVs, and to achieve autonomous navigation..
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III . Nonlinear control and state estimation with approximate linearization

● To this end the theory of optimal H-infinity control and the theory of

optimal H-infinity state estimation are used

● The nonlinear state-space description of the USVs and AUVs undergoes

approximate linearization around a temporary operating point which is

updated at each iteration of the control and state estimation algorithm

● The linearization relies on first order Taylor series expansion around the temporary

operating point and makes use of the computation of the associated Jacobian matrices

● The linearization error which is due to the truncation error of higher-order terms in the

Taylor series expansion is considered to be a perturbation that is finally compensated by

the robustness of the control algorithm

● For the linearized description of the state-space model an optimal H-infinity controller

is designed. For the selection of the controller’s feedback gains an algebraic Riccati

equation has to be solved at each time step of the control algorithm

● Through Lyapunov stability analysis, the global stability properties of

the control method are proven

● For the implementation of the optimal control method through the

processing of measurements from a small number of sensors in the

USVs and AUVs, the H-infinity Kalman Filter is used as a robust

state estimator
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IV . Nonlinear control and state  estimation with Lyapunov methods

● By proving differential flatness properties for USVs and AUVs and by

defining the associated flat outputs, a transformation of the USVs and AUVs

state-space model into an equivalent input-output linearized form is achieved.

● The unknown dynamics of the USVs and AUVs is incorporated into the

transformed control inputs of the system, which now appear in its equivalent

input-output linearized state-space description

● The control problem for USVs and AUVs of unknown dynamics in now turned into a

problem of indirect adaptive control. The computation of the control inputs of the system is

performed simultaneously with the identification of the nonlinear functions which constitute

its unknown dynamics.

● The estimation of the unknown dynamics of the USVs and AUVs is performed through

the adaptation of neurofuzzy approximators. The definition of the learning parameters

takes place through gradient algorithms of proven convergence, as demonstrated by

Lyapunov stability analysis

● The Lyapunov stability method is the tool for selecting both the gains of the stabilizing

feedback controller and the learning rate of the estimator of the unknown system’s

dynamics

● Equivalently through Lyapunov stability analysis the feedback gains of the state

estimators of the USVs and AUVs are chosen. Such observers are included in the control

loop so as to enable feedback control through the processing of a small number of sensor

measurements
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Example 1: Nonlinear control and state estimation using global linearization

• The nonlinear model of the underactuated vessel is a differentially flat one. This

model cannot be subjected to static feedback linearization, however it admits dynamic

feedback linearization which means that the system’s state vector is extended by

including as additional state variables the control inputs and their derivatives.

• Next, using the differential flatness properties it is also proven that this model can

be subjected to input-output linearization and can be transformed to an equivalent

canonical (Brunovsky) form. Based on this the design of a state feedback controller

is carried out enabling accurate manoeuvring and trajectory tracking.

• The Derivative-free nonlinear Kalman Filter is used as

disturbance observer for dynamically identifying model

uncertainty and external perturbation terms. .

• This nonlinear filter consists of the Kalman Filter’s recursion on the linearized

equivalent model of the vessel and of an inverse nonlinear transformation based on

the differential flatness features of the system which enables to compute state

estimates for the state variables of the initial nonlinear model.

• The redesign of the filter as a disturbance observer makes possible the estimation

and compensation of additive perturbation terms affecting the vessel’s model.

1. Control of a 3-DOF underactuated USV
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Example 1: Nonlinear control and state estimation using global linearization

2. Model of the underactuated vessel

• The underactuated vessel’s model stems from the generic ship’s model, after setting 

specific values for the elements of the inertia and Coriolis matrix and after reducing the 

number of the available control inputs.

• The state-space equation of the nonlinear underactuated vessel is

x and y are the cartesian coordinates of the vessel

ψ is the orientation angle

u is the surge velocity

v is the sway velocity

r is the yaw rate

The control inputs are the surge force τu and the yaw torque τr

The underactuated vessel’s model is also written in the matrix form
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Example 1: Nonlinear control and state estimation using global linearization

or equivalently, one has the description

2. Model of the underactuated vessel

The system’s state vector is denoted as

while and

while the control input is the vector

Fig. 1. Diagram of the underactuated hovercraft’s kinematic model
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Example 1: Nonlinear control and state estimation using global linearization

The system’s state vector can be extended by including as additional state variables the control 

input τu and its first derivative ሶ𝜏u.

2. Model of the underactuated vessel

The extended state-space description of the system becomes

or equivalently, one has the description

The extended system’s state vector is denoted as

Moreover, one has and

while the control input is the vector is
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Example 1: Nonlinear control and state estimation using global linearization

• A dynamical system can be written in the ODE form 𝑆𝑖(𝑤, 𝑤
•
, 𝑤
••
, . . . , 𝑤(𝑖)), 𝑖 = 1,2, . . . , 𝑞

• The system is said to be differentially flat with respect to the flat output  

𝑦 = (𝑦1, 𝑦2, . . . , 𝑦𝑚)where                                        𝑦𝑖 = 𝜑(𝑤,𝑤
•
, 𝑤
••
, . . . , 𝑤(𝑎)), 𝑖 = 1, . . . , 𝑚

if the following two conditions are satisfied 

(i) There does not exist any differential relation of the form 

𝑅(𝑦, 𝑦
•
, 𝑦
••
, . . . , 𝑦(𝛽)) = 0

which means that the flat output and its derivatives are linearly independent

(ii) All system variables are functions of the flat output 

and its derivatives
𝑤(𝑖) = 𝜓(𝑦, 𝑦

•
, 𝑦
••
, . . . , 𝑦(𝛾𝑖))

𝑤(𝑖)where        stands for the i-th derivative of either a state vector element or of a control input                                      

• Differential flatness theory has been developed as a global linearization control

method by M. Fliess (Ecole Polytechnique, France) and co-researchers .

3. Outline of differential flatness theory
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Example 1: Nonlinear control and state estimation using global linearization

The proposed Lyapunov theory-based control method is based on the

transformation of the nonlinear system’s model into the linear canonical

form, by exploiting the system’s differential flatness properties

• All single input nonlinear systems are differentially flat and

can be transformed into the linear canonical form

One has to define also which are the MIMO nonlinear systems

which are differentially flat.

• Differential flatness holds for MIMO nonlinear systems that admit static feedback

linearization.and which can be transformed into the linear canonical form through a change

of variables (diffeomorphism) and feedback of the state vector.

• Differential flatness holds for MIMO nonlinear models that admit dynamic feedback

linearization, This is the case of specific underactuated robotic models. In the latter

case the state vector of the system is extended by considering as additional flat outputs some

of the control inputs and their derivatives

• Finally, a more rare case is the so-called Liouvillian systems. These are systems for which

differential flatness properties hold for part of their state vector while the non-flat state variables

can be obtained by integration of the elements of the flat subsystem.

3. Outline of differential flatness theory
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Example 1: Nonlinear control and state estimation using global linearization

4. Differential flatness of the model of the underactuated vessel

The flat output is the vector of the vessel’s cartesian coordinates, that is

It holds that

Moreover, it holds that

1

2

Using Eq. and Eq. , and after computing that1 2

one obtains that

3
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Example 1: Nonlinear control and state estimation using global linearization

4. Differential flatness of the model of the underactuated vessel

Through Eq. it is proven that the state variable ψ (heading angle 

of the vessel) is a function of the flat output and of its derivatives.

3

From Eq. one also has that1

Moreover, it holds that

4

5

while using Eq.         and after intermediate computations one finally obtains4

which finally gives

6

7

It also holds that
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Example 1: Nonlinear control and state estimation using global linearization

4. Differential flatness of the model of the underactuated vessel

which after intermediate computations and substitution of the 

derivative variables gives

8

From Eq.           and  Eq.           one gets8 4

9

From the state-space equations it holds that

and using Eq. one also has that r is a differential function of the flat output10

10
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Example 1: Nonlinear control and state estimation using global linearization

4. Differential flatness of the model of the underactuated vessel

This can be also confirmed analytically. Indeed from Eq it holds3

11

which also gives 12

while also using that 13

one obtains that 14

Thus, from Eq.           and Eq.        one has12 10

15

Equivalently, from the extended state-space equations of the system one has that



Nonlinear control and filtering for USVs and AUVs

16

Example 1: Nonlinear control and state estimation using global linearization

4. Differential flatness of the model of the underactuated vessel

16

which after intermediate operations gives 17

Finally, using that the control input this implies also that 

is a differential function of the flat output

The above can be also shown analytically

18

Thus it is confirmed that the model of the underactuated vessel is a differentially flat one
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Example 1: Nonlinear control and state estimation using global linearization

5. Flatness-based control of the underactuated vessel

Next, it will be shown that a flatness-based controller can be developed for

the model of the underactuated vessel. It has been shown that it holds

By differentiating once more with respect to time and after intermediate operations one finally 

obtains

19

Similarly one has

By differentiating once more with respect to time and by using the state variables of the 

extended state-space model                                      one finally obtains
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Example 1: Nonlinear control and state estimation using global linearization

5. Flatness-based control of the underactuated vessel

Eq.        Is differentiated once again with respect to time, so as the control input       to appear19

21

Using a Lie algebra-based formulation Eq.            Is written in the form22

where

Eq.        Is differentiated once again with respect to time, so as the control input ሷ𝜏𝜃 to appear20

22
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Example 1: Nonlinear control and state estimation using global linearization

5. Flatness-based control of the underactuated vessel

Τhis gives

which after using a Lie algebra-based formulation is written as

23
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Example 1: Nonlinear control and state estimation using global linearization

Consequently, the aggregate input-output linearized description of the system becomes

5. Flatness-based control of the underactuated vessel

while by defining the new control inputs

one gets

For the dynamics of the linearized equivalent model of the system the following new state 

variables can be defined

24

25

26

27
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Example 1: Nonlinear control and state estimation using global linearization

5. Flatness-based control of the underactuated vessel

and the state-space description of the system becomes

28or equivalently

29

while the associated measurement equation is

30
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Example 1: Nonlinear control and state estimation using global linearization

5. Flatness-based control of the underactuated vessel

A suitable feedback control law for the linearized system is

One can compute again the control input that is finally applied to the model of the 

underactuated vessel. It holds that

31

32

where the following matrices and vectors are defined:

33

The stabilizing control input that is finally exerted on the vessel is

34
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Example 1: Nonlinear control and state estimation using global linearization

5. Flatness-based control of the underactuated vessel

For the linearized equivalent model of the system it is possible to perform state estimation 

using the Derivative-free nonlinear Kalman Filter. 

Before computing the Kalman Filter stages, the previously defined matrices A,B and C

are substituted by their discrete-time equivalents𝐴𝑑, 𝐵𝑑 and 𝐶𝑑. 

This is done through common discretization methods. The recursion of the filter’s algorithm 

consists of two stages:

Measurement update::

Time update::

Moreover, using the inverse transformations described by Eq.

one obtains estimates for the state variables of the initial nonlinear system.

3 7 9 10

36

37
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Example 1: Nonlinear control and state estimation using global linearization

6. Disturbances compensation with the use of Kalman Filtering

It is assumed that the input-output linearized equivalent model

of the system, is subjected to disturbance terms which express

the effects of both modelling uncertainty and of external perturbations.

Thus one has

38

It is considered that the disturbance signals are equivalently represented by their time 

derivatives (up to order n) and by the associated initial conditions (however, since 

disturbances are estimated with the use of the Kalman Filter, finally the dependence on 

knowledge of initial conditions becomes obsolete). It holds that

39

The state vector of the system is extended to include as additional 

tate variables the disturbance inputs and their derivatives. Thus one 

obtains
40

Thus, the extended state-space description of the system becomes:
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Example 1: Nonlinear control and state estimation using global linearization

6. Disturbances compensation with the use of Kalman Filtering

It is assumed that the input-output linearized equivalent model

of the system, is subjected to disturbance terms which express

the effects of both modelling uncertainty and of external perturbations.

Thus one has

38
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Thus, the extended state-space description of the system becomes:
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Example 1: Nonlinear control and state estimation using global linearization

6. Disturbances compensation with the use of Kalman Filtering

and the measurement equation becomes

41

42

where

Thus, the extended state-space description of the system becomes:
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Example 1: Nonlinear control and state estimation using global linearization

6. Disturbances compensation with the use of Kalman Filtering

where for matrices  𝐴𝑜 and  𝐶𝑜 it holds 𝐴𝑜 = 𝐴 and  𝐶𝑜 = 𝐶

For the extended state-space description of the system one can design 

a state estimator of the form

while for matrix  𝐵𝑜 it holds

Again the Kalman Filter recursion provides joint estimation of the non-measurable state 

vector elements, of the disturbances’ inputs and of their derivatives. 

Prior to computing the Kalman Filter stages, the previously defined matrices A,B and C are 

substituted by their discrete-time equivalents 𝐴𝑒𝑑 , 𝐵𝑒𝑑 and 𝐶𝑒𝑑.

43

44
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Example 1: Nonlinear control and state estimation using global linearization

6. Disturbances compensation with the use of Kalman Filtering

The recursion of the filter’s algorithm consists of two stages. Thus, one has

Measurement update::

Time update::

For compensating the disturbances effects, the modified control input 

that is applied to the system is

45

46

47
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Example 1: Nonlinear control and state estimation using global linearization

7. Simulation tests

In simulation tests It has been observed that in all cases the nonlinear feedback 

controller succeeded fast and accurate tracking of the reference setpoints. 

The Derivative-free nonlinear Kalman Filter enabled estimation of the non-measurable

variables of the system’s state-vector which were needed for the implementation of

the feedback control scheme

Reference path 1: Trajectory tracking for states 

x,y of the underactuated hovercraft
Reference path 1: Estimation of disturbance inputs 

using the Derivative-free non-linear Kalman Filter
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Example 1: Nonlinear control and state estimation using global linearization

7. Simulation tests

Reference path 2: Trajectory tracking for 

states x,y of the underactuated hovercraft

Reference path 3: Trajectory tracking for 

states x,y of the underactuated hovercraft

Reference path 2: Estimation of disturbance inputs 

using the Derivative-free non-linear Kalman Filter

Reference path 3: Estimation of disturbance inputs 

using the Derivative-free non-linear Kalman Filter
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Example 1: Nonlinear control and state estimation using global linearization

7. Simulation tests

Reference path 4: Trajectory tracking for 

states x,y of the underactuated hovercraft

Reference path 5: Trajectory tracking for 

states x,y of the underactuated hovercraft

Reference path 4: Estimation of disturbance inputs 

using the Derivative-free non-linear Kalman Filter

Reference path 5: Estimation of disturbance inputs 

using the Derivative-free non-linear Kalman Filter
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Example 1: Nonlinear control and state estimation using global linearization

8. Conclusions

• A nonlinear control method has been developed for the

underactuated model of an unmanned surface vessel, based on

differential flatness theory and on a new nonlinear filtering method

under the name Derivative-free nonlinear Kalman Filter. First,

it was shown that the vessel’s model is differentially flat.

• Dynamic extension has been used. The system has been augmented by

considering as additional state variables the control inputs and their derivatives.

• By applying dynamic extension and differential flatness properties, the

vessel’s model has been transformed into a linear form. Moreover, using the

linearized model of the vessel, a state feedback controller has been designed.

• Next, to estimate the non-measurable state variables of the vessel and to

identify additive disturbance terms that affected he system, the Derivative-free

nonlinear Kalman Filter was redesigned as a disturbance observer.

• This algorithm consists of the standard Kalman Filter applied on the linearized

equivalent of the system and of an inverse transformation that is based on

differential flatness theory which computes estimates on the initial nonlinear system.
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Example 2: Nonlinear control and state estimation using global linearization

1. Control of a 6-DOF AUV

• A nonlinear control and filtering is proposed for Autonomous Underwater Vessels

(AUVs) based on differential flatness theory and on the use of the Derivative-free

nonlinear Kalman Filter.

• First, it is shown that the 6-DOF dynamic model of the AUV is a differentially flat

one. This enables its transformation into the linear canonical (Brunovsky) form and

facilitates the design of a state feedback controller.

• A problem that has to be dealt with is the uncertainty

about the parameters of the AUV’s dynamic model,

as well external perturbations which affect its motion.

• To cope with this, it is proposed to use a disturbance observer which is based on

the Derivative-free nonlinear Kalman Filter. This filtering method consists of the

standard Kalman Filter recursion applied on the linearized model of the vessel and of

an inverse transformation based on differential flatness theory, which enables to

obtain estimates of the state variables of the initial nonlinear model of the vessel.

• The Kalman Filter-based disturbance observer enables the simultaneous

estimation of the non-measurable state variables of the AUVs and of the perturbations.

By estimating disturbances, their compensation is also achieved through suitable

modification of the feedback control input.
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Example 2: Nonlinear control and state estimation using global linearization

2. Kinematic and dynamic 6-DOF model of the AUV

Kinematic model of the AUV

The velocities transformation from the body-fixed reference frame to the inertial

reference frame is given by

with

The inertial reference frame is OXYZ

The body-fixed reference frame is O’xyz

1
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Example 2: Nonlinear control and state estimation using global linearization

2. Kinematic and dynamic 6-DOF model of the AUV

Kinematic model of the AUV

Inertial reference frame Body-fixed reference frame 

State vector

Velocities vector

forces and torques vector

Velocities vector

Cartesian coordinates Euler angles

Linear velocities Angular velocities Linear velocities Angular velocities

forces torques

𝑥
•

1 = [𝑥
•
, 𝑦
•
, 𝑧
•
]𝑇 𝑥

•

2 = [𝜙
•

, 𝜃
•

, 𝜓
•

]𝑇



Nonlinear control and filtering for USVs and AUVs

36

Example 2: Nonlinear control and state estimation using global linearization

Moreover, the following transformation holds between angular velocities expressed in the

inertial and in the body-fixed frame

2. Kinematic and dynamic 6-DOF model of the AUV

Kinematic model of the AUV

Therefore, between the velocities in the body-fixed frame and in the inertial reference

frame the following aggregate transformation holds

2

3

where is the velocities vector n the body-fixed frame

and is the velocities vector n the body-fixed frame
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Example 2: Nonlinear control and state estimation using global linearization

2. Kinematic and dynamic 6-DOF model of the AUV

Dynamic model of the AUV

The dynamic model of the AUV representing an equilibrium in forces and torques is

4
where
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Example 2: Nonlinear control and state estimation using global linearization

2. Kinematic and dynamic 6-DOF model of the AUV

Dynamic model of the AUV

are the

The elements of the inertia matrix of the AUV are:

The Coriolis matrix of the AUV is given by
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Example 2: Nonlinear control and state estimation using global linearization

2. Kinematic and dynamic 6-DOF model of the AUV

Dynamic model of the AUV

The motion of the AUV is also affected by the inertia of the fluid that surrounds it:

This means that a force / torque is developed against the motion of the vessel and it

varies proportionally to the vessel’s acceleration.

5

The above inertia matrix MA is given by

and the above Coriolis matrix CA is given by
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Example 2: Nonlinear control and state estimation using global linearization

2. Kinematic and dynamic 6-DOF model of the AUV

Dynamic model of the AUV

The model is completed by the vector of a force / torque which resists to the motion of the

underwater vessel and which is proportional to its velocity

while the diagonal elements of matrix D(v) are defined as follows

where

ρ is the specific mass of the water and V is the volume of the submerged vessel
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Example 2: Nonlinear control and state estimation using global linearization

2. Kinematic and dynamic 6-DOF model of the AUV

Dynamic model of the AUV

There are also torques and forces which are exerted on the vessel and which are due to

the vessel’s weight and lift force. Using that in the inertial reference frame these forces are

6

By applying one more transformation on the aforementioned vector, with the use of J1 the

forces and torques due to the effects of weight and lift are finally expressed in the inertial

reference frame.

the  forces in the body-fixed frame are

and

and

and

and taking that the associated distance vectors from the origin are  

and

the generated torques are computed in the body-fixed frame  are
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Example 2: Nonlinear control and state estimation using global linearization

2. Kinematic and dynamic 6-DOF model of the AUV

Dynamic model of the AUV

By substituting Eq and Eq . Into Eq. one obtains the aggregate dynamics75 6

8

where Is the aggregate inertia matrix

Is the aggregate Coriolis matrix

Thus, the dynamic and the kinematic models of the AUV are finally written as

9

10

forces/ torques resisting the vessel’s motion

forces/ torques due to weight and lift effects

forces/ torques defining the vessel’s propulsion

Thus, due to the effects of the resistive forces and torques

which are generated by the surrounding fluid one has the dynamics

7
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Example 2: Nonlinear control and state estimation using global linearization

3. Differential flatness of the 6-DOF model of the AUV

Using that 10Eq. can be written as

11

where η has been defined in the inertial reference frame , while it holds

Moreover, by defining the inverse matrix one obtains

12

Moreover, using the state vector elements notation

the dynamic model of the AUV becomes
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Example 2: Nonlinear control and state estimation using global linearization

3. Differential flatness of the 6-DOF model of the AUV

and using that

are the row elements of vector 

are the rows of matrix

one obtains

Next, by denoting the flat output of the system as 

it holds that

and

Consequently the state vector elements given above can be written as differential functions

of the flat output Y .

13
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Example 2: Nonlinear control and state estimation using global linearization

3. Differential flatness of the 6-DOF model of the AUV

Moreover, from Eq,            one has13

Therefore, one has

which is equivalently written as

Consequently, the control inputs of the 6-DOF AUV model can be also written as functions

of the flat output and its derivatives. Therefore, the AUV model is a differentially flat one.

14

15
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Example 2: Nonlinear control and state estimation using global linearization

4. Flatness-based control of the 6-DOF AUV

By exploiting the previously proven differential flatness properties of the AUV it will be shown

that a stabilizing feedback controller can be designed for the AUV model.

13Using Eq.           one has

or equivalently

This means that if the transformed control inputs v are computed so as to assure asymptotic

tracking of the AUV’s reference setpoints, one can also find the real control inputs which should

be exerted on the AUV for succeeding this objective.

According to the above, the dynamic model of the AUV can be written into the canonical

(Brunovsky) form

16
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4. Flatness-based control of the 6-DOF AUV

which also takes the state-space form 17

or equivalently one has the following state-space description for the system

while the measurement

equation is
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4. Flatness-based control of the 6-DOF AUV

Thus, using differential flatness theory the AUV’s model has been written in a MIMO

linear canonical (Brunovsky) form, which is both controllable and observable.

After being written in the linear canonical form the AUV’s state-space equation comprises

subsystems of the form

For each one of these subsystems a controller can be defined as follows

Once the transformed control inputs vector has been computed,

one can use Eq. (25) to find also the torques and forces vector

that should be exerted on the UAV so achieving setpoints tracking.

18

19

The tracking error dynamics becomes 𝑒
••

𝑖 + 𝑘𝑑𝑖𝑒
•

𝑖 + 𝑘𝑝𝑖𝑒𝑖 = 0 𝑖 = 1,2, . . . , 6

By selecting the feedback gains so as the characteristic polynomials

𝑝(𝑠) = 𝑠2 + 𝑘𝑑𝑖𝑠 + 𝑘𝑝𝑖 𝑖 = 1,2, . . . , 6

to have poles in the left  complex semiplane it is assured that

lim
𝑡→∞

𝑒𝑖 (𝑡) = 0 𝑖 = 1,2, . . . , 6 20
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5. Disturbances compensation with Derivative-free nonlinear Kalman Filtering

Next, it is assumed that the AUV’s model is affected by additive input disturbances,

thus one has

The system’s dynamics can be also written as

Without loss of generality, it is assumed that the dynamics of the disturbances terms are

described by their second order derivative, i.e.

Next, the extended state vector of the system is defined so as to include disturbance terms as

well. Thus one has the additional state variables

21
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5. Disturbances compensation with Derivative-free nonlinear Kalman Filtering

Thus, the disturbed system can be described by a state-space equation of the form

22
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5. Disturbances compensation with Derivative-free nonlinear Kalman Filtering

The dynamics of the disturbance terms are taken to be unknown in the design

of the associated disturbances’ estimator.

Defining the discrete-time equivalents of matrices respectively,

one has the following dynamics:

where Is the state estimator’s gain. The associated Kalman Filter-based disturbance

estimator is given by:

measurement update: time update:

To compensate for the effects of the disturbance forces it suffices to use in the control loop the

modified control input vector

23

24
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6. Simulation tests

Reference path 1

(a) trajectory of the AUV in the cartesian space

(b) projection of the AUV’s trajectory on the xy plane

The proposed flatness-based

controller enabled fast and

accurate tracking of the reference

path

The Derivative-free nonlinear

Kalman Filter, designed as a

Disturbance observer enabled

estimation and compensation

of disturbances
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6. Simulation tests

Results about tracking a 3D trajectory, having as projection in the xy-plane a circular path

(a) Position and velocity along the x-axis (b) Position and velocity along the y-axis

(a) State variables associated with

with linear motion of the AUV
(b) State variables associated with with

the rotational motion of the AUV
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Results about tracking a 3D trajectory, having as projection in the xy-plane a circular path

(a) Rotation angle θ and associated angular

speed
(b) Rotation angle ψ and associated angular

speed

6. Simulation tests

(a) Position and velocity along the z-axis (b) Rotation angle φ and associated

angular speed
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6. Simulation tests

Reference path 2

(a) trajectory of the AUV in the cartesian space

(b) projection of the AUV’s trajectory on the xy plane

The proposed flatness-based

controller enabled fast and

accurate tracking of the reference

path

The Derivative-free nonlinear

Kalman Filter, designed as a

Disturbance observer enabled

estimation and compensation

of disturbances
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6. Simulation tests

(a) Position and velocity along the x-axis (b) Position and velocity along the y-axis

(a) State variables associated with

with linear motion of the AUV
(b) State variables associated with with

the rotational motion of the AUV

Results about tracking a 3D trajectory, having as projection in the xy-plane an 8-shaped path
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Results about tracking a 3D trajectory, having as projection in the xy-plane an 8-shaped path

(a) Rotation angle θ and associated angular

speed

(b) Rotation angle ψ and associated angular

speed

6. Simulation tests

(a) Position and velocity along the z-axis (b) Rotation angle φ and associated

angular speed
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8. Conclusions

• It was proven that the dynamic model of the 6-DOF AUV is a differentially flat one.

Next, by exploiting the differential flatness properties of the model, its transformation

into the linear canonical form has been succeeded.

• For the linearized equivalent description the AUV’s dynamics the design of a state

feedback controller became possible. Moreover, to compensate for modelling

uncertainties and external perturbations which affected the AUV’s control loop it was

proposed to use the Derivative-free nonlinear Kalman Filter as a disturbance

observer.

• This filter consists of the Kalman Filter recursion on the linearized equivalent model

of the AUV and of an inverse transformation, based again on differential flatness

theory, which enables to obtain estimates of the state variables of the initial nonlinear

AUV model.

• By estimating in real-time the AUV’s perturbation inputs, the Derivative-free

nonlinear Kalman Filter enabled the compensation of these disturbance terms and the

improvement of the robustness of the AUV’s control loop.

• Finally, the performance of the proposed nonlinear

control scheme for AUVs has been confirmed through

simulation experiments.
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• A new nonlinear H-infinity control method is proposed for

stabilization and synchronization of underactuated surface vessels.

• At first stage local linearization of the model of the underactuated

vessels is performed round its present operating point.

• The approximation error that is introduced to the linearized model is due to truncation of

higher-order terms in the Taylor series expansion and is represented as a disturbance.

• The control problem is now formulated as a mini-max differential game in which the control

input tries to minimize the state vector’s tracking error while the disturbances affecting the

model try to maximize it.

• Using the linearized description of the vessel’s dynamics an H-infinity feedback controller is

designed through the solution of a Riccati equation at each step of the control algorithm.

• The inherent robustness properties of H-infinity control assure that the disturbance

effects will be eliminated and the state variables of the underactuated surface vessel will

converge to the desirable setpoints.

• The proposed method, stands for a reliable solution to the problem of nonlinear control and

stabilization for unmanned surface vessels exhibiting underactuation..

1. Control of a 3-DOF underactuatd USV
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2. Model of the underactuated vessel

• The underactuated vessel’s model stems from the generic ship’s model, after setting 

specific values for the elements of the inertia and Coriolis matrix and after reducing the 

number of the available control inputs.

ψ is the orientation angle

u is the surge velocity

v is the sway velocity

r is the yaw rate

The control inputs are the surge force τu and the yaw torque τr

The underactuated vessel’s model is also written in the matrix form

x and y are the cartesian

coordinates of the vessel
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or equivalently, one has the description

2. Model of the underactuated vessel

The system’s state vector is denoted as

while and

while the control input is the vector

Fig. 1. Diagram of the underactuated hovercraft’s kinematic model
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The system’s state vector can be extended by including as additional state variables the control 

input τu and its first derivative ሶ𝜏u.

2. Model of the underactuated vessel

The extended state-space description of the system becomes

or equivalently, one has the description

The extended system’s state vector is denoted as

Moreover, one has and

while the control input is the vector is
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3. Linearization of the model of the underactuated vessel

Local linearization is performed for the state-space model of the underactuated vessel, round 

the operating point (x∗, u∗) where x∗ is the present value of the system’s state vector and u∗ is 

the last sampled value of the control inputs vector. 

The joint kinematics and dynamics model is written in the form:

where the state vector is: and

and using the state variables notation one gets the description



Nonlinear control and filtering for USVs and AUVs

Example 3: Nonlinear control and state estimation using approximate linearization

64

---------------------------------------------------------- Dr. G. Rigatos 

The linearization of the vessel’s model around the temporary equilibrium gives

3. Linearization of the model of the underactuated vessel

where

For the Jacobian matrix

=

=

For the first row of the aforementioned Jacobian matrix one has:
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3. Linearization of the model of the underactuated vessel

For the second row of the aforementioned Jacobian matrix one has:

For the third row of the aforementioned Jacobian matrix one has:

For the fourth row of the aforementioned Jacobian matrix one has:

For the fifth row of the aforementioned Jacobian matrix one has:

For the sixth row of the aforementioned Jacobian matrix one has:
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Parameter d1 stands for the linearization error in the underactuated vessels’ model

The desirable trajectory of the underactuated vessel is denoted by

Tracking of this trajectory is achieved after applying the control input

At every time instant the control input is assumed to differ from the control input

appearing in by an amount equal to , that isA

B

The dynamics of the system of Eq. can be also written in the formA

and by denoting as an aggregate disturbance term one obtains

C

D

𝑥𝑑 = [𝑥𝑑1 , 𝑥𝑑2 , 𝑥𝑑3 , . . . , 𝑥𝑑7 , 𝑥𝑑8 , 𝑥𝑑9]
𝑇

𝑥
•
= 𝐴𝑥 + 𝐵𝑢 + 𝑑1

A

3. Linearization of the model of the underactuated vessel
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4. The nonlinear H-infinity control

where matrices 𝐴 and 𝐵 are obtained from the computation of the Jacobians

and vector 𝑑 denotes disturbance terms due to linearization errors.

The problem of disturbance rejection for the linearized

model that is described by

where cannot be handled efficiently if the classical LQR

control scheme is applied. This because of the existence of the perturbation term 𝑑.

In the 𝐻∞ control approach, a feedback control scheme is designed for trajectory

tracking by the system’s state vector and simultaneous disturbance rejection, considering

that the disturbance affects the system in the worst possible manner
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The disturbances’ effects are incorporated in the following quadratic

cost function

The coefficient 𝑟 determines the penalization of the control input and the weight

coefficient 𝜌 determines the reward of the disturbances’ effects. It is assumed that

4. The nonlinear H-infinity control

Then, the optimal feedback control law is given by

with

where 𝑃 is a positive semi-definite symmetric matrix

which is obtained from the solution of the Riccati equation

where Q is also a positive definite symmetric matrix.

Parameter ρ in Eq. (15), is an indication of the closed-loop system robustness. If

the values of ρ> 0 are excessively decreased with respect to r, then the solution of the

Riccati equation is no longer a positive definite matrix. Consequently, there is a lower

bound ρmin of for which the H-infinity control problem has a solution.



Nonlinear control and filtering for USVs and AUVs

Example 3: Nonlinear control and state estimation using approximate linearization

69

5. Lyapunov stability analysis

The tracking error dynamics for the unmanned surface vessel

is written in the form

where in the underactuated vessel’s application example 𝐿 = 𝐼 ∈ 𝑅8 with I

being the identity matrix. The following Lyapunov function is considered

where Is the state vector’s tracking error
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The previous equation is rewritten as

5. Lyapunov stability analysis

Assumption: For given positive definite matrix Q and coefficients r and ρ there exists a

positive definite matrix P, which is the solution of the following matrix equation

Moreover, the following feedback control law is applied to the system

By substituting Eq. and Eq. one obtains

G

H
H G
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5. Lyapunov stability analysis

Continuing with computations one obtains

which next gives

or equivalently

Lemma: The following inequality holds

I
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5. Lyapunov stability analysis

Proof : The binomial is considered. Expanding the left part of the above inequality

one gets

The following substitutions are carried out:

and the previous relation becomes

Eq. is substituted in Eq. and the inequality is enforced, thus giving

J

J I

Eq. shows that the H-infinity tracking performance criterion is satisfied.

The integration of from 0 to T gives

K

K

𝑉
•
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5. Lyapunov stability analysis

Moreover, if there exists a positive constant                    such that

then one gets

Thus, the integral is bounded.

According to the above and with the use of Barbalat’s Lemma

one obtains:

Moreover, V(T) is bounded and from the definition of the Lyapunov function V it becomes

clear that e(t) will be also bounded since

Τhis completes the stability proof.
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A discrete-time description of the linearized state-space model of the vessel is assumed.

The H-infinity Kalman Filter, for the model of the underactuated vessel, can be 

formulated in terms of a measurement update and a time update part

where is sufficiently small to assure positive definiteness for the covariance matrix

One can measure only a subset of the state variables of the vessel’s model (e.g. cartesian 

coordinates) and can estimate through filtering the rest of the state vector elements.

Besides the filter can be used for sensor fusion purposes.

Measurement update:

Time update:

7. Robust state estimation with the use of the H-infinity Kalman Filter
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7. Simulation tests

• The nonlinear H-nfinity control scheme is tested through simulation examples

Fig. 2: Diagram of the control scheme for the underactuated vessel

It can be noted that the H-infinity algorithm exhibited remarkable robustness to

uncertainty in the model of the distributed power generators which was to approximate

linearization.
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7. Simulation tests

Tracking of the reference trajectory (red line) in the 

x − y plane by the unmanned surface vessel (blue line),

Convergence of the state variables of the vessel 

x4 = u, x5 = v and x6 = r to the reference values
Control inputs u1 and u2 

exerted on vessel

Path 1

Convergence of the state variables x1 = x, 

x2 = y and x3 = ψ to the reference values 
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7. Simulation tests

Tracking of the reference trajectory (red line) in the 

x − y plane by the unmanned surface vessel (blue line),
Convergence of the state variables x1 = x, 

x2 = y and x3 = ψ to the reference values 

Convergence of the state variables of the vessel 

x4 = u, x5 = v and x6 = r to the reference values
Control inputs u1 and u2 

exerted on vessel

Path 2
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7. Simulation tests

Tracking of the reference trajectory (red line) in the 

x − y plane by the unmanned surface vessel (blue line),
Convergence of the state variables x1 = x, 

x2 = y and x3 = ψ to the reference values 

Convergence of the state variables of the vessel 

x4 = u, x5 = v and x6 = r to the reference values
Control inputs u1 and u2 

exerted on vessel

Path 3
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7. Simulation tests

Tracking of the reference trajectory (red line) in the 

x − y plane by the unmanned surface vessel (blue line),

Convergence of the state variables x1 = x, 

x2 = y and x3 = ψ to the reference values 

Convergence of the state variables of the vessel 

x4 = u, x5 = v and x6 = r to the reference values

Control inputs u1 and u2 

exerted on vessel

Path 4
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8. Simulation tests

Tracking of the reference trajectory (red line) in the 

x − y plane by the unmanned surface vessel (blue line),

Convergence of the state variables of the vessel 

x4 = u, x5 = v and x6 = r to the reference values
Control inputs u1 and u2 

exerted on vessel

Path 5

Convergence of the state variables x1 = x, 

x2 = y and x3 = ψ to the reference values 
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8. Conclusions

• The problem of trajectory tracking control of underactuated USVs

has been solved with a nonlinear H-infinity (optimal) control method.

• A new nonlinear feedback control method for underactuated

vessels has been developed based on approximate linearization

and the use of 𝐻-infinity control and stability theory.

• The first stage of the proposed control method is the linearization of the unmanned

surface vessel using first order Taylor series expansion and the computation of the

associated Jacobian matrices.

• The errors due to the approximative linearization have been considered as disturbances

that affect, together with external perturbations, the distributed power generators’ model.

• At a second stage the implementation of 𝐻-infinity feedback control has been proposed.

Using the linearized model of the vehicle an H-infinity feedback control law is computed at

each iteration of the control algorithm, after previously solving an algebraic Riccati equation.

• The known robustness features of H-infinity control enable to compensate for the errors

of the approximative linearization, as well as to eliminate the effects of external perturbations.

• The efficiency of the proposed control scheme is shown analytically and is confirmed

through simulation experiments. 81
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1 . Control of a submarine’s diving

● A nonlinear H-infinity (optimal) control method is developed

for the problem of simultaneous control of the depth and

heading angle of an autonomous submarine.

● This is a multi-variable nonlinear control problem and its solution

allows for precise underwater navigation of the submarine.

● The submarine’s dynamic model undergoes approximate linearization around a

temporary operating point that is recomputed at each step of the control algorithm.

● The linearization procedure is based on Taylor series expansion and on the

computation of the submarine’s model Jacobian matrices.

● For the approximately linearized model, the optimal control problem is solved

through the design of an H-infinity feedback controller.

● The computation of the controller’s gains requires the solution of an algebraic

Riccati equation, which is repetitively performed at each step of the control method.

● The stability properties of the control scheme is proven through Lyapunov

analysis. It is shown that that the control scheme is globally asymptotically stable.
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2 . Problem statement

The multivariable model of the submarine’s dynamics has as outputs

the depth of the submarine

The pitch angle of the submarine

and as inputs

the deflection angle of the hydroplanes at the front part of vessel

the deflection angle of the hydroplanes at the rear part of the vessel

The objective is to achieve control of the submarine’s diving through the for the solution

of the associated nonlinear optimal control problem

ℎ

𝜃

𝛿𝐵
𝛿𝑆
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3 . Dynamic model of the submarine

The dynamic model of the submarine is written as:

1

2

of the body-fixed frame

currents
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3 . Dynamic model of the submarine

Indicative values of the parameters of the submarine’s dynamic  model are:

These can be obtained directly from the design characteristics of the vessel or indirectly

through an identification procedure in the sense of nonlinear least squares or nonlinear

Kalman Filtering

Even in the case that the values of these parameters are known within uncertainty

ranges the proposed control method is sufficiently robust to compensate for such a type

of model imprecision .

The proposed nonlinear optimal control assures stability of the control loop under

parametric changes and and unknown external perturbations..

[1]
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3. Dynamic model of the submarine

The dynamic model of the submarine can be written in matrix form:

where the control input vector is:

In this description:

3

and is generated by electric actuators that rotate the hydroplanes. Therefore the control

input describes actually voltage or current signals that define the turn angle of the rotor

of these electric actuators.
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It holds that the depth of the vessel measured in the inertial reference frame and the

velocity w of the submarine along the z-axis of the body-fixed frame are related as follows:

3. Dynamic model of the submarine

From the above relation one can compute about the diving speed of the vessel:

Moreover, from Eq one has:3

4

5

6

Substituting Eq. and the first row of Eq. : into Eq. one gets5 6 4

7
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3. Dynamic model of the submarine

Next, by denoting:

And by substituting this relation in Eq. , together with one obtains:7 Q = 𝜃
•

Then, by defining the state vector

8

From Eq. one finally arrives at the MIMO state-space description of the submarine8

9
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Using the previous description of the submarine’s dynamics given in Eq. 8 one has that

The effects of the wave and currents forces and of hydrodynamic forces are considered 

as disturbances and are not given explicitly in the model of the submarine’s dynamics. 

By grouping coefficients the previous equation given in Eq.               can be written as

10

10

11

and by performing additional operations between coefficients one has

4. Approximate linearization of the submarine’s dynamics
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4. Approximate linearization of the submarine’s dynamics

According to the above, the AUV’s model is written in the generic form:

where one has that

while it also holds that

12

13

14

or equivalently
𝑥
•

1

𝑥
•

2

𝑥
•

3

𝑥
•

4

=

𝑥2
𝐹1(𝑥)
𝑥4

𝐹2(𝑥)

+

0 0
𝐺11(𝑥) 𝐺12(𝑥)
0 0

𝐺21(𝑥) 𝐺22(𝑥)

𝑢1
𝑢2
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4. Approximate linearization of the submarine’s dynamics

Next, the Jacobian matrices of the submarine’s dynamic model are computed. For the 

Jacobian matrix               one has:

For the Jacobian matrix 1                 one has:

For the Jacobian matrix 1                 one has:

15

16

17
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5. Design of an H-infinity controller for the submarine’s model

After linearization round its current operating point the system’s model

is written as

Parameter d1 stands for the linearization error in the system’s model

21

At every time instant the control input is assumed to differ from the control input

appearing in by an amount equal to , that is21

22

As explained, the system’s dynamic model undergoes linearization round its present operating

point (x*,u*), where x* is the present value of the submarine system’s state vector and u* is the

last sampled value of the control inputs vector..

Thus one arrives at the approximately linearized description of the system:

where d1 is the linearization error due to truncation of higher-order terms in the Taylor

series expansion and

In a similar manner, one has that

18

19

20



Nonlinear control and filtering for USVs and AUVs

93

Example 4: Nonlinear control and state estimation using approximate linearization

5. Design of an H-infinity controller for the submarine’s model

By subtracting Eq. from Eq. one has24 21

25

26

The dynamics of the system of Eq. can be also written in the form

and by denoting as an aggregate disturbance term one obtains

23

24

21

By denoting the tracking error as and the aggregate disturbance term as

the tracking error dynamics becomes
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5. Design of an H-infinity controller for the submarine’s model

The initial model of the submarine is assumed to be in the form

The linearized equivalent of the system is described by

where matrices 𝐴 and 𝐵 are obtained from the computation of the Jacobians

and vector 𝑑 denotes disturbance terms due to linearization errors.

where the linearization point is defined by the present value of the system’s

state vector and the last sampled value of the control inputs vector
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The tracking error dynamics for the submarine’s model is written in the form

where in the case of the considered submarine model with I being the

identity matrix. The following Lyapunov function is considered

T

27

28

where Is the state vector’s tracking error

6. Lyapunov stability analysis

𝐿 = 𝐼 ∈ 𝑅4
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6. Lyapunov stability analysis

The previous equation is rewritten as

By substituting Eq. and Eq. one obtains

29

30

29 30

Assumption: For given positive definite matrix Q and coefficients r and ρ there exists a

positive definite matrix P, which is the solution of the following matrix equation

Moreover, the following feedback control law is applied to the PEM fuel cells model
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6. Lyapunov stability analysis

Continuing with computations one obtains

which next gives

or equivalently

Lemma: The following inequality holds

31



Nonlinear control and filtering for USVs and AUVs

Example 4: Nonlinear control and state estimation using approximate linearization

98

6. Lyapunov stability analysis

9898

Proof : The binomial is considered. Expanding the left part of the above inequality

one gets

The following substitutions are carried out:

and the previous relation becomes

Eq. is substituted in Eq. and the inequality is enforced, thus giving

32

32 31

Eq. shows that the H-infinity tracking performance criterion is satisfied.

The integration of from 0 to T gives

33

33

𝑉
•
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6. Lyapunov stability analysis

Moreover, if there exists a positive constant                    such that

then one gets

Thus, the integral is bounded.

Moreover, V(T) is bounded and from the definition of the Lyapunov function V it becomes

clear that e(t) will be also bounded since

34

According to the above and with the use of Barbalat’s Lemma one obtains:
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7. Robust state estimation with the use of the H-infinity Kalman Filter

● The control loop has to be implemented with the use of information provided by a small

number of measurements of the state variables of the submarine’s model

● To reconstruct the missing information about the state vector of the submarine’s model it is

proposed to use a filter and based on it to apply state estimation-based control .

● The recursion of the H-infinity Kalman Filter, for the submarine’s model, can be

formulated in terms of a measurement update and a time update part

where it is assumed that parameter θ is sufficiently small to assure that the covariance matrix

Measurement

update

Time

update

Is positive definite

-1
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• The performance of the proposed nonlinear H-nfinity control scheme for the submarine’s

model is tested through simulation:

With the use of the proposed H-infinity control method, fast and accurate tracking of the 

reference setpoints of the submarine’s model state variables was achieved

Fig. 1 Diagram of the nonlinear optimal control for the diving submarine

7. Simulation tests
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7. Simulation tests

• Out of the 4 state variables of the autonomous submarine only 2 where considered to 

be measurable. These were the submarine’s depth h and the its heading angle θ

Tracking of setpoint 1: (a) Convergence of the 
state variables (blue lines) to setpoints (red 
lines) and their state estimates (green lines) 

Tracking of setpoint 1: (b) variation

of the submarine’s control inputs
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Tracking of setpoint 2: (a) Convergence of the 
state variables (blue lines) to setpoints (red 
lines) and their state estimates (green lines) 

Tracking of setpoint 2: (b) variation

of the submarine’s control inputs

7. Simulation tests

● The use of the H-infinity Kalman Filter as a robust state estimator allows for implementing

feedback control based on a small number of sensors and measuring equipment of the

submarine
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Tracking of setpoint 3: (a) Convergence of the 
state variables (blue lines) to setpoints (red 
lines) and their state estimates (green lines) 

Tracking of setpoint 3: (b) variation

of the submarine’s control inputs

7. Simulation tests

• For the computation of the feedback control gain the algebraic Riccati equation appearing in     

Eq.            had to be repetitively solved at each step of thecontrol method.29
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Tracking of setpoint 4: (a) Convergence of the 
state variables (blue lines) to setpoints (red 
lines) and their state estimates (green lines) 

Tracking of setpoint 4: (b) variation

of the submarine’s control inputs

7. Simulation tests

• Unlike global linearization-based control methods the proposed nonlinear optimal control is

applied directly on the nonlinear dynamical model of the submarine and does not require the

computation of diffeomorphisms (change of state variables)
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Tracking of setpoint 5: (a) Convergence of the 
state variables (blue lines) to setpoints (red 
lines) and their state estimates (green lines) 

Tracking of setpoint 5: (b) variation

of the submarine’s control inputs

7. Simulation tests

● The computation of the feedback control signal follows an optimal control concept and retains

the advantages of linear optimal control in terms of accuracy of tracking and moderate control

inputs variation
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Tracking of setpoint 6: (a) Convergence of the 
state variables (blue lines) to setpoints (red 
lines) and their state estimates (green lines) 

Tracking of setpoint 6: (b) variation

of the submarine’s control inputs

7. Simulation tests

● Despite modeling errors induced by the approximate linearization of the Taylor series

expansion the proposed control method exhibits significant robustness
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8 . Conclusions

● A nonlinear optimal (H-infinity) control method has been

developed for the control of the submarine’s diving model.

● The dynamic model of the submarine has undergone

first approximate linearization around a temporary operating

point which was redefined at each iteration of the control algorithm

●The linearization point (equilibrium) consists at every time instant of the present

value of the state vector of the submarine and of the last value of the control inputs

vector exerted on it.

● The linearization was based on Taylor series expansion and on the computation of

the associated Jacobian matrices. The approximation error was considered to be a

disturbance that had to be compensated by the robustness of the control method.

● For the approximately linearized model of the submarine an H-infinity (optimal)

feedback controller has been designed.

● The stability features of the submarine’s control loop were proven through

Lyapunov analysis.. , it was proven that the control loop satisfies also conditions for

global asymptotic stability.
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 Adaptive fuzzy control based on differential flatness

theory for multivariable control (dive-plane control) of AUVs.

 The dynamic model of the submarine, with state variables the vessel’s depth and its

pitch angle, is a differentially flat one. This means that all its state variables and its

control inputs can be written as differential functions of the flat output and its derivatives.

 By exploiting differential flatness properties the system’s dynamic model is written in the

multivariable linear canonical (Brunovsky) form, for which the design of a state

feedback controller becomes possible.

 After this transformation, the new control inputs of the system contain unknown

nonlinear parts, which are identified with the use of neurofuzzy approximators.

The learning procedure for these estimators is determined by the requirement the first

derivative of the closed-loop’s Lyapunov function to be a negative one.

 Moreover, the Lyapunov stability analysis shows that H-infinity tracking

performance is succeeded for the feedback control loop and this assures improved

robustness to the aforementioned model uncertainty as well as to external perturbations.

 The efficiency of the proposed adaptive fuzzy control scheme isconfirmed through

simulation experiments.

1. Control of a submarine’s diving
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2. Problem statement 

The multivariable model of the submarine’s dynamics has as outputs

the depth of the submarine

The pitch angle of the submarine

and as inputs

the deflection angle of the hydroplanes at the front part of vessel

the deflection angle of the hydroplanes located at the rear part of the vessel

The objective is to succeed multivariable nonlinear feedback control for the

submarine’s model, without prior knowledge of the vessel’s kinematic or dynamic model

ℎ

𝜃

𝛿𝐵
𝛿𝑆
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3. Dynamic model of the submarine

The dynamic model of the submarine is written as:

1

2

of the body-fixed frame

currents



Nonlinear control and filtering for USVs and AUVs

Example 5: Nonlinear control and state estimation using Lyapunov methods

112

3. Dynamic model of the submarine

Indicative values of the parameters of the submarine’s dynamic  model are:

These can be obtained directly from the design characteristics of the vessel or indirectly

through an identification procedure in the sense of nonlinear least squares or nonlinear

Kalman Filtering

However, since adaptive control is a model-free control method, there is no need about

prior knowledge of these parameters’ values..

Adaptive control assures stability of the control loop under unknown dynamic model

parameters and unknown external perturbations and disturbances ..

[1]

[1]
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3. Dynamic model of the submarine

The dynamic model of the submarine can be written in matrix form:

where the control input vector is:

In this description:

3

and is generated by electric actuators that rotate the hydroplanes. Therefore the control

input describes actually voltage or current signals that define the turn angle of the rotor

of these electric actuators.
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It holds that the depth of the vessel measured in the inertial reference frame and the

velocity w of the submarine along the z-axis of the body-fixed frame are related as follows:

3. Dynamic model of the submarine

From the above relation one can compute about the diving speed of the vessel:

Moreover, from Eq one has:3

4

5

6

Substituting Eq. and the first row of Eq. : into Eq. one gets5 6 4

7
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3. Dynamic model of the submarine

Next, by denoting:

And by substituting this relation in Eq. , together with one obtains:7 Q = 𝜃
•

Then, by defining the state vector

8

From Eq. one finally arrives at the MIMO state-space description of the submarine8

9
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4. Differential flatness of the submarine’s dynamic model

Next, by denoting the flat output of the submarine as:

it can be proven that the submarine’s dynamic model is a differentially flat one

This means that all its state variables and its control inputs can be expressed as differential

functions of the flat output

From Eq. one gets9 which means

Again, from Eq. one gets9

which means

Eq. and Eq. confirm that the submarine’s model is a differentially flat one.

10

11

10 11
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4. Differential flatness of the submarine’s dynamic model

The differential flatness property of the submarine’s model is important because it means that

the vessel’s model can be transformed into the MIMO linear canonical (Brunovsky) form

through a change of its state variables (diffeomorphism)

By defining the new state variables of the vessel

𝑦1 = 𝑥1, 𝑦2 = 𝑦
•

1, 𝑦3 = 𝑥2, 𝑦4 = 𝑦
•

3

and by defining the transformed control inputs of the vessel

one obtains the linearized and decoupled state-space model of the submarine

for which the design of a state-feedback controller is possible

12

13
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5. Design of a stabilizing feedback controller for the submarine

For the transformed state-space model of the vessel

13

It is considered that the complete state vector is measurable

Then, to succeed tracking of the reference setpoint

𝑦𝑑 = [𝑦1
𝑑, 𝑦2

𝑑, 𝑦3
𝑑, 𝑦4

𝑑]𝑇 = [𝑥1
𝑑, 𝑥

•

1
𝑑, 𝑥2

𝑑, 𝑥
•

2
𝑑]𝑇

the feedback control inputs should be chosen as

𝑣1 = 𝑦
••

1
𝑑 − 𝑘𝑑

1(𝑦
•

1 − 𝑦
•

1
𝑑) − 𝑘𝑝

1(𝑦1 − 𝑦1
𝑑)

𝑣2 = 𝑦
••

3
𝑑 − 𝑘𝑑

2(𝑦
•

3 − 𝑦
•

3
𝑑) − 𝑘𝑝

2(𝑦3 − 𝑦3
𝑑) 14
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5. Design of a stabilizing feedback controller for the submarine

By substituting Eq. Into Eq.14 13 one obtains the

tracking error dynamics for the submarine

𝑒
••

1 + 𝑘𝑑
1𝑒
•

1 + 𝑘𝑝
1𝑒1 = 0 𝑒

••

2 + 𝑘𝑑
2𝑒
•

2 + 𝑘𝑝
2𝑒2 = 0 15

where the tracking error is defined as 𝑒1 = 𝑦1 − 𝑦1
𝑑 , 𝑒2 = 𝑦3 − 𝑦3

𝑑

By selecting the feedback control gains 𝑘𝑝
𝑖 , 𝑘𝑑

𝑖 𝑖 = 1,2 so as the characteristic polynomials

𝑝1(𝑠) = 𝑠2 + 𝑘𝑑
1𝑠 + 𝑘𝑝

1 𝑝2(𝑠) = 𝑠2 + 𝑘𝑑
2𝑠 + 𝑘𝑝

2
16

to have roots explicitly in the left complex semiplane, it is assured that

lim
𝑡→∞

𝑒𝑖 (𝑡) = 0 𝑖 = 1,2

Finally, the feedback control input that is actually exerted on the submarine is .

𝑢1
𝑢2

=
𝑔11(𝑥, 𝑡) 𝑔12(𝑥, 𝑡)
𝑔21(𝑥, 𝑡) 𝑔22(𝑥, 𝑡)

−1

[
𝑣1
𝑣2

−
𝑓1(𝑥, 𝑡)
𝑓2(𝑥, 𝑡)

]
17



Nonlinear control and filtering for USVs and AUVs

120

Example 5: Nonlinear control and state estimation using Lyapunov methods

6. Differential flatness of the autonomous submarine

• A dynamical system can be written in the ODE form 𝑆𝑖(𝑤, 𝑤
•
, 𝑤
••
, . . . , 𝑤(𝑖)), 𝑖 = 1,2, . . . , 𝑞

• The system is said to be differentially flat with respect to the flat output  

𝑦 = (𝑦1, 𝑦2, . . . , 𝑦𝑚)where                                        𝑦𝑖 = 𝜑(𝑤,𝑤
•
, 𝑤
••
, . . . , 𝑤(𝑎)), 𝑖 = 1, . . . , 𝑚

if the following two conditions are satisfied 

(i) There does not exist any differential relation of the form 

𝑅(𝑦, 𝑦
•
, 𝑦
••
, . . . , 𝑦(𝛽)) = 0

which means that the flat output and its derivatives are linearly independent

(ii) All system variables are functions of the flat output and its derivatives

𝑤(𝑖) = 𝜓(𝑦, 𝑦
•
, 𝑦
••
, . . . , 𝑦(𝛾𝑖))

𝑤(𝑖)where        stands for the i-th derivative of either a state vector element or of a control input                                      

• Differential flatness theory has been developed as a global linearization control

method by M. Fliess (Ecole Polytechnique, France) and co-researchers.
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6. Differential flatness of the autonomous submarn

The proposed adaptive control method is based on the transformation of the vessel’s

model into the linear canonical form, and this transformation is achieved by exploiting

the system’s differential flatness properties

• All single input vessel models are differentially flat and

can be transformed into the linear canonical form

One has to define also which are the MIMO vessel models which are differentially flat.

• Differential flatness holds for MIMO vessel models that admit static feedback

linearization and which can be transformed into the linear canonical form through a

change of variables (diffeomorphism) and feedback of the state vector. This is the case

of the submarine's model

• Differential flatness holds for MIMO vessel models that admit dynamic feedback

linearization, This is the case of underactuated vessel models In the latter case

the state vector of the system is extended by considering as additional flat outputs

some of the control inputs and their derivatives

• Finally, a more rare case is the so-called Liouvillian systems. These are systems for which

differential flatness properties hold for part of their state vector while the non-flat state variables

can be obtained by integration of the elements of the flat subsystem.
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7. Design of an adaptive controller for the submarine’s model

For the differentially flat MIMO model of

the submarine one has the dynamics

The following control input is considered

This results in tracking error dynamics of the form

where matrices A,B,K are defined as

𝑥
••

1 = 𝑓1(𝑥, 𝑡) + 𝑔1(𝑥, 𝑡)𝑢 + 𝑑
~

1

𝑥
••

3 = 𝑓2(𝑥, 𝑡) + 𝑔2(𝑥, 𝑡)𝑢 + 𝑑
~

2

𝑢 =
𝑔
^

1(𝑥, 𝑡)

𝑔
^

2(𝑥, 𝑡)

−1

{
𝑥
••

1
𝑑

𝑥
••

3
𝑑
−

𝑓
^

1(𝑥, 𝑡)

𝑓
^

2(𝑥, 𝑡)

−
𝐾1
𝑇

𝐾2
𝑇 𝑒 +

𝑢𝑐1
𝑢𝑐2

}

𝑒
•
= (𝐴 − 𝐵𝐾𝑇)𝑒 + 𝐵𝑢𝑐 + 𝐵{

𝑓1(𝑥, 𝑡) − 𝑓
^

1(𝑥, 𝑡)

𝑓2(𝑥, 𝑡) − 𝑓
^

2(𝑥, 𝑡)

+
𝑔1(𝑥, 𝑡) − 𝑔

^

1(𝑥, 𝑡)

𝑔2(𝑥, 𝑡) − 𝑔
^

2(𝑥, 𝑡)

𝑔
^

1(𝑥, 𝑡)

𝑔
^

2(𝑥, 𝑡)

−1

𝑢 + 𝑑
~

}

𝐴 =

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

, 𝐵 =

0 0
1 0
0 0
0 1

,𝐾𝑇 =
𝐾1
1 𝐾2

1 𝐾3
1 𝐾4

1

𝐾1
2 𝐾2

2 𝐾3
2 𝐾4

2

where and stand for estimates of the unknown nonlinear terms and𝑓
^

𝑔
^

𝑓 𝑔

These estimates are provided by neurofuzzy approximators or other nonlinear regressors
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7. Design of an adaptive controller for the submarine’s model

The nonlinear regressors (neurofuzzy approximators) consist of the kernel functions

and weights functions. Unlike SISO systems, in the case of MIMO dynamics the kernel 

and weights functions are not represented as vectors but take the form of matrices. 

Thus one has:  

Kernel and weights functions for the approximation of the nonlinear dynamics f:

Kernel and weights functions for the approximation of the nonlinear dynamics g:

𝑓
^

(𝑥|𝜃𝑓) = Φ𝑓(𝑥)𝜃𝑓

𝜃𝑓
𝑇 = 𝜃𝑓

1 𝜃𝑓
2 . . . 𝜃𝑓

𝑁Φ𝑓(𝑥) =

𝜑𝑓
1,1(𝑥) 𝜑𝑓

1,2(𝑥) . . . 𝜑𝑓
1,𝑁(𝑥)

𝜑𝑓
2,1(𝑥) 𝜑𝑓

2,2(𝑥) . . . 𝜑𝑓
2,𝑁(𝑥)

. . . . . . . . . . . .

𝜑𝑓
𝑛,1(𝑥) 𝜑𝑓

𝑛,2(𝑥) . . . 𝜑𝑓
𝑛,𝑁(𝑥)

𝜃𝑔 =

𝜃𝑔1
1 𝜃𝑔1

2 . . . 𝜃𝑔1
𝑝

𝜃𝑔2
1 𝜃𝑔2

2 . . . 𝜃𝑔2
𝑝

. . . . . . . . . . . .
𝜃𝑔𝑁
1 𝜃𝑔𝑁

2 . . . 𝜃𝑔𝑁
𝑝

Φ𝑔(𝑥) =

𝜑𝑔
1,1(𝑥) 𝜑𝑔

1,2(𝑥) . . . 𝜑𝑔
1,𝑁(𝑥)

𝜑𝑔
2,1(𝑥) 𝜑𝑔

2,2(𝑥) . . . 𝜑𝑔
2,𝑁(𝑥)

. . . . . . . . . . . .

𝜑𝑔
𝑛,1(𝑥) 𝜑𝑔

𝑛,2(𝑥) . . . 𝜑𝑔
𝑛,𝑁(𝑥)

𝑔
^
(𝑥|𝜃𝑔) = Φ𝑔(𝑥)𝜃𝑔and
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7. Design of an adaptive controller for the submarine’s model

The following quadratic Lyapunov function is defined: 

Differentiating one obtains:

The associated tracking error dynamics is: 

The effect of modelling errors is denoted by:

𝑉 =
1

2
𝑒𝑇𝑃𝑒 +

1

2𝛾1
𝜃
~

𝑓
𝑇𝜃
~

𝑓 +
1

2𝛾2
𝑡𝑟[𝜃

~

𝑔
𝑇𝜃
~

𝑔]

𝑉
•

=
1

2
𝑒
• 𝑇𝑃𝑒 +

1

2
𝑒𝑇𝑃𝑒

•
+

1

𝛾1
𝜃
~
•

𝑓
𝑇𝜃
~

𝑓 +
1

𝛾2
𝑡𝑟[𝜃

~
•

𝑔
𝑇𝜃
~

𝑔]

𝑒
•
= (𝐴 − 𝐵𝐾𝑇)𝑒 + 𝐵𝑢𝑐 + 𝐵{

𝑓1(𝑥, 𝑡) − 𝑓
^

1(𝑥, 𝑡)

𝑓2(𝑥, 𝑡) − 𝑓
^

2(𝑥, 𝑡)

+
𝑔1(𝑥, 𝑡) − 𝑔

^

1(𝑥, 𝑡)

𝑔2(𝑥, 𝑡) − 𝑔
^

2(𝑥, 𝑡)

𝑔
^

1(𝑥, 𝑡)

𝑔
^

2(𝑥, 𝑡)

−1

𝑢 + 𝑑
~

}

𝑤 =
𝑓1(𝑥, 𝑡) − 𝑓

^

1(𝑥, 𝑡)

𝑓2(𝑥, 𝑡) − 𝑓
^

2(𝑥, 𝑡)

+
𝑔1(𝑥, 𝑡) − 𝑔

^

1(𝑥, 𝑡)

𝑔2(𝑥, 𝑡) − 𝑔
^

2(𝑥, 𝑡)

𝑔
^

1(𝑥, 𝑡)

𝑔
^

2(𝑥, 𝑡)

−1

𝑢

The weight functions of the neurofuzzy approximators are learned through an adaptation

procedure that is determined by Lyapunov stability analysis for the submarine’s model.

𝑒: state vector tracking error

𝜃
~

𝑓 = 𝜃𝑓 − 𝜃𝑓
∗: Difference of the weights from the value that succeeds exact estimation of f

𝜃
~

𝑔 = 𝜃𝑔 − 𝜃𝑔
∗: Difference of the weights from the value that succeeds exact estimation of g
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7. Design of an adaptive controller for the submarine’s model

Thus one obtains the following tracking error dynamics: 

The first derivative of the Lyapunov function becomes: 

and after intermediate terms substitution one obtains: 

Assumption 1: the positive definite and symmetric matrix P is chosen as solution of the 

Riccati equation: 

𝑒
•
= (𝐴 − 𝐵𝐾𝑇)𝑒 + 𝐵𝑢𝑐 + 𝐵(𝑤 + 𝑑

~

)

𝑉
•

=
1

2
{𝑒𝑇(𝐴 − 𝐵𝐾𝑇)𝑇 + 𝑢𝑐

𝑇𝐵𝑇 + (𝑤 + 𝑑
~

)𝑇𝐵𝑇}𝑃𝑒 +
1

2
𝑒𝑇𝑃{(𝐴 − 𝐵𝐾𝑇)𝑒 + 𝐵𝑢𝑐 + 𝐵(𝑤 + 𝑑

~

)}

+
1

𝛾1
𝜃
~
•

𝑓
𝑇𝜃
~

𝑓 +
1

𝛾2
𝑡𝑟[𝜃

~
•

𝑔
𝑇𝜃
~

𝑔]

𝑉
•

=
1

2
𝑒𝑇{(𝐴 − 𝐵𝐾𝑇)𝑇𝑃 + 𝑃(𝐴 − 𝐵𝐾𝑇)}𝑒 +

1

2
2𝑒𝑇𝑃𝐵𝑢𝑐 +

1

2
2𝐵𝑇𝑃𝑒(𝑤 + 𝑑

~

)

+
1

𝛾1
𝜃
~
•

𝑓
𝑇𝜃
~

𝑓 +
1

𝛾2
𝑡𝑟[𝜃

~
•

𝑔
𝑇𝜃
~

𝑔]

(𝐴 − 𝐵𝐾𝑇)𝑇𝑃 + 𝑃(𝐴 − 𝐵𝐾𝑇) − 𝑃𝐵(
2

𝑟
−

1

𝜌2
)𝐵𝑇𝑃 + 𝑄 = 0

18
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7. Design of an adaptive controller for the submarine’s model

Using as supervisory control input                              one obtains: 

which can be written in the form: 

Next, substituting: 

i.e: 

the following form of the derivative of the Lyapunov function is obtained: 

𝑉
•

=
1

2
𝑒𝑇{−𝑄 + 𝑃𝐵(

2

𝑟
−

1

𝜌2
)𝐵𝑇𝑃}𝑒 + 𝑒𝑇𝑃𝐵{−

1

𝑟
𝐵𝑇𝑃𝑒} + 𝐵𝑇𝑃(𝑤 + 𝑑

~

) +

+
1

𝛾1
𝜃
~
•

𝑓
𝑇𝜃
~

𝑓 +
1

𝛾2
𝑡𝑟[𝜃

~
•

𝑔
𝑇𝜃
~

𝑔]

𝑉
•

= −
1

2
𝑒𝑇𝑄𝑒 −

1

2𝜌2
𝑒𝑇𝑃𝐵𝐵𝑇𝑃𝑒 + 𝑒𝑇𝑃𝐵(𝑤 + 𝑑

~

) +
1

𝛾1
𝜃
~
•

𝑓
𝑇𝜃
~

𝑓 +
1

𝛾2
𝑡𝑟[𝜃

~
•

𝑔
𝑇𝜃
~

𝑔]

𝜃
~
•

𝑓 = 𝜃
•

𝑓 − 𝜃
•

𝑓
∗ = 𝜃

•

𝑓 and 𝜃
~
•

𝑔 = 𝜃
•

𝑔 − 𝜃
•

𝑔
∗ = 𝜃

•

𝑔

𝜃
•

𝑓 = −𝛾1Φ(𝑥)
𝑇𝐵𝑇𝑃𝑒 and 𝜃

•

𝑔 = −𝛾2Φ(𝑥)
𝑇𝐵𝑇𝑃𝑒𝑢𝑇

𝑉
•

= −
1

2
𝑒𝑇𝑄𝑒 −

1

2𝜌2
𝑒𝑇𝑃𝐵𝐵𝑇𝑃𝑒 + 𝑒𝑇𝑃𝐵(𝑤 + 𝑑

~

) +

+
1

𝛾1
(−𝛾1)𝑒

𝑇𝑃𝐵Φ(𝑥)(𝜃𝑓 − 𝜃𝑓
∗) +

1

𝛾2
(−𝛾2)𝑡𝑟[𝑢𝑒

𝑇𝑃𝐵Φ(𝑥)(𝜃𝑔 − 𝜃𝑔
∗)]

𝑢𝑐 = −
1

𝑟
𝐵𝑇𝑃𝑒
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7. Design of an adaptive controller for the submarine’s model

Taking into account that                   and 

the following form is obtained for the Lyapunov function derivative : 

and since 

𝑢 ∈ 𝑅2×1 𝑒𝑇𝑃𝐵(𝑔
^
(𝑥|𝜃𝑔) − 𝑔

^
(𝑥|𝜃𝑔

∗)) ∈ 𝑅1×2

𝑉
•

= −
1

2
𝑒𝑇𝑄𝑒 −

1

2𝜌2
𝑒𝑇𝑃𝐵𝐵𝑇𝑃𝑒 + 𝑒𝑇𝑃𝐵(𝑤 + 𝑑

~

) +

+
1

𝛾1
(−𝛾1)𝑒

𝑇𝑃𝐵Φ(𝑥)(𝜃𝑓 − 𝜃𝑓
∗) +

1

𝛾2
(−𝛾2)𝑡𝑟[𝑒

𝑇𝑃𝐵(𝑔
^
(𝑥|𝜃𝑔) − 𝑔

^
(𝑥|𝜃𝑔

∗))𝑢]

𝑒𝑇𝑃𝐵(𝑔
^
(𝑥|𝜃𝑔) − 𝑔

^
(𝑥|𝜃𝑔

∗))𝑢 ∈ 𝑅1×1 it holds that

𝑉
•

= −
1

2
𝑒𝑇𝑄𝑒 −

1

2𝜌2
𝑒𝑇𝑃𝐵𝐵𝑇𝑃𝑒 + 𝑒𝑇𝑃𝐵(𝑤 + 𝑑

~

) +

+
1

𝛾1
(−𝛾1)𝑒

𝑇𝑃𝐵Φ(𝑥)(𝜃𝑓 − 𝜃𝑓
∗) +

1

𝛾2
(−𝛾2)𝑒

𝑇𝑃𝐵(𝑔
^
(𝑥|𝜃𝑔) − 𝑔

^
(𝑥|𝜃𝑔

∗))𝑢

Using the following description for the model approximation error: 

𝑤𝑎 = [𝑓
^

(𝑥|𝜃𝑓
∗) − 𝑓

^

(𝑥|𝜃𝑓)] + [𝑔
^
(𝑥|𝜃𝑓

∗) − 𝑔
^
(𝑥|𝜃𝑓)]𝑢

the equation of the Lyapunov function derivative becomes: 

𝑉
•

= −
1

2
𝑒𝑇𝑄𝑒 −

1

2𝜌2
𝑒𝑇𝑃𝐵𝐵𝑇𝑃𝑒 + 𝑒𝑇𝑃𝐵(𝑤 + 𝑑

~

) + 𝑒𝑇𝑃𝐵𝑤𝑎
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7. Design of an adaptive controller for the submarine’s model

and denoting the disturbances and modelling error terms as: 

one has: 

or: 

Next the following inequality is used: 

𝑤1 = 𝑤 + 𝑑
~

+𝑤𝑎

𝑉
•

= −
1

2
𝑒𝑇𝑄𝑒 −

1

2𝜌2
𝑒𝑇𝑃𝐵𝐵𝑇𝑒 + 𝑒𝑇𝑃𝐵𝑤1

𝑉
•

= −
1

2
𝑒𝑇𝑄𝑒 −

1

2𝜌2
𝑒𝑇𝑃𝐵𝐵𝑇𝑒 +

1

2
𝑒𝑇𝑃𝐵𝑤1 +

1

2
𝑤1
𝑇𝐵𝑇𝑃𝑒

1

2
𝑒𝑇𝑃𝑤1 +

1

2
𝑤1
𝑇𝐵𝑇𝑃𝑒 −

1

2𝜌2
𝑒𝑇𝑃𝐵𝐵𝑇𝑃𝑒 ≤

1

2
𝜌2𝑤1

𝑇𝑤1

Proof: 

The binomial is considered. Expanding the left part of the above

inequality one gets

By substituting one gets

Lemma:   It holds that 19
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7. Design of an adaptive controller for the submarine’s model

By substituting Eq.           into the relation of the derivative of the Lyapunov 

function gives:

𝑉
•

≤ −
1

2
𝑒𝑇𝑄𝑒 +

1

2
𝜌2𝑤1

𝑇𝑤1

This is the H-infinity tracking performance criterion which means that for bounded disturbance 

and modelling error the control law results in very small bounded tracking error: 

න
0

∞

||𝑤1||

2

𝑑𝑡 ≤ 𝑀𝑤 one has the following integral:

which means that:

න

0

𝑇

𝑉
•

(𝑡)𝑑𝑡 ≤ −
1

2
න

0

𝑇

||𝑒(𝑡)||2 𝑑𝑡 +
1

2
𝜌2න

0

𝑇

||𝑤1||
2𝑑𝑡 ⇒ 2𝑉(𝑇) + න

0

𝑇

||𝑒(𝑡)||𝑄
2𝑑𝑡 ≤ 2𝑉(0) + 𝜌2න

0

𝑇

||𝑤1||
2𝑑𝑡

න

0

∞

||𝑒||𝑄
2𝑑𝑡 ≤ 2𝑉(0) + 𝜌2𝑀𝑤

19

20

It is noted that, by choosing the attenuation coefficient ρ to be sufficiently small, the right

part of Eq. can be always made to be upper bounded by zero.

In such a case the asymptotic stability condition is clear to hold..

The minimum value of ρ for which a solution of the Riccati Eq. exists, is the one that

provides the control loop with maximum robustness.

20

18

Moreover, if

and from Barbalat’s Lemma one has that

which confirms again that the tracking error vanishes
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8. Simulation tests

• In the simulation tests, the dynamic model of the submarine was considered to be

completely unknown and was identified in real-time by the previously analyzed

nonlinear regressors (neurofuzzy approximators)

• The estimated unknown dynamics of the system was used in the computation of

the control inputs (generated by the electric actuators of the hydroplanes) which were

finally exerted on the submarine’s model.

depth

pitch 

angle
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8. Simulation tests

depth

pitch 

angle

depth

pitch 

angle

setpoint change

+ disturbance
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9. Conclusions

• By exploiting the differential flatness properties of the MIMO nonlinear model of

the submarine the system was transformed into the linear canonical (Brunovsky)

form. For the latter description the design of a feedback controller was possible.

• Moreover, to cope with unknown nonlinear terms appearing in the new control

inputs of the transformed state-space description of the submarine, the use of nonlinear

regressors (neurofuzzy approximators) has been proposed..

• These estimators were online trained to identify the unknown

dynamics of the system and the associated learning procedure

was determined by the requirement the derivative of the system’s

Lyapunov function to be a negative one.

• Through Lyapunov stability analysis it was proven that the closed loop satisfies the

H-infinity tracking performance criterion, and this assures improved robustness

against model uncertainties and external perturbations.

• The computation of the control input required the solution of an algebraic Riccati

equation. Suitable selection of the attenuation coefficient ρ in this equation assures

asymptotic stability and provides maximum robustness.

• The proposed flatness-based adaptive fuzzy control method is generic and can be

applied to a wide class of vessels, such as surface vessels or AUVs.
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V. Final conclusions

● Methods for nonlinear control and state estimation for autonomous

navigation in USVs and AUVs have been developed

● The main approaches for nonlinear control have been: (i) control with global linearization

method (ii) control with approximate (asymptotic) linearization methods (iii) control with

Lyapunov theory methods (adaptive control) in case that the dynamic or kinematic model

of the USVs and AUVs is unknown

● The main approaches for nonlinear state estimation are: (i) nonlinear state estimation with

methods of global linearization (ii) nonlinear state estimation with methods of approximate

(asymptotic) linearization
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